
ASAP: an Aggressive SpeculAtive Protocol for
Actively Replicated Transactional Systems

Roberto Palmieri and Francesco Quaglia
DIIAG, Sapienza University, Rome, Italy

Paolo Romano
INESC-ID/IST, Lisbon, Portugal

Abstract—Recent advances in the field of replicated, fault
tolerant transactional systems make systematic use of Optimistic
Atomic Broadcast (OAB) group communication primitives in
order to coordinate the replicas. According to this scheme, the
replicas gain information on the existence of transactional re-
quests before a final and global agreement is reached on the trans-
action serialization order. Hence, speculative processing schemes
can be exploited in order to maximize the overlap between
local computation and distributed coordination activities. In this
article we present ASAP, an innovative Aggressive SpeculAtive
Protocol, which exhibits the following two peculiarities: (A) it
allows speculating along different transaction serialization orders,
thus increasing the likelihood of successful overlap between local
processing and coordination in case of mismatches between the
optimistic and the final delivery sequence of incoming requests;
(B) it speculates along chains of conflicting transactions, tracking
data dependencies among transactions via an innovative concur-
rency control mechanism, which allows determining in a timely
fashion the alternative serialization orders to be speculatively
explored. Via a simulation study in the context of Software
Transactional Memory systems we show ASAP can achieve robust
performance independently of the likelihood of reorder between
optimistic and final deliveries, providing remarkable performance
improvements (enhancing the maximum sustainable throughput
up to a 2x factor) with respect to state of the art speculative
replication protocols.

I. INTRODUCTION

Active replication, a.k.a. state machine replication [29], is
a classical means for providing fault-tolerance and high avail-
ability. This scheme is based on the enforcement of consensus
among the replicas on a common total order according to
which the incoming requests must be processed. The problem
of establishing, in a non-blocking fashion, the agreed upon
total order is typically encapsulated by a so called Atomic
Broadcast (AB) group communication primitive, namely a
convenient abstraction of consensus for which a wide range
of alternative implementations have been proposed in literature
[9]. The issue of enforcing request processing in an order that
deterministically complies with the AB outcome is instead
delegated to a replica control mechanism [23].

As for efficiency and performance aspects, AB can be
responsible for non-negligible latency along the critical path
of request processing, with negative repercussions on the
response time [25]. The replica control mechanism, on the
other hand, can severely restrict parallelism in order to avoid
mismatches between the actual order of request processing

This work has been partially supported by national funds through FCT
Fundação para a Ciência e a Tecnologia, under projects PTDC/EIA-
EIA/102496/2008 and PEst-OE/EEI/LA0021/2011, by the Cloud-TM project
(co-financed by the European Commission through the contract no. 57784)
and by COST Action IC1001 EuroTM.

(and hence the shared state update trajectory) and the AB
defined order [18], [20]. The latter aspect represents an
extremely relevant issue of late, given that multi-core and
many-core processors have nowadays become mainstream,
and considering the current trend towards massively parallel
computing platforms [20].

Unsurprisingly, in literature a number of approaches have
been proposed aimed at coping with the above issues, which
have been typically specialized to meet the requirements or to
exploit the opportunities of specific application domains, such
as data streaming [4], [28] or transaction processing [17], [26].

In this article our focus is on active replication in the
context of transaction processing systems, for which a key
optimization technique has been presented in [17], and then
further exploited in [18]. This technique is based on the
observation that replicas can use the spontaneous network
delivery order as an early, although possibly erroneous, guess
of the total delivery order of messages eventually defined
via AB. This idea is nicely encapsulated by the Optimistic
Atomic Broadcast (OAB) primitive [17], representing a variant
of AB in which the notification of the final message delivery
order is preceded by an early optimistic message delivery
indication, typically available after a single communication
step. By activating transaction processing upon the optimistic
delivery of a message, rather than waiting for the final order
to be established, OAB-based replication techniques allow
overlapping the (otherwise sequential) replica synchronization
and local computation phases.

In this article we propose ASAP, an Aggressive SpeculAtive
Protocol relying on OAB which makes systematic use of
speculative transaction processing in order to further optimize
the overlap between processing and distributed coordination
phases. The peculiarities of ASAP are: (A) It allows specu-
lating along differentiated serialization orders in an adaptive
manner, depending on the real concurrency among incoming
transactional requests, which is used as a convenient estima-
tor of the likelihood of mismatches between the optimistic
and final delivery order [17]. Overall, via the exploration
of multiple, alternative serialization paths, ASAP increases
the likelihood of guessing a transaction serialization order
equivalent to the one that will be eventually established by
the final delivery order. (B) It allows speculating along chains
of conflicting transactions by using an innovative concurrency
control scheme that tracks dependencies among transactions
in an aggressive fashion, i.e. while transactions are still being
executed rather than at their completion, as instead done by ex-
isting speculative replication protocols [19], [26]. This allows
for early identification of transaction dependencies, which in

turn permits early identification of alternative serialization
orders to be explored while coordination is in progress, hence
favoring concurrency.

We note that the combination of the features in points
(A) and (B) uniquely characterizes ASAP since, in literature,
aggressive exposition of new data versions to early determine
transaction dependencies has been exploited in replication
protocols which only speculate along the serialization order
that matches with the optimistic delivery sequence (see [18]).
Hence, alternative paths are not considered at all. On the
other hand, protocols that speculate along multiple paths
(see [19]) track transaction dependencies using lazy schemes
that are activated only when the entire transaction has been
processed. As we will show, this limits significantly the degree
of concurrency achievable by these schemes when compared
to ASAP.

We assess the performance of ASAP via an extensive trace
driven simulation study in the context of Software Trans-
actional Memory (STM) systems, showing that 2x through-
put increase can be achieved compared to recent literature
proposals. The results also highlight that ASAP can ensure
robust performance even in presence of shifts of the degree
of concurrency and of the likelihood of mismatches between
optimistic and final delivery sequences.

The remainder of this paper is structured as follows. Section
II discusses related work. The model of the target replicated
system is introduced in Section III. ASAP is presented in
Section IV. The results of the simulation study are provided
in Section V.

II. RELATED WORK

Speculative approaches aimed at improving the performance
of database systems have been investigated in literature to
some extent. The work in [3] explores the idea of speculatively
executing transactions by exploiting the notion of save-point.
Specifically, upon the detection of a conflict, a copy of the cur-
rent transaction is speculatively forked and remains idle, thus
acting as the save-point to reduce the cost of transaction aborts,
which in turn allows for increased timeliness while completing
transactions. This work is targeted at non-replicated real-time
databases, while our focus is on the design of protocols for
replicated transactional systems.

The solution in [24] targets distributed databases relying
on distributed locking and on a final atomic commit phase
for validating transactions. In particular, the post-images of
data whose locks are held by prepared distributed transactions
are allowed to be accessed by conflicting transaction, thus
reducing the lock-wait time. A similar scheme is used by
the protocol presented in [13], which is explicitly targeted at
real-time time distributed databases. Compared to these works,
our proposal can be considered as orthogonal since we target
speculative processing in the context of replicated transactional
systems not relying on distributed locking protocols, but on the
usage of OAB primitives and of (innovative) local concurrency
control mechanisms, acting at the level of each individual
replicated node. Further, total-order based replication schemes
[1], [16], [21] allow avoiding the well-known scalability prob-
lems that affect replication mechanisms based on distributed
locking and atomic commit protocols [11]. Additionally, the

works in [24], [13] do not deal with concurrent exploration of
multiple serialization orders, which is instead one of the main
objectives of our proposal.

The literature results more strictly related to our proposal are
those presenting (O)AB-based active replication protocols for
transactional systems, some of which systematically exploit
speculative schemes for processing the transactions locally
at each site thus aiming at maximizing the overlap between
processing and distributed coordination. Relevant proposals
along this direction can be found in, e.g., [1], [17]. Differently
from ASAP, some of these proposals do not speculate along
chains of conflicting transactions. In particular, they either
execute transactions in a non-speculative fashion after the AB
service is already finalized (see [1], [16]), or execute at most a
single optimistically delivered transaction along the conflict-
ing transactions chain, before the OAB gets completed (see
[17]). Also, the latter protocols require a-priori knowledge of
transactions’ data accesses since each speculatively executed
transaction needs to pre-acquire locks on its accessed data-set.
Conversely ASAP adopts an optimistic transaction scheduling
approach that does not require a-priori knowledge of data
access patterns.

Like ASAP, our recent works in [18], [19], [26] make use of
speculation along chains of conflicting transactions. The work
in [18] constrains speculation to adhere to the serialization
order corresponding to the optimistic delivery order, while
ASAP allows concurrent exploration of alternative serializa-
tion paths, thus enhancing robustness in scenarios of mismatch
between optimistic and final orders. The proposals in [19], [26]
are based on speculative exploration of distinct serialization
orders of optimistically delivered transactions. However, the
determination of transaction dependencies, and hence the iden-
tification of the alternative orders to be conveniently explored,
takes place by exposing the post-image of the written data only
when transactions are fully processed. Instead ASAP adopts
an aggressive approach that allows identifying transaction
dependencies as soon as they arise (i.e. during transaction
execution), hence increasing the timeliness according to which
alternative serialization orders to be speculatively explored are
identified. This increases the level of concurrency (and the
actual overlap between processing and coordination), thus also
allowing better exploitation of massively parallel platforms,
such as those based on many-core technologies.

Finally, solutions such as [6] address, via speculative trans-
action processing, the issue of certification-based replication,
while in this article we cope with speculation within active
replication, which is known to provide different trade-offs in
terms of bandwidth requirements for coordination activities.

III. SYSTEM MODEL

We consider a classical distributed system model [12]
consisting of a set of transactional processes Π = {p1, . . . , pn}
that communicate via message passing and adhere to the
fail-stop (crash) model. If a process does not fail we say it
is correct. We assume the availability of an OAB service
exposing the following API: TO-broadcast(m), which allows
broadcasting message m to all the processes in Π; Opt-
deliver(m), which delivers message m to a process in Π in a
tentative, also called optimistic, order; TO-deliver(m), which

delivers message m to a process in Π in a so called final order
that is the same for all the processes in Π. OAB provides the
following set of properties [22]: Termination - If a correct
process TO-broadcasts m, then it eventually Opt-delivers m;
Global Agreement - If a process Opt-delivers m, then every
correct process eventually Opt-delivers m; Local Agreement
- If a correct process Opt-delivers m, then it eventually TO-
delivers m; Global Order - If two processes pi and pj TO-
deliver messages m and m′, they do so in the same order;
Local Order - If a process TO-delivers m, it does this only
after having Opt-delivered m.

Applications submit transactional requests to their local
Transaction Manager (XM), specifying the business logic to be
executed and the corresponding input parameters (if any). XM
is responsible of (i) propagating (through the OAB service) the
transactional request across the set of replicated processes,
(ii) executing the transactional logic, and (iii) returning the
corresponding result to the user-level application. With no
loss of generality, we assume the existence of a function
Complete, used to explicitly notify XM about the completion
of the business logic associated with a transaction. In real
transactional architectures it could be implemented just as a
wrapper for the commit command.

We assume that each data-item X is associated with a set
of versions {X1, . . . , Xn}, and that, at any time, there exists
exactly one committed version of data-item X . On the other
hand, other versions can be either (A) in the complete state,
which means that the creating transactions have reached the
complete stage, but their outcome (commit/abort) has not been
finalized yet, or (B) in the Work-in-progress (Wip) state, which
means that the creating transactions are still live, thus having
not yet reached completion.

We assume that the data items accessed by transactions are
not a-priori known, and that data access patterns can vary
depending on the observed state. More precisely, we assume
that the business logic is snapshot deterministic [26] in the
sense that the sequence of read/write operations it executes
is deterministic once fixed the return value of any of its read
operations. In other words, whenever an instance of transaction
T is re-executed and observes a same snapshot, it behaves
deterministically.

The manipulation of the data items occurs via the following
primitives:

• MarkAsWip(T,XT), which is used for declaring the
existence of a Wip version of data-item X created by
transaction T ;

• UnmarkAsWip(T,XT), which is used for un-
declaring the existence of a previously declared Wip
version of data-item X by transaction T ;

• MarkedAsWip(T,X) which is used to query the ex-
istence of a Wip declaration on X by transaction T ;

• setComplete(T,XT), which marks a data-item ver-
sion XT written by transaction T as complete, and

• unsetComplete(T,XT), which removes a complete
data-item version XT exposed by transaction T .

IV. ASAP: THE AGGRESSIVE SPECULATIVE PROTOCOL

A. Preliminaries
We denote with Ti each single transactional request de-

livered by the OAB service (either optimistically or finally
ordered). Ti is however never directly executed by XM, which
only executes speculative instances of transactions associated
with Ti, each of which is denoted as T ji .

Each speculative transaction T ji perceives its own view of
the correct serialization order, defined as the totally ordered
sequence of transactions that are expected to be serialized
before T ji . The main data structures used by ASAP are:
• a shared list of speculative transaction identifiers, called

OptDelivered, accessible by all the transactional threads;
• a local (per-thread) list of speculative transaction iden-

tifiers, referred to as T ji .RefOrder, which is associated
with the transactional thread handling transaction T ji .

OptDelivered keeps, at any time, the identifiers of the
transactions whose speculative serialization view is aligned
with the order of optimistic deliveries locally generated by the
OAB service. On the other hand, the sequence of speculative
transactions recorded within T ji .RefOrder expresses, on the
basis of the view by T ji , the order according to which specu-
lative transactions preceding T ji should be serialized. Hence,
T ji .RefOrder determines a history of speculative transactions
whose produced snapshots should be visible by T ji ’s read
operations.

The notation Thk
T j
i→ T ts is used to indicate that Thk precedes

T ts within the ordered list T ji .RefOrder. This expresses that,
according to the view of T ji :

(a) Thk and T ts belong to the same speculative history of
transactions;

(b) Thk and T ts are both expected to be serialized before T ji ;
(c) Thk is expected to be serialized before T ts .

By convention, the special transaction identifier Tωα represents

the minimum element of the
T j
i→ relation for whichever trans-

action T ji . This notation is used to encapsulate the history of
already committed transactions that, according to T ji ’s view

of the speculative serialization, expressed via the relation
T j
i→,

must be serialized before T ji and before any transaction be-
longing to T ji .RefOrder. Always by convention, the maximum

element of the
T j
i→ relation is always represented by T ji . Hence,

the last element of the list T ji .RefOrder is always set to T ji .

B. Protocol Pseudo-Code
The pseudo-code for ASAP is shown in Figures 1 and 2,

and is discussed in the following.

Opt/TO-deliver. Upon the Opt-deliver event of a transaction
Ti, XM instantiates a speculative transaction T 0

i , whose iden-
tifier is appended to the global list OptDelivered. Then XM
sets up the serialization order to be perceived by T 0

i by simply
copying the content of OptDelivered within T 0

i .RefOrder.
Then, XM activates the processing activities for T 0

i by invok-
ing ActivateSpeculativeTransaction, which also adds T 0

i to
the set ActiveXacts of the active transactions.

Global structures:
OrderedList<Transaction> TODelivered, OptDelivered;
Set<Transaction> ActiveXacts;

upon Opt-deliver(Transaction Ti) do atomically
T 0
i =Ti.createNewSpecXact();

OptDelivered.append(T 0
i);

T 0
i .RefOrder = copy(OptDelivered);

ActivateSpeculativeTransaction(T 0
i);

void ActivateSpeculativeTransaction(Transaction T s
i) do atomically

ActiveXacts.add(T s
i);

start processing thread;

DataItemValue Read(Transaction T s
i , DataItem X)

if (X ∈ T s
i .WriteSet) return T s

i .WriteSet.get(X).value;

atomically select T t
j = max{T f

j : T f
j

Ts
i→ T s

i and T f
j exposed a version of X};

set VX = version of X written by T t
j ;

if (MarkedAsWip(T t
j , VX)){

wait for T t
j completion or for a Resume event;

if (T t
j 6∈ T

s
i .RefOrder) re-start read operation;

}
T s
i .ReadSet.add(VX);
T s
i .ReadFrom.add(T t

j);
return T s

i .ReadSet.get(VX).value;

void Write(Transaction T s
i , DataItem X , Value v) do atomically

if (X ∈ T s
i .WriteSet) T s

i .WriteSet.update(X, v);
else{
T s
i .WriteSet.add(X, v)

MarkAsWip(T s
i ,X

Ts
i)

∀ T t
j ∈ ActiveXacts s.t. (∃ X ∈ T t

j .ReadSet :

T s
i = max{T f

l : T f
l

Tt
j→ T t

j and X ∈ T f
l .WriteSet }) do {

TxId
j = Tj .createNewSpecXact();
TxId
j .RefOrder = copy(T t

j .RefOrder);
TxId
j .RefOrder.replace(T t

j ,TxId
j);

if (T t
j ∈ OptDelivered) OptDelivered.replace(T t

j , T
xId
j);

propagateSnapshotMiss(T t
j ,TxId

j ,T s
i);

T t
j .RefOrder.Remove(T s

i);
if (T t

j is waiting for T s
i ’s completion) T t

j .RaiseEvent(Resume);
ActivateSpeculativeTransaction(TxId

j);
}/end do
}/end if-else

Fig. 1. ASAP Pseudo-code (Part I).

Upon the TO-deliver of Ti, the delivered transaction is
simply queued within the TODelivered list.

Read operations. As for a read operation by transaction T si on
a data-item X , the first action executed is a check to determine
whether X belongs to the write-set of T si . In the positive
case, the value of X currently registered within the write-set
is returned, hence ensuring that transactions always observe
the snapshots they generated. On the other hand, in case X
does not belong to the write-set, the version of X to be read is
identified by exploiting the information stored within the list
T si .RefOrder. To this end, the most recent version exposed
by any live, completed or committed transaction is identified

by selecting the topstanding transaction according to the
T s
i→

relation, that wrote X . In case such a version is associated
with a live transaction T tj , it represents a Wip version. Hence,
transaction T si enters a wait phase that is interrupted either
upon the completion of T tj (which exposes T tj ’s post-images
of X) or by an explicit Resume event destined to T si . As
it will be further discussed later on, the two different cases
are related to different scenarios, in terms of speculative run-

void propagateSnapshotMiss(Transaction T t
j , Transaction TxId

j , Transaction T s
i)

∀T f
l ∈ ActiveXacts s.t. (T t

j ∈ T
f
l .RefOrder) {

TxId′
l = Tl.createNewSpecXact();
TxId′
l .RefOrder = copy(T f

l .RefOrder);
TxId′
l .RefOrder.replace(T f

l ,TxId′
l);

TxId′
l .RefOrder.replace(T t

j ,TxId
j);

if (T f
l ∈ OptDelivered) OptDelivered.replace(T f

l , T
xId′
l);

propagateSnapshotMiss(T f
l ,TxId′

l ,T s
i);

T f
l .RefOrder.Remove(T s

i);
if (T f

l is waiting for T s
i ’s completion) T f

l .RaiseEvent(Resume);
ActivateSpeculativeTransaction(TxId′

l);
} / end do

void Complete(Transaction T s
i) do atomically

T s
i is marked as Completed
∀ X ∈ T s

i .WriteSet do {setComplete(T s
i , X

Ts
i)};

wait until TODelivered.topStanding == Ti;
if (∀X ∈ T s

i .ReadSet: X .version == LatestCommitted) T s
i .RaiseEvent(Commit);

else T s
i .RaiseEvent(Abort);

upon TO-Deliver(Transaction Ti)
TODelivered.enqueue(Ti);

upon Abort(Transaction T s
i) do atomically

∀X ∈ T s
i .WriteSet do

if (T s
i is complete) unsetComplete(T s

i ,X
Ts
i)

else UnmarkAsWip(T s
i ,X

Ts
i);

∀Th
j ∈ActiveXacts s.t. j 6= i and T s

i ∈ T
h
j .RefOrder do Th

j .RefOrder.remove(T s
i);

∀Th
j s.t. T s

i ∈ T
h
j .ReadFrom do Th

j .RaiseEvent(Abort);
∀Th

j s.t. T t
j is waiting for T s

i ’s completion do Th
j .RaiseEvent(Resume);

ActiveXacts.remove(T s
i);

upon Commit(Transaction Tk
i) do atomically

ActiveXacts.Remove(Tk
i);

∀X ∈ Tk
i .WriteSet do Tk

i .WriteSet.Commit(X);
TODelivered.Dequeue(Ti);
OptDelivered.Remove(T∗i);
∀Th

i ∈ActiveXacts s.t. h 6= k do Th
i .RaiseEvent(Abort);

∀Th
j ∈ActiveXacts s.t. j 6= i and Tk

i ∈ T
h
j .RefOrder do Th

j .RefOrder.remove(Tk
i);

∀Th
j ∈ActiveXacts s.t. Tk

i ∈ T
h
j .ReadFrom do Th

j .RaiseEvent(Validate);

upon Validate(Transaction Tk
i) do atomically

∀X ∈ Tk
i .ReadSet do {

compute Th
j = max{T f

l : T f
l

Tk
i→ Tk

i and X ∈ T f
l .WriteSet};

if (Tk
i .ReadSet.get(X).Creator 6= Th

j){
Tk
i .RaiseEvent(AbortRetry);

break;
}/end if
}/end do

upon AbortRetry(Transaction T s
i) do atomically

∀X ∈ T s
i .WriteSet do

if (T s
i is complete) unsetComplete(T s

i ,X
Ts
i)

else UnmarkAsWip(T s
i ,X

Ts
i);

∀Th
j s.t. T s

i ∈ T
h
j .ReadFrom do Th

j .RaiseEvent(AbortRetry);
restart transaction T s

i ;

Fig. 2. ASAP Pseudo-code (Part II).

time dynamics. In particular, an explicit Resume event will
be raised towards T si in case, depending on the future activities
of the live transaction T tj , it will be determined that T si ,
or some other transaction in between T tj and T si within the
ordering defined by T si .RefOrder, missed some data-item
version eventually produced by T tj .

Upon resuming, it is checked whether T tj still belongs
to the serialization view seen by T si , which is encoded by
T si .RefOrder. Actually, a change of the value of T si .RefOrder
(e.g. via the elimination of T tj) is an expression that an
alternative speculative serialization path has been dynamically

selected for T si . In such a case, the read operation is re-
executed so to allow T si to follow such an alternative path by
re-selecting the version of X to be read, according to what
specified by the new value of T si .RefOrder. On the other
hand, in case such a change of the serialization order does
not happen, it means that the originally selected version has
reached the complete stage. Hence, T tj has been completed
and is still seen by T si along its own serialization path. In
such a case, the version of X wrote by T tj has become stable
and can be safely returned to T si .

Write operations. In case of a write operation by T si , if the
data-item X to be written already belongs to T si ’s write-set,
then its value is simply updated. On the other hand, if X
does not belong to the transaction write-set, it is added to
the write-set and the newly produced version of X is marked
as Wip, which allows to promptly notify the occurrence of a
write on X to every other speculative transaction having T si
in its speculative reference order. On the other hand, some of
these transactions may have already issued a read operation
on X , missing the version currently produced by T si . Hence
it is checked whether some of these speculative transactions,
say T tj , according to its own serialization view expressed by
T tj .RefOrder, should have read the version of X currently
produced by T si . This is determined by checking whether T si
is the maximum element of the

T t
j→ relation, which exposed a

version of X . If this is the case, then it means that T tj missed
the snapshot produced by T si . ASAP takes advantage of these
events by pursuing a transaction serialization order different
from the one originally expressed by T tj .RefOrder. On the
other hand, ASAP also keeps on pursuing the transaction
serialization order originally expressed by T tj .RefOrder.

To achieve the twofold aim of materializing both the original
serialization order and the actual serialization order currently
experienced by T tj , the following actions are taken. Another
instance T xIdj of speculative transaction associated with the
transactional request Tj is generated, and its reference serial-
ization order is set identical to the one originally seen by T tj
(except for the substitution of T tj with T xIdj as the maximum
element within the ordering). Hence, T xIdj will exactly follow
that original serialization order. Further, in case T tj originally
had a reference order aligned with the optimistic delivery
sequence, then T xIdj substitutes T tj within the OptDelivered
list. This reflects the fact that T tj is known not to be any longer
in a serialization order compliant with the optimistic message
delivery sequence, and that there is now a new incarnation of
Tj , namely T xIdj , aligned to that order.

Next, during the handling of the write event, the transaction
T si is removed from the reference order T tj .RefOrder, and in
case T tj was waiting for the completion of a data-item version
Y written by T si , then a Resume event towards T tj is raised
(as already pointed out this will lead T tj to re-execute the
read operation in order to determine a different version to
be accessed). On the other hand, the miss of the snapshot
involving T tj , caused by the write operation performed by T si
on X , and the consequent change of the reference serialization
order of T tj (via the elimination of T si) needs to be reflected
on all those transactions that have T tj within their reference

order. This is accomplished via the recursive module prop-
agateSnapshotMiss, which implements a logic similar to
the one above discussed while handling the miss experienced
by T tj . In particular this module allows the modification of
the serialization orders of transactions potentially depending
on T tj (again via the elimination of T si from their reference
order), while also allowing to speculatively explore the original
serialization orders seen by those transactions via the spawn
of additional speculative instances associated with the same
transactional requests.

Transaction completion. Upon reaching the complete stage,
transaction T si marks the versions of the data-items belonging
to its write-set as completed (which might cause the wake-up
of transactions with pending read operations on these data).
After, T si remains waiting for the corresponding transaction Ti
to be TO-delivered (namely, final delivered by the OAB), and
to become the top standing element within the TODelivered
queue. As it will be clearer in the following, this means that for
any transaction Tj , which was TO-delivered before Ti, there
exists a corresponding speculatively executed transaction T ∗j
that has been already committed. Hence T si can be safely val-
idated (by verifying whether it has read data-items belonging
to the latest committed snapshot) and a commit, or an abort,
event can be accordingly generated.

Abort events. In case of an abort, the data-item versions
produced by T si are eliminated. Also, T si is eliminated by
the reference order of other transactions. If these transactions
already read some version of a data-item written by T si , they
are aborted by raising an Abort event, which propagates across
transactions having transitive read-from dependencies with the
currently aborting one. On the other hand, if T si is eliminated
by the reference order of a transaction Thj that is waiting
for T si ’s completion due to the read on a Wip data-item Y
(hence Thj has not yet developed a read-from dependence on
the aborting transaction T si), then a Resume event is raised
towards Thj , which will lead to the selection of a different
snapshot for materializing the read operation on Y .

Commit events. Upon a commit event for transaction T ki , its
written data-item values are committed, and the transaction is
removed from the set of active transactions ActiveXacts. Also,
the corresponding transactional request Ti is removed from
the queue TODelivered, thus allowing the subsequent element
within the queue, if any, to become the newly top standing one,
which, in turn, allows triggering the commit for the subsequent
TO-delivered transactional request. Additionally, any instance
T ∗i of speculative transaction associated with the request Ti is
removed from the OptDelivered list, reflecting that the trans-
actional request Ti does not belong any more to the not yet
finalized ordering, namely the speculative ordering. The other
instances of speculative transactions associated with Ti are
aborted (since a single one of them needs to be reflected into
the history of committed transactions). Then T ki is eliminated
from all the speculative reference orders of other transactions,
if present, which reflects that it is encapsulated within the
special transaction Tωα , representative of the whole history of
already committed transactions. Finally, all the transactions

that developed a read-from dependency on the committing
transaction T ki are killed with a Validate event. This will
allow them to verify whether, once known that the committed
transaction history has changed, they are still executing along
a consistent serialization path. In particular, the validation
phase for a transaction simply checks whether the already
read data-items are still compliant with the ones exposed along
its own speculative reference order. In the negative case, the
transaction is aborted and restarted. Similarly to the case of the
abort, also the abort-retry recursively propagates along chains
of transactions having developed read-from dependencies on
the currently aborting one.

C. Protocol Properties

In this section we provide some informal arguments on the
set of properties ensured by ASAP:
1. 1-Copy Serializability [2] 1-Copy Serializability is ensured
as transactions are committed at every site only upon a
deterministic validation that is executed by all replicas in the
same total order established by OAB service.
2. Non-redundant speculation [26] - This property ensures
that no two speculative instances T tj , T

xId
j of the same transac-

tion Tj observe the same snapshot. This follows by observing
that ASAP activates a new speculative transaction T xIdj only if
it detects that a transaction T tj has missed a value written by a
transaction T si serialized before T tj according to T tj .RefOrder.
In this case, T xIdj will observe at least a data item version
different from those observed by T tj since T xIdj will not miss
the value written by T si . In fact when T xIdj will perform the
read operation on the data-item whose write operation by T si
caused the snapshot miss, T xIdj will exactly select the version
written by T si given that it has inherited the serialization order
originally associated with T tj . The latter phenomenon is true
for all the transactions that are (recursively) spawned due to
direct or transitive dependency on T si . They will execute along
a serialization order where the snapshot by T tj is not visible
since it is replaced by the one provided by T xIdj .
3. Lock-freedom [10] - Lock-freedom guarantees that there
is always at least a thread to make progress, thus ruling out
deadlock and livelock scenarios. In ASAP, lock-freedom is
a direct consequence of the fact that the transaction currently
representing the top standing element within the TODelivered
queue always experiences an abort free (re)run.

D. Trade-offs

All the speculative protocols providing exploration of multi-
ple serialization orders according to the actual conflicts among
concurrent transactions are affected by exponential growth
in terms of number of speculative instances of transactions
that are generated. The latter happens in case the application
exhibits an extremely high transaction conflict probability
[26]. As also shown in [26], real benchmarks typically do
not generate such conflict levels. Therefore, in the presented
pseudo-code for ASAP we didn’t implement any condition
aimed at bounding the speculation degree of the protocol.
Anyway, ASAP is straightforwardly extensible to support two
simple mechanisms for limiting the level of speculation, which
might result useful in very high conflict scenarios and/or in

contexts where computational resource are limited: (i) Bound-
ing the number of speculative instances of the same transaction
spawned, which could be done by simply adding a condition
that prevents to activate new speculative transactions of the
same transactional request whenever that bound is hit; and (ii)
Favoring speculation only along specific serialization orders,
thus limiting the snapshot-miss propagation level within the
recursive function propagateSnapshotMiss.

V. SIMULATION STUDY

The performance achievable by ASAP has been assessed via
a simulation study in the context of Software Transactional
Memory (STM) systems [15]. By leveraging on the proven
concept of atomic and isolated transaction, STMs spare the
programmers from the pitfalls of conventional manual lock-
based synchronization, drastically simplifying the development
of parallel and concurrent applications. Originally proposed
to simplify concurrent programming in non-distributed en-
vironments, STM systems are being growingly employed in
distributed settings, e.g. in cloud-oriented distributed data grids
[27], [8] or in high performance computing environments
[7]. A characterizing aspect of STM systems is that their
mean transaction execution time is typically several orders of
magnitude smaller than in traditional database systems [25],
[20]. With such a reduced transaction execution time, the
overlapping between replica synchronization and local trans-
action processing might result very limited, unless advanced
speculative processing techniques were employed. Hence, we
argue that STM systems represent a natural test-bed for the
evaluation of speculative transactional replication protocols
[26].

In order to ensure the representativeness of the simulated
data access patterns, we relied on a trace-based approach.
Traces were collected by running a widely used STM bench-
mark [14], namely RB-Tree. This benchmark performs re-
peated insertion, removal and search operations of a randomly
chosen integer in a set of integers implemented as a red-black
tree. The configuration used for benchmarking prevented to
generate read-only transactions. This choice is motivated by
the fact that, in a replicated system, read-only transactions
can be processed locally without the need for any interaction
and synchronization among the replicas. Hence, this type of
transactions does not provide a workload that could be usefully
exploited for assessing the efficiency of replication protocols
like ASAP. The tracing process for RB-Tree has bee carried
out on a machine equipped with 2 CPU-Cores at 2.53 GHz
and 4 GB of RAM, running Mac OS X 10 as the operating
system. The adopted STM layer for the tracing process was
JVSTM [5]. On the other hand, the distributed system we
have simulated is composed by 4 replicated STM processes,
each hosted on top of a machine equipped with 32 CPU-cores
running at the same speed as in the architecture used for the
tracing process (1).

We show comparative results between the performance of
ASAP with respect to other speculative and non-speculative
approaches in the following two scenarios: (a) A scenario in
which the network behavior does not ensure the spontaneous

132 CPU-cores can nowadays be considered a typical value for commodity
servers.

order property. In this case, mismatches between the optimistic
and the final delivery sequences may occur with non-minimal
probability. In particular, we focus our study on three different
values for the probability of mismatch, namely 10%, 20%
and 40%. (b) A scenario in which the network is highly
predictable, thus not generating reorder across optimistic and
final delivery sequences.

The traffic of messages towards the AOB has been simulated
via a synthetic generator that permitted to build network
events with a given percentage of reordering (0%, 10%,
20%, 40%,) and given mean values for optimistic and final
delivery latencies that have been set, respectively, to 500
microseconds and 2 milliseconds. These are typical values we
have observed when running the Appia Group Communication
System Toolkit on a cluster of 4 quad-core machines (2.40GHz
- 8GB RAM) connected via a Gigabit Ethernet and using TCP
at the transport layer.

 2000

 2500

 3000

 3500

 4000

 4500

 10000 20000 30000 40000 50000 60000 70000

R
es

po
ns

e
Ti

m
e

(µ
se

cs
)

Arrival Rate (h)

Red Black Tree (10% Network Reordering)

SM
ASAP

OSARE

 2000

 2500

 3000

 3500

 4000

 4500

 10000 20000 30000 40000 50000 60000 70000

R
es

po
ns

e
Ti

m
e

(µ
se

cs
)

Arrival Rate (h)

Red Black Tree (20% Network Reordering)

SM
ASAP

OSARE

 2000

 2500

 3000

 3500

 4000

 4500

 10000 20000 30000 40000 50000 60000 70000

R
es

po
ns

e
Ti

m
e

(µ
se

cs
)

Arrival Rate (h)

Red Black Tree (40% Network Reordering)

SM
ASAP

OSARE

Fig. 3. Response Time for Networks with Reordering.

As for the scenario in point (a), we compare ASAP with the
OSARE protocol recently presented in [19], and with a tradi-

 0

 20

 40

 60

 80

 100

 10000 20000 30000 40000 50000 60000 70000

%
 C

pu
 U

til
iz

at
io

n

Arrival Rate (h)

Red Black Tree - CPU

SM
ASAP

OSARE

Fig. 4. CPU Usage.

 2000

 2500

 3000

 3500

 4000

 4500

 20000 40000 60000 80000 100000 120000
R

es
po

ns
e

Ti
m

e
(µ

se
cs

)

Arrival Rate (h)

Red Black Tree No-reordering (Spontaneous order)

SM
ASAP

AGGRO

Fig. 5. Response Time for Predictable Networks.

tional, non-speculative, protocol, namely State Machine (SM)
[21]. Analogously to ASAP, OSARE allows exploring multiple
speculative serialization orders. Unlike ASAP, however, OS-
ARE uses a lazy mechanism for tracking dependencies among
transactions that is activated only upon the completion of
speculative transactions (whereas ASAP traces dependencies
as soon as they are generated, marking updated data versions
as Wip). On the other hand, SM does not entail any speculative
processing scheme, thus imposing to wait for the finalization
of the total order protocol establishing the serialization order of
a newly incoming request before executing the corresponding
transaction.

As for the scenario in point (b), we compare ASAP with
the AGGRO protocol presented in [18]. AGGRO employs an
aggressive dependency propagation technique among specula-
tive transactions that is similar in spirit to the one employed
by ASAP. However, differently from ASAP, AGGRO is a
speculative protocol explicitly tailored for networks ensuring
spontaneous order (i.e. no reordering) since it only speculates
along the optimistic delivery sequence.

The overall target of this study is to show that ASAP
outperforms OSARE in scenario (a) and is not slower than
AGGRO in scenario (b).

The plots in Figure 3 show the mean transaction response
time, i.e. the average time since the TO-broadcast of a
transaction till its commitment, for SM, OSARE and ASAP
as a function of both the transactions’ arrival rate and the
network reordering probability. SM, which does not exploit
any kind of speculation, exhibits a saturation point which is

independent of the percentage of network reordering and is
less than 10k transactions per second. With 10% of network
reordering, the saturation point for ASAP is reached when
the transactions’ arrival rate is more than 60k, while OSARE
saturates at 30k. Similar, or slightly reduced gains are ob-
served when the reordering percentage goes to 20% and 40%.
Overall, ASAP allows on the order of 2x improvement of the
system throughput wrt OSARE. Hence, the ability of ASAP to
aggressively determine alternative speculative orders via early
exposition of Wip data versions has a strong impact on the
final achievable performance, in terms of (i) reduction of the
average transaction finalization time, and (ii) increase of the
maximum sustainable throughput.

In Figure 4 we report the CPU utilization caused by the
different protocols for the case of 10% reordering in the OAB.
The plots clearly show that the technique used by OSARE
to detect conflicts only at transaction completion time can
lead to resource under-utilization (in fact less than 30% of
the CPU power is used) that can have a detrimental impact
on performance, especially in case replicas are hosted on
machines equipped with a high number of cores. On the
contrary, the aggressive dependency propagation technique at
the core of ASAP allows fruitful exploitation of the resources
available, achieving up to 96% of CPU utilization in the
simulated scenario.

As for scenario (b), whose results are shown in Figure
5, the early transaction spawning of ASAP and the early
abort & restart mechanism used by AGGRO, can be seen as
two different ways to reach the same target of speculatively
materializing a serialization order compliant with the order
of optimistic deliveries. This is reflected in the achieved
performance, which is very similar for the two protocols.

VI. CONCLUSIONS

In this paper we presented ASAP, namely an Aggressive
SpeculAtive Protocol for actively replicated transactional sys-
tems. By relying on both OAB and speculative processing
techniques, ASAP aims at maximizing the overlap between
replica coordination and local transaction processing activ-
ities. ASAP exploits an innovative speculative concurrency
control, which allows tracing dependency among transactions
in an early fashion. This maximizes the promptness of the
exploration of alternative speculative serialization orders, thus
enhancing the achievable level of overlapping between specu-
lative computation phases and distributed coordination. This
may result particularly useful in scenarios where the level
of reordering exhibited by the OAB service is non-minimal,
such as for poorly predictable networks or at very high
concurrency levels. The effectiveness of our proposal has been
assessed via a simulation study, whose results have shown that
ASAP outperforms literature speculative and non-speculative
protocols.

REFERENCES

[1] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi. Exploiting atomic
broadcast in replicated databases (extended abstract). In Proc. of Euro-
Par, pages 496–503, London, UK, 1997. Springer-Verlag.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[3] A. Bestavros and S. Braoudakis. Value-cognizant speculative concur-
rency control. In Proc. of VLDB, pages 122–133, 1995.

[4] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber. Speculative out-of-
order event processing with software transactional memory. In Proc. of
DEBS, July 2008.

[5] J. Cachopo and A. Rito-Silva. Versioned boxes as the basis for memory
transactions. Sci. Comput. Program., 63(2):172–185, 2006.

[6] N. Carvalho, P. Romano, and L. Rodrigues. Scert: Speculative certifica-
tion in replicated software transactional memories. In SYSTOR, page 10,
2011.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In OOPSLA. ACM, 2005.

[8] M. Couceiro, P. Romano, and L. Rodrigues. Polycert: polymorphic self-
optimizing replication for in-memory transactional grids. In Middleware
’11, pages 309–328. Springer-Verlag, 2011.

[9] X. Defago, A. Schiper, and P. Urban. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–
421, 2004.

[10] K. Fraser. Practical lock freedom. PhD thesis, Cambridge University
Computer Laboratory, 2003.

[11] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication
and a solution. In Proc. of the SIGMOD, pages 173–182. ACM, 1996.

[12] R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed
Programming. Springer, 2006.

[13] J. R. Haritsa, K. Ramamritham, and R. Gupta. The prompt real-time
commit protocol. IEEE Trans. on Parallel and Distributed Systems,
11:160–181, 2000.

[14] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for
implementing software transactional memory. In OOPSLA, pages 253–
262, 2006.

[15] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software
transactional memory for dynamic-sized data structures. In PODC.
ACM, 2003.

[16] R. Jiménez-Peris, M. Patiño-Martı́nez, and S. Arévalo. Deterministic
scheduling for transactional multithreaded replicas. In SRDS, pages 164–
173, 2000.

[17] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann. Using
optimistic atomic broadcast in transaction processing systems. IEEE
TKDE, 15(4):1018–1032, 2003.

[18] R. Palmieri, F. Quaglia, and P. Romano. AGGRO: Boosting STM
replication via aggressively optimistic transaction processing. In Proc.
of NCA, pages 20–27, Los Alamitos, CA, USA, 2010. IEEE Computer
Society.

[19] R. Palmieri, F. Quaglia, and P. Romano. OSARE: Opportunistic
speculation in actively replicated transactional systems. In SRDS, pages
59–64, 2011.

[20] R. Palmieri, F. Quaglia, P. Romano, and N. Carvalho. Evaluating
database-oriented replication schemes in software transactional memory
systems. In Proc. of DPDNS, 2010.

[21] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine
approach. Distributed and Parallel Databases, 14(1):71–98, 2003.

[22] F. Pedone and A. Schiper. Optimistic atomic broadcast: a pragmatic
viewpoint. Theor. Comput. Sci., 291(1):79–101, 2003.

[23] C. Pu and A. Leff. Replica control in distributed systems: as asyn-
chronous approach. In Proc. of SIGMOD, SIGMOD ’91, pages 377–386.
ACM, 1991.

[24] P. K. Reddy and M. Kitsuregawa. Speculative locking protocols to
improve performance for distributed database systems. IEEE TKDE,
16(2):154–169, 2004.

[25] P. Romano, N. Carvalho, and L. Rodrigues. Towards distributed software
transactional memory systems. In Proc. of the Workshop on Large-Scale
Distributed Systems and Middleware, Sept. 2008.

[26] P. Romano, R. Palmieri, F. Quaglia, N. Carvalho, and L. Rodrigues. An
optimal speculative transactional replication protocol. In Proc. of ISPA,
pages 449–457, 2010.

[27] P. Romano, L. Rodrigues, N. Carvalho, and J. Cachopo. Cloud-TM:
harnessing the cloud with distributed transactional memories. SIGOPS
Oper. Syst. Rev., 44(2), Apr. 2010.

[28] P. Romano, D. Rughetti, F. Quaglia, and B. Ciciani. APART: Low cost
active replication for multi-tier data acquisition systems. In Proc. of
NCA, pages 1–8. IEEE Computer Society, 2008.

[29] F. B. Schneider. Replication management using the state-machine
approach. ACM Press/Addison-Wesley Publishing Co., 1993.

