
On the Analytical Modeling of Concurrency Control

Algorithms for Software Transactional Memories:

the Case of Commit-Time-Locking

Pierangelo Di Sanzoa, Bruno Ciciania, Roberto Palmieria, Francesco
Quagliaa, Paolo Romanob

aDipartimento di Informatica e Sistemistica, Sapienza Universita’ di Roma, Italy
bINESC-ID, Lisbon, Portugal

Abstract

We present an analytical performance modeling approach for concurrency
control algorithms in the context of Software Transactional Memories (STMs).
We consider a realistic execution pattern where each thread alternates the ex-
ecution of transactional and non-transactional code portions. Our model cap-
tures dynamics related to the execution of both (i) transactional read/write
memory accesses and (ii) non-transactional operations, even when they oc-
cur within transactional contexts. We rely on a detailed approach explicitly
capturing key parameters, such as the execution cost of transactional and
non-transactional operations, as well as the cost of begin, commit and abort
operations. The proposed modeling methodology is general and extensible,
lending itself to be easily specialized to capture the behavior of different STM
concurrency control algorithms. In this work we specialize it to model the
performance of Commit-Time-Locking algorithms, which are currently used
by several STM systems. The presented analytical model has been validated
against simulation results based on workload profiles derived by tracing ap-
plications proper of the STAMP benchmark suite, running on top of the TL2
transactional memory layer.

Keywords: Software Transactional Memories, Performance Evaluation,

Email addresses: disanzo@dis.uniroma1.it (Pierangelo Di Sanzo),
ciciani@dis.uniroma1.it (Bruno Ciciani), palmieri@dis.uniroma1.it (Roberto
Palmieri), quaglia@dis.uniroma1.it (Francesco Quaglia), romanop@gsd.inesc-id.pt
(Paolo Romano)

Preprint submitted to Performance Evaluation June 21, 2011

Analytical Models, Concurrency Control

1. Introduction

Software Transactional Memories (STMs) [1, 2, 3, 4] are emerging as a
highly attractive and potentially disruptive programming paradigm. Lever-
aging on the proven concept of atomic and isolated transactions, STMs spare
the programmers from the pitfalls of conventional handcrafted synchroniza-
tion, thus significantly simplifying the development of concurrent applica-
tions. Further, STMs have been recently identified as an ideal candidate to
simplify the programming of distributed applications deployed in large scale
data centers [5] or in cloud computing environments [6].

Compared to traditional transactional systems, such as database systems,
STMs are based on (and require) innovative design/development approaches,
where the optimization focus is shifted on aspects that historically had less
importance. Among them we can mention hardware-cache aware design (see,
e.g, [7]) as well as tailoring of the design to the specific instruction set of-
fered by the target computing architecture (see, e.g., [8]). At the same time,
concurrency control schemes commonly adopted in database environments
are not likely to fit all the requirements of fine grained, volatile memory
operations typical of STM-based applications [4]. As an example, if blindly
ported to STM environments, database oriented concurrency control schemes
based on explicit wait (sleep) phases, actuated on top of operating system
supported mutex and/or semaphores, would induce excessive overhead and
non-negligible thread (re-)schedule delay. These costs were instead affordable
in databases by amortizing them across (subsequent) stable storage interac-
tions for both read operations and log writes.

According to the above considerations, the wide set of database oriented
performance analysis results (see, e.g., [9, 10, 11, 12, 13, 14]) cannot be (fully)
representative of the actual performance levels provided by STM systems.
Hence, a major issue to address when dealing with innovative concurrency
control algorithms specifically tailored to STM environments (see, e.g., [3, 15,
16]) is the definition of analytical models able to reliably capture their actual
dynamics. Such models would be helpful since they could provide indications
on aspects of interest for both designers of STM layers and developers of
STM-based applications. As an example, it would be extremely important
to assess how well a given STM concurrency control algorithm scales vs the

2

degree of parallelism, namely the number of CPU-cores available within the
underlying computing platform.

In this paper we address such a lack by providing a two-layered analyt-
ical modeling methodology well suited for STM systems. In our approach,
a thread-level model predicts the system performance as a function of the
degree of concurrency within the system (e.g., the number of worker threads
in charge of executing transactional memory operations, and the probability
that they are executing transactional vs non-transactional code portions),
independently of the specific scheme adopted for regulating memory accesses
by concurrent conflicting transactions. The latter aspect is instead demanded
to the transaction-level model, which can be specialized in a way to determine
commit/abort probabilities on the basis of the specific choices determining
the actual synchronization (concurrency control) scheme among threads ex-
ecuting conflicting transactional code portions.

In this work we provide an instantiation of the transaction-level model
for the case of the Commit-Time-Locking (CTL) concurrency control algo-
rithm, which is adopted by several popular STM systems, such as TL2 [15].
The performance model has been also validated against simulation results
obtained considering data access patterns based on the well known STAMP
benchmark [17].

The remainder of this paper is structured as follows. In Section 2 we
provide a brief introduction to STMs. In Section 3 we discuss literature
results related to our contribution. The analytical modeling methodology,
together with the specific model instantiation for CTL is provided in Section
4. The comparison between model and simulation results is provided in
Section 5. Section 6 concludes the paper.

2. Brief Overview on STMs

While early proposals for (S)TM architectures date back to 90s [18, 2],
the research on this topic has been largely dormant till 2002, when the advent
of multi-core processors made parallel programming exit from the niche of
scientific and high-performance computing and turned it into a mainstream
concern for the software industry. One of the main challenges posed by
parallel programming consists in synchronizing concurrent access to shared
memory by multiple threads. Programmers have traditionally used locks,
but lock-based synchronization has well-known pitfalls. Simplistic coarse-
grained locking does not scale well, while more sophisticated fine-grained

3

locking risks introducing deadlocks and data races. Furthermore, scalable
libraries written using fine-grained locks cannot be easily composed in a way
that retains scalability and avoids deadlock and data races [1].

By bringing the proven abstraction of atomic transaction, used for decades
in databases, to parallel programming, (S)TMs allow freeing the program-
mers from the burden of designing and verifying complex fine-grained lock
synchronization schemes. By avoiding deadlocks and automatically allowing
fine-grained concurrency, transactional-language constructs enable the pro-
grammer to compose scalable applications safely out of thread-safe libraries.

Unlike ACID database transactions, STMs’ transactions do not ensure
durability, but encompass operations accessing (reading/writing) data stored
in volatile memory. Aside from this, transactions are atomic and isolated.
Atomicity ensures that, if a transaction commits, then all of its memory
operations appear to take effect; if a transaction aborts, conversely, all of
its data manipulations are rolled back, as if the transaction had never been
executed. The isolation property, on the other hand, provides the illusion
that transactions are executed in a serial fashion, which allows programmers
to reason serially on the correctness of their applications. Of course, (S)TM
systems do not really execute transactions serially. Instead, ”under the hood”
they allow multiple transactions to execute concurrently as long as they can
still ensure atomicity and isolation for each transaction.

Another significant difference between transactions in database and STM
environments is related to their lifetime. As already mentioned, STM trans-
actions only encompass in memory operations, not entailing any access to
persistent storage. Additionally, transactional access to memory is mediated
by lightweight language primitives (typically the atomic {} construct) that
do not suffer of the overheads for SQL parsing and plan optimization typical
of database environments. As a direct consequence, even when consider-
ing complex benchmarking applications, the average execution time of STM
transactions is typically two or three orders of magnitude smaller than in
database environments [19].

Finally, it has been shown [20] that the effects of observing inconsistent
states can be much more severe in STMs than in databases. In STMs, in
fact, transactions can be used to manipulate program variables whose state
directly affects the execution flow of user applications. As such, observing
arbitrarily inconsistent memory states (as it is allowed, for instance, by the
optimistic concurrency control algorithm [21], a classic and widely used so-
lution in database environments) could lead applications to get trapped in

4

infinite loops or in exceptions that could never be triggered in any sequential
execution. This is not the case for database systems, where transactions are
triggered via an SQL interface with precisely defined (and more restricted)
semantic, and are executed in a sandboxed component (the DBMS) which is
designed not to suffer from crashes or hangs in case the concurrency control
scheme allowed observing inconsistent data snapshots.

3. Related Work

Perhaps unsurprisingly, the wide majority of existing performance studies
on STMs are based on the empirical comparison of different implementation
choices, e.g., [7, 15], and on a (very limited) number of simulation-based stud-
ies, [22, 23] (the latter one being actually targeted to hardware-implemented
transactional-memory systems).

The work in [24] provides an analytical model for STM systems. However,
the provided modeling approach suffers from two key limitations, which are
overcome by the approach we present in this paper. First, the model in [24]
assumes that applications are constantly executing transactions, while real
STM-based applications rely on threads that alternate the execution of trans-
actional and non-transactional code. Second, the model in [24] abstracts over
time by describing the execution of a transaction as a sequence of steps whose
duration is left unspecified. This restricts the usage of the model exclusively
to qualitative comparisons among different STM algorithms, making it infea-
sible for forecasting fundamental time-related performance metrics, such as
response time or throughput (unless when assuming that all the phases of the
execution of any transaction have identical, constant duration). Differently,
our analytical modeling approach is able to capture the advancement of time
according to a continuous timeline. Also, it relies on a detailed workload
characterization model, which includes key cost parameters related to both
STM internals and STM-based applications, such as the duration of trans-
actional operations (read/write accesses to transactional memory locations,
as well as begin/commit/abort operations), and explicitly accounts for the
time-interval in between two transactional operations. Additionally, we ex-
plicitly model the relation between the final perceived performance and the
time interval spent by each thread outside transactional contexts.

A queuing theory based analytical model is proposed in [25] to evaluate
and compare the performance of lock-based and STM-based synchronization
schemes. The main limitation of this model is due to the assumption that all

5

transactions (or critical sections) access the same identical memory locations.
Conversely, our model captures accesses to distinct locations.

Leveraging on the common notion of atomic transactions, STM algo-
rithms and DBMS concurrency control schemes are naturally closely related.
The analytical modeling of concurrency control in database environments
has been widely investigated over the last three decades. Analytical mod-
eling approaches have been presented in, e.g., [11, 12, 13, 26, 27, 28] for
the case of centralized database systems, and in [14, 29] for the case of dis-
tributed/replicated databases. However, as already mentioned, the execution
time of STM transactions is typically several orders of magnitudes smaller
than the counterpart in DBMS scenarios [19], which amplifies the impact
of the overhead associated with the STM-specific internal schemes for the
management of low-level data-structures (e.g., CTL [15]). These schemes
do not have a direct counterpart in the database literature so, consequently,
they are not covered by the literature on analytical modeling of concurrency
control schemes for database systems. Also, existing performance models
of concurrency control schemes do not capture the behavior of applications
alternating the execution of transactional and non-transactional phases, as
it is conversely typical of STM-based applications.

Finally, concurrency control protocols for database systems, and their
impact on performance, have been extensively studied via simulation [30,
31, 32, 33, 34], which is a technique orthogonal to the analytical approach
provided in this paper.

4. The Analytical Model

4.1. Basics

As typical of STM applications/benchmarks [17, 35, 36] we consider a
fixed number k of threads, each of which executes on a distinct CPU-core.
Threads alternate the execution of transactional and non-transactional code
blocks. A non-transactional code block is formed by a sequence of machine
instructions which we denote as ntcb. Each transaction starts with a begin
operation, then executes a number of transactional operations (namely, ei-
ther read or write operations) on shared data items and finally ends by
issuing a commit operation. Overall, after the begin operation and after
each transactional operation, the thread executes a code block, denoted as
tcb, during which it does not perform transactional read/write operations on

6

shared data items, thus exclusively operating within its private workspace,
e.g., by accessing its own stack.

We denote with tbegin, tread, twrite and tcommit, the expected time required
by a thread to execute, respectively, begin, read, write and commit opera-
tions. Note that, in practice, these durations are affected by both the speed
of the underlying hardware platform and the internals of the underlying STM
layer. Compared to existing approaches (see, e.g., [24]), the choice of cap-
turing the above costs through ad-hoc parameters enhances the flexibility
of our model, thus allowing it to be employed for what-if analysis aimed at
forecasting the performance for diverse scenarios and/or workloads. As an
example, the model can be used to assess the performance of STM-based ap-
plications when deployed on different hardware platforms (which might give
rise to different machine instruction patterns) or when changing the internals
of the underlying STM layer (e.g. via the exploration of trade-offs between
alternative implementation strategies).

We denote as ttcb and tntcb, respectively, the expected duration of tcb and
ntcb. Whenever a transaction is aborted, an abort operation is executed,
whose handling has an expected duration tabort. After experiencing an abort,
a transaction is temporarily held in a back-off state for a time interval whose
average value is denoted as tbackoff , at the end of which it gets restarted.
Conforming to common implementations/settings [35, 36], the thread taking
care of the execution of the transaction gets temporarily suspended, and
resumes right upon the end of the back-off period.

4.2. Modeling Approach Overview

As discussed above, we logically structure our model in two distinct parts,
each one capturing complementary aspects of the execution dynamics of
STM-based applications. The first part of the model, which we name thread-
level model, is presented in Section 4.3. It allows determining how the various
threads in the system alternate among the following three phases:

(i) execution of a non-transactional code block,

(ii) execution of an STM transaction,

(iii) blocked in back-off.

By allowing the determination of the probability distribution of the num-
ber of threads in each of these three phases, this layer of the model can be used

7

to output standard performance metrics such as throughput and execution
time. This part of the model is de-facto oblivious of the specific algorithm
used by the STM to regulate concurrency, over which it abstracts via two key
input parameters: (a) the average transaction execution time (independently
of its final outcome) and (b) the commit probability, given a number i ∈ [1, k]
of threads concurrently executing transactions. Instead, these parameters
are computed by what we refer to as transaction-level model, one instance
of which, tailored to CTL, is presented in Section 4.4. The later modeling
component is focused on capturing proper dynamics associated with the spe-
cific conflict detection and resolution schemes adopted by the STM layer,
assuming a constant, albeit parametric, number of threads simultaneously
executing transactions.

By decoupling the modeling of the dynamics associated with thread al-
ternation among the various phases from the modeling of the concurrency
control algorithm, our two-layered modeling methodology provides the below
reported benefits:

1. It simplifies the modeling stage of the concurrency control algorithm,
delegated to the transaction-level model, since this model does not re-
quire to explicitly consider dynamic variations of the number of threads
concurrently executing transactional code blocks. The model only re-
quires to provide performance predictions under the assumption that
exactly i threads are concurrently executing transactions. Then, it will
be the responsibility of the thread-level model to exploit the indepen-
dent performance forecasts associated with different values of i in order
to generate the final performance predictions.

2. It allows seamless replacement of the model of the STM concurrency
control scheme presented in this paper, namely the CTL model [15] (see
Section 4.4), with alternative ones either relying on different modeling
approaches and/or targeting different concurrency control algorithms.

4.3. Thread-level Model

We model the alternation of the various phases for the execution of the
different threads (inside a transaction, executing a non-transactional code
block or blocked in back-off after an abort) via a Continuous Time Markov
Chain (CTMC) [37]. Each state of the CTMC is marked and identified by
a couple of integers (i, j) representing, respectively, the number of threads

8

3λ 2λ λ

2λ λ

λ

µ1 2µ2pC,2 3µ3pC,3

µ1 2µ2pC,2

γ γ γ

2γ 2γ

µ1

2µ2pa,2

3µ3pa,32µ2pa,2

0,0 1,0 2,0 3,0

0,1 1,1 2,1

0,2 1,2

Figure 1: State transition diagram of the CTMC for k = 3.

running transactions and the number of threads in back-off. Since the total
number of threads in the system is equal to k, the only admissible states
in the CTMC are those for which the corresponding (i, j) pair respects the
constraint

i+ j ≤ k.
For each state (i, ·), with i > 0, the model takes as input parameters

(i) the rate µi according to which transactions are run within the system
(independently of whether the transaction run gets aborted or committed),
and (ii) the probability pc,i for a transaction to successfully commit, in case
of i threads simultaneously executing transactions. These need to be pro-
vided by the transaction-level model in charge of capturing the effects of the
specific concurrency control scheme. In the following we will denote with
pa,i = 1− pc,i the probability for a transaction to experience an abort, when
considering that i threads are concurrently executing transactions. Also, we
will denote with λ = 1

tntcb
, the rate according to which a thread executes a

non-transactional code block (in between two transactions).
We note that modeling the system via a CTMC maps onto assuming

that ntcb, the interarrival times of transactions to the commit phase, and
the back-off interval have an exponentially distributed duration. Possible

9

extensions of the model to cope with cases where the values of λ and µi

represent the mean of generic distributions will be discussed in Section 4.7.
We can now list the rules defining the transition rates from any two states

of the CTMC:

- for i + j < k, the transition rate from state (i, j) to state (i + 1, j),
associated with the activation of a new transaction run after the com-
pletion of the execution of a non-transactional code block, is equal to
λ · (k − i− j);

- for i > 0, the transition rate from state (i, j) to state (i− 1, j), associ-
ated with transaction commit events and the subsequent activation of
a non-transactional code block, is equal to i · µi · pc,i;

- for i > 0, the transition rate from state (i, j) to state (i − 1, j + 1),
associated with transaction abort events and the start of the back-off
period, is equal to i · µi · pa,i;

- for j > 0, the transition rate from state (i, j) to state (i + 1, j − 1),
associated with the termination of back-off periods and transaction
restart, is equal to j · γ, where γ = 1

tbackoff
.

We exclude state (0, k) as a possible one since, (i) the CTMC characterizing
our model does not express state transitions where multiple transactions get
simultaneously aborted due to (mutual) conflicts, and (ii) adopting whichever
literature STM concurrency control algorithm, if a single thread is currently
executing a transactional code block, then the corresponding transaction
cannot be aborted. It is easy to show that the set of states of the CTMC,
denoted as S, has cardinality equal to (k+1)·(k+2)

2
− 1. Note also that, if

i+ j < k, it follows that k − (i+ j) threads are executing non-transactional
code blocks. An example of the CTMC for the case of three threads (namely
k = 3) is depicted in Figure 1.

As typically expected in any real system, assuming for any state where
i ∈ [1, k] that µi > 0, pc,i 6= 0 and pc,i 6= 1 (the cases of pc,i = 0 or pc,i = 1
express, respectively, a pathological scenario with no possibility of transac-
tion progress and a trivial scenario entailing no data contention), the CTMC
is irreducible, and is formed by an ergodic set of states. Thus the stationary
probability vector v is unique and satisfies the typical equation

v ·Q = 0 (1)

10

where Q is the infinitesimal generator matrix of the CTMC [38]. Assuming
that the system is in steady-state, and that we are provided with µi and pc,i
values (∀i ∈ [1, k]), we can compute the probability to be in each state (i, j) ∈
S by solving equation (1). We can then evaluate the system throughput τ
as the sum of the transaction commit rates in the different states, weighted
according to the probability for the system to be in each state (i, j)

τ =
∑

(i,j)∈S′

vi,j · i · µi · pc,i (2)

(where S ′ is the subset of S containing any state where i > 0). The overall
transaction commit and abort probabilities, denoted as pc and pa, can be
accordingly evaluated, using the below expressions

pc =

∑

(i,j)∈S′ vi,j · pc,i
∑

(i,j)∈S′ vi,j
(3)

and

pa = (1− pc) (4)

4.4. Transaction-level model: the CTL Case

In this section we introduce an analytical model of Commit-Time-Locking
(CTL) concurrency control, focusing on the version implemented within the
TL2 STM layer [15]. This version is considered as one of the best performing
concurrency control algorithms for typical STM workloads. We will start by
overviewing such a target version of the CTL algorithm, and then we will
move to the presentation of its analytical model.

4.4.1. Algorithm Overview

Unlike, e.g., strict 2PL [39], CTL schemes do not acquire locks upon ac-
cessing data items. Instead, lock acquisition is delayed to commit time, and
only involves written data items (write-locks). This choice enhances concur-
rency with respect to conventional lock-based schemes by, e.g., avoiding to
block transactions issuing a write operation on a data item that has already
been read/written by a concurrent transaction.

Given the absence of read-locks, consistency is ensured via a validation
mechanism used to notify transaction T , which speculatively read a data
item x, about the fact that x was overwritten by some concurrent transac-
tion T ′ preceding T in the commit order. To this end, a versioning scheme

11

is employed which associates a timestamp value with each data item, re-
ferred to as Write-Version-Clock (WVC). The generation of WVC values
relies on a unique Global-Version-Clock (GVC), which is read by any trans-
action upon startup, and is atomically increased upon transaction commit.
The updated value is used as the new WVC value for all the data items
written by the committing transaction. Manipulation of the GVC typically
relies on a Compare-and-Swap (CaS) operation directly exploiting atomic
sequences of machine instructions (e.g., via the LOCK prefix in IA-32 com-
pliant processors). In other words, each transaction updates the GVC as an
acyclic, one shot operation, which does not require software spin-locking for
accessing the corresponding critical section. Hence, any delay in the access to
the GVC is only related to the underlying firmware protocol used to support
the atomicity of the machine instruction pattern implementing the CaS.

When validating a transaction against a read data item x, two actions
are performed:

1) it is checked whether there is a write-lock being held on x (which im-
plies that another transaction has written x and is currently within its
commit phase);

2) it is checked whether the current timestamp associated with x is greater
than the timestamp read by the transaction upon starting up (which
indicates that some concurrent transaction has overwritten x and has
already been committed).

If one of the previous checks fails, the transaction gets aborted. This
validation scheme is used upon read operations and, as we shall discuss be-
low, also at commit time. Accordingly, the opacity property [20] is guaran-
teed, which ensures that the snapshot observed by any transaction (including
transactions that are eventually aborted), is equivalent to the one that would
have been observed according to some serial execution history. As discussed
in [20], this property is crucial since for several categories of STM-based ap-
plications, transactions observing an inconsistent snapshot may be trapped
within infinite loops, or may even cause the application program to crash
(e.g., due to an invalid memory reference).

As far as write operations are concerned, in CTL they are buffered within
a private workspace until the commit phase. When a transaction attempts
to commit, it first acquires the write-locks for all the data items within its

12

write-set. If any of these lock acquisitions fails (due to lock holding by some
other transaction), the transaction is aborted. Otherwise, the transaction
increments the GVC and tries to validate all the data items it has within
its read-set (according to the aforementioned validation procedure). If the
validation fails for at least one item within the read set, the transaction gets
aborted. If no abort occurs, the data within the write-set are copied back to
their original memory locations, updating their WVCs with the value of the
GVC. All the acquired locks are released at the end of the commit phase, or
upon the abort.

By the above description, we have that a read operation on a data item
that was previously written by the transaction gives rise to an access to the
transaction private workspace. Thus it is not subject to the previously de-
picted read validation mechanism. In other words, the validation mechanism
is used for read operations associated with any data item that has not already
been accessed in write mode by the transaction.

4.4.2. Analytical Model

In order to simplify presentation, we present the model in an incremental
fashion. We start by presenting a model relying on the following set of
assumptions:

• the accesses (both in read or write mode) to data items in the transac-
tional shared memory are uniformly distributed;

• all the transactions encompass the same amount n of transactional
accesses;

• the sequence of read operations issued on shared data items form a
Poisson process.

A discussion on how to relax the above assumptions will then be provided in
Section 4.4, Section 4.6 and Section 4.7.

As previously discussed, the transaction-level model computes the trans-
action run rate µi = 1/rt,i (where rt,i is the average transaction execution
time) and the transaction commit probability pc,i under the assumption that
there are i threads simultaneously processing transactions, with 1 ≤ i ≤ k.
We analyze the case i = 1 and i 6= i separately.

If i = 1, a single thread is currently executing transactional code, thus
no data conflict can arise. This also means that the currently executed

13

transaction can not be aborted and it follows that pc,1 = 1. Therefore, for
the average transaction execution time we have that

rt,1 = tbegin + n · top + (n + 1)ttcb + tcommit (5)

where top, namely the average time to execute an access operation on a shared
data item, is equal to

top = tread(1− pwrite) + twrite · pwrite (6)

where we denote with n the number of transactional operations on shared
data items within a transaction, with pwrite the probability that the access
is in write mode, and with (1 − Pwrite) the probability that the access is in
read mode.

As already discussed in Section 4.4.1, if the transaction accesses a data
item x in write mode, producing a new version, any subsequent read on x by
the same transaction will return the previously written version, retrieving it
from the transaction private workspace. Analogous considerations apply for
subsequent writes over the same data item x, which will simply update the
copy of x buffered within the private workspace. Hence read/write operations
issued on previously updated data items are simply not taken into account by
the parameter n. On the other hand the cost of the corresponding accesses
within the private workspace is encapsulated in ttcb.

By the previous notation, we have that

nwrite = n · pwrite (7)

is the average number of shared data items accessed by the transaction in
write mode, and

nread = n · (1− pwrite) (8)

is the average number of read operations occurring on distinct shared data
items that were not already accessed by the transaction in write mode.

For i 6= 1 we proceed as follows. Once fixed i, we use a procedure that
iteratively recalculates the values of pc,i and rt,i. Upon starting the iterative
procedure, the initial values can be selected as pc,i = pc,i−1 and rt,i = rt,i−1

for commodity. The output values by an iteration step are used as the input
values for the next step. We conclude the iterative procedure as soon as
the corresponding input and output values for pc,i and rc,i differ by at most

14

an ǫ. In all the configurations that we have experimented, using ǫ=1%, the
procedure has always converged in at most fifteen iterations.

In each iteration step the following set of parameters, captured by our
model, are re-evaluated:

- poa,l, namely the probability for a transaction to abort while executing
its lth operation due to validation fail (recall that a transaction can
abort while executing an operation only if the operation is a read);

- palc, namely the probability for a transaction to abort at commit time
due to lock contention experienced in the commit-time lock acquisition
phase;

- pavf , namely the probability for a transaction to abort at commit time
due to validation failure of its read-set.

In order to model these parameters, we consider that the expected system
state seen by any of the i active transactions is determined by the activities
associated with the other i − 1 transactions currently within the system.
Thus we use the following approach.

When a transaction successfully commits, an average number nwrite of
write-locks are first acquired, and then released after read-set validation and
write-back phases. Actually, the duration of the lock acquisition and release
phases are typically negligible with respect to the duration of validation and
write-back phases (recall that, during lock acquisition, transactions do never
block, even if they experience contention). Hence, for simplicity, we assume
lock acquisition and release to be instantaneous and to occur, respectively,
at the beginning and at the end of the commit phase. Also, if a transaction
is aborted, no real rollback operation is required for undoing the effects of
the corresponding write operations since transaction write-sets are reflected
to memory only in case of succesful commit attempts. Thus, to simplify, we
ignore the cost of aborts when we evaluate the average lock holding time,
by assuming that if a transaction successfully completes the lock acquisition
phase, it holds the locks for an average time equal to tcommit.

Let us now compute the probability for a transaction to abort while ex-
ecuting a read operation on a shared data item x, given that it finds the
corresponding write-lock currently busy. For this case to be possible, there
must exist another transaction that has written x, that is currently in its
commit phase and that has successfully acquired the write-locks for all the

15

data items in its write-set. Given that we are assuming uniformly distributed
accesses to distinct data items within a transaction, it follows that the prob-
ability for a committing transaction to have a specific data item within its
write-set is nwrite/d. Exploiting the aforementioned assumption of Poissoni-
anity of the arrival process of read operations, we can rely on the PASTA
property (Poisson Arrivals See Time Averages) [40] to compute the proba-
bility to incur in a raised write-lock during a read operation as

plock = lr · tcommit ·
nwrite

d
(9)

where lr is the rate according to which the remaining i − 1 transactions in
the system successfully execute the write-lock acquisition phase. This rate
can be evaluated as follow

lr =
1

rt,i
· (pc,i + pavf) · (i− 1) (10)

where pavf is the probability for a transaction to abort during the read-
set validation phase. Such a transaction contributes anyway to the lock-
acquisition rate since read set validation occurs after write-locks are acquired
at commit time over any written data item. We will evaluate pavf later in
this subsection.

Now we determine the probability poa,l for a transaction T to abort while
executing the l-th operation. The rate ur at which a data item is updated
by transactions is equal to

ur = cr ·
nwrite

d
(11)

where cr expresses the rate at which the other i− 1 transactions successfully
commit, and can be evaluated as

cr =
1

rt,i
· pc,i · (i− 1) (12)

Upon the l-th operation by transaction T , the average time tb,l elapsed
since T started its execution can be expressed as tbegin + ttcb · l+ top · (l− 1).
As we are assuming that the arrival of transactions to the commit phase
forms a Poisson process, the probability pou,l for a read (executed as the l-th
operation of T) to access a shared data item that has been updated by some
successfully committing transaction after T started can be expressed as

16

pou,l = 1− e−ur·tb,l (13)

In the above expression, in order to avoid overcomplicate the model, we
decided not to capture the case of repeated transactional read operations on
the same data item. In this case, in fact, the invalidation window for a data
item x would no longer correspond to the time elapsed since the beginning
of the transaction (namely tb,l), but would be equal to the (average) time
elapsed since the last occurrence of a read on x. Clearly, the error introduced
by this modeling choice depends on the actual frequency of occurrence of
repeated read operations on the same data item during the same transaction.
On the other hand, the model captures faithfully the effects of a frequent
optimization technique (possibly implemented at the compiler level), which
allows sparing subsequent read operations issued within the same transaction
on the same data item from the cost of validation. To this end, it is sufficient
to copy the values read from the shared transactional memory to thread local
variables, and to redirect subsequent reads on these data items (within the
same transaction) towards the thread local variables. Note that, since with
this optimization subsequent read operations on a data item do not target
the shared transactional memory, they do not even need to be accounted for
while computing the value of the parameter n.

We can now evaluate the probability for a transaction to abort during
the execution of its first operation (i.e., when l=1), namely poa,1 as

poa,1 = (1− pwrite) · (plock + (1− plock) · p
o
u,1) (14)

Since the abort of a transaction T during its l-th operation (where 2 ≤ l ≤ n)
implies that T did not abort during its previous l − 1 operations, it follows
that

poa,l = pona,l · (1− pwrite) · (plock + (1− plock) · p
o
u,l) (15)

where pona,l is the probability of not aborting until the completion of the
(l − 1)th operation. For this last probability we have

pona,1 = 1 (16)

and
pona,l = (1− poa,l−1) · p

o
na,l−1 (17)

In equations (14)-(15) we have assumed that the event of finding a write-
lock raised on the shared data item by a concurrent transaction currently

17

attempting to commit, and the event that the same data item was previ-
ously updated by a different (already committed) concurrent transaction are
independent. Overall, independence is related to that these events belong to
commit time activities across distinct transactions.

The probability palc for a transaction T to abort at commit time due to
lock contention while acquiring the write-locks can be evaluated as follow. T
can experience contention while requesting the lock on a data item x only
if, at the time in which T starts its commit phase, some other transaction
that has written x has successfully completed its lock acquisition phase, and
is still executing the commit procedure. Considering that T aborts only if
at least one of the data items in its write-set is locked, then, as in [9], we
approximate this last probability, namely pwlc, with an upper bound value,
that is

pwlc = 1− (1− plock)
nwrite (18)

Thus we have
palc = pona,n+1 · pwlc (19)

where we recall that pona,n+1 is the probability for a transaction not to be
aborted until the completion of its nth operation, that is until it enters its
commit phase. Consequently, the probability plana for a transaction not to be
aborted during its execution and to succeed in its commit-time lock acquisi-
tion phase is equal to

plana = pona,n+1 · (1− pwlc) (20)

Let us now show how we can evaluate pavf , namely the probability for
a transaction T to abort at commit time due to validation failure for its
read-set. The validation fails if at least one data item x belonging to the
read-set of T has the corresponding write-lock raised by another transaction,
or if a new version of x has been committed after the validation executed by
T during its last read operation on x. We denote with pru,l the probability
that the shared data item accessed in read mode at the lth operation by T
has been updated after the last validation (occurred upon the corresponding
last read operation on x). We calculate this probability as follows

pru,l = 1− e−ur·tv,l (21)

where tv,l is the elapsed time since the original validation, that is

tv,l = (ttcb + top) · (n− l + 1) + tcommit (22)

18

Analogously to what we did in equation (15), we evaluate the abort prob-
ability due to failure in the validation of the data item associated with the
lth transactional access of T as follows

pra,l = prna,l · (1− pwrite) · (plock + (1− plock) · p
r
u,l) (23)

where prna,1 = 1 and, for l > 1, prna,l = (1 − pra,l−1) · p
r
na,l−1. Then, we can

express pavf as
pavf = plana · prvf (24)

where

prvf =
n
∑

l=1

pra,l (25)

Finally, successful commit probability for the case of i active threads can be
evaluated as

pc,i = plana(1− prvf) (26)

The average execution time of a transaction rt,i can now be computed as
the sum of the average time for a transaction to reach a different execution
phase, weighted with the probability for the transaction to abort exactly
during that phase. Let us denote with

- ta,l the average duration of a transaction that aborts during its l-th
operation, that is:

ta,l = tbegin + l · (ttcb + top) + tabort (27)

- t1 = tb + ttcb + tabort the average duration of a transaction that aborts
during its commit phase due to contention while acquiring locks for the
data items in its write-set, where

tb = tbegin + n · (ttcb + top) (28)

- t2 = tb+ ttcb+ tcommit+ tabort the average duration of a transaction that
aborts during its commit phase due to failure in validating its read-set;

- t3 = tb + ttcb + tcommit the average duration of a transaction that suc-
cessfully commits.

19

Overall, the average transaction execution time can be expressed as

rt,i =
n
∑

l=1

(poa,l · ta,l) + palc · t1 + pavf · t2 + pc · t3 (29)

Now let us evaluate the time tGV C spent by any committing transaction
while updating the GVC. We consider this time logically included in tcommit,
thus tcommit is the sum of two terms, namely t′commit and tGV C , where t

′
commit

is the time to execute all the other operations, distinct from GVC manipu-
lation, during the commit phase. As explained in Section 4.4.1, the atomic
operations required for the update of GVC typically rely on firmware level
protocols offered by modern SMP and/or multi-core machines. Assuming
fairness by these protocols vs different CPU/core requests, we model the de-
lay for performing an atomic increment of the GVC, denoted as tGV C , by
means of an M/D/1 queue [37] with service rate µ = 1

tinc
GV C

(where tincGV C ex-

presses latency for the updating machine instructions, once the firmware has
granted access to the corresponding critical section) and arrival rate β = lr
(note that the increment of the GVC is performed by any transaction that
successfully acquired all the requested locks). According to this modeling
approach, tGV C corresponds to the residence time within the M/D/1 queue,
namely

tGV C = (1 +
ρ

2 · (1− ρ)
) · tincGV C , (30)

where ρ = β

µ
.

4.5. Coping with Multiple Transaction Classes

In this section we extend the analytical model by considering the case of q
different transactional classes, associated with different transaction profiles.
A transaction of class m, with m ∈ [1, q] executes nm operations and each
operation is a write operation with probability pmwrite. Hence nm · (1− pmwrite)
expresses the total amount of distinct transactional read accesses. A thread
runs a transaction of class m with probability Pm. Also, tmcommit and tmabort
are the expected commit time and abort time for a transaction of class m,
respectively.

4.5.1. Multi-class Thread-level Model

For q transactional classes, the state of the CTMC can be identified by
2q integers (i1, .., iq, j1, .., jq) where im and jm (with m ∈ [1, q]) represent the

20

number of threads running transactions of class m and the number of threads
in backoff due to an abort of a transaction of class m, respectively. Note that
i1 + ..+ iq + j1 + .. + jq ≤ k for each state of the CTMC.

For any state (i1, .., iq, j1, .., jq), the average transaction execution rate and
the transaction commit probability for a transaction of class m depend on the
mix of active transactions in that state. Thus we denote them as µm

i1,..,iq
and

pmc,i1,..,iq, respectively. Also, the abort probability for a transaction of class m
while residing in state (i1, .., iq, j1, .., jq) is denoted as pa,i1,..,iq = 1− pc,i1,..,iq .

The rate according to which a thread executes a new transaction of class
m is λm = Pm/tntcb. The rules defining the transition rates from any two
states of the CTMC are the following:

- for i1 + ... + iq + j1 + ... + jq < k, the transition rate from state
(i1, ..., im, ..., iq, j1, ..., jq) to state (i1, ..., im + 1, ..., iq, j1, ..., jq), associ-
ated with the activation of a run of a transaction of class m is equal to
λm(k − i1 − ...− iq − j1 − ...− jq);

- for im > 0, the transition rate from state (i1, ..., im, ..., iq, j1, ..., jq) to
state (i1, ..., im − 1, ..., iq, j1, .., jq), associated with a successful commit
event of a transaction of class m is equal to imµ

m
i1,...,iq

pmc,i1,...,iq

- for i1 + ...+ im + ...+ iq ≥ 2 and im ≥ 1, the transition rate from state
(i1, ..., im, ..., iq, j1, ..., jm, .., jq) to state (i1, ..., im − 1, .., iq, j1, .., im +
1, ..., jq), associated with an abort event of a transaction of class m
is equal to imµ

m
i1,...,iq

pma,i1,...,iq

- for jm > 1, the transition rate from state (i1, ..., im, ..., iq, j1, ..., jm, ..., jq)
to state (i1, ..., im+1, ..., iq, j1, ..., jm−1, ..., jq), associated with the ter-
mination of a back-off period of an aborted transaction of class m is
equal to γ · jm.

The cardinality of the set S of states of the CTMC can be evaluated by
considering that at given time a thread can be in one of 2 · q + 1 different
states (namely, q states corresponding to the execution of a transaction of
class m, q states corresponding to the back-off period after an abort event
of a transaction of class m, and 1 state corresponding to the execution of
a non-transactional code block). As a consequence, the number of states of
the CTMC is the k-combination with repetition of 2 · q + 1 elements, that

21

is the binomial coefficient

(

(2 · q + 1) + k − 1
k

)

, where we have to exclude

the states where all the threads are in back-off.
By relying on the same Poissonianity assumptions made in Section 4.3,

and by equation (1) applied to the multi-class CTMC, we can evaluate the
stationary probability vector v. Hence, the execution rate τm of transactions
of class m can be expressed as

τm =
∑

(s′)∈S′

vs′ · im · µm
s′′ · p

m
c,s′′ (31)

where we used s′ in place of i1, .., iq, j1, .., jq and s′′ in place of i1, .., iq, and
where S ′ is the subset of S containing any state where im > 0. The overall
system throughput is

τ =
q
∑

m=1

τm (32)

The commit probability for a transaction of class m is

pmc =

∑

(s′)∈S′ vs′ · p
m
c,s

∑

(s′)∈S′ vs′
(33)

4.5.2. Multi-class Tread-level Model for CTL

Fixed a configuration of active transactions i1, .., iq, the thread-level model
is in charge of evaluating for each transactional class m the transaction run
rate rmt,i1,..,iq and the transaction commit probability pmc,i1,..,iq . As for the single-
class models, if there is just one active transaction, that is im = 1 and iw = 0
for each w 6= m, the average transaction execution time of the transaction of
class m is

rmt,i1,..,iq = tbegin + nm · top + (nm + 1)ttcb + tmcommit (34)

where tmop, namely the average time to execute an access operation on a shared
data item for a transaction of class m, is equal to

tmop = tread(1− pmwrite) + twrite · p
m
write (35)

When the number of active transactions is greater that one we use the
same iterative approach as in Section 4.4.2, by stopping the iterations when
two consecutive values of the commit probability for transactions of each

22

class m (if im ≥ 1) differ by at most an ǫ. Also, in what follows we use the
same assumptions and considerations as in Section 4.4.2.

When a transaction of class m is active, its concurrent transactions are:

- ix active transactions of each other class x such that x 6= m and ix ≥ 1;

- im − 1 active transactions of the same class m, if im ≥ 2.

At the start of each iterative step we evaluate the following parameters.
The lock rate associated with transactions of each class x, expressed as

lxr =
1

rxt,i1,..,iq
· (pxc,i1,..,iq + pxavf) (36)

where pxavf is the probability for a transaction of class x to abort during the
read-set validation phase. The probability for a transaction of class m to
find a write-lock raised while issuing a read operation, which is expressed as

pmlock =
q
∑

x=1,x 6=m

lxr · ix · tcommit

nx · pxwrite

d
+ lmr · (im−1) · tcommit

nm · pmwrite

d
. (37)

The commit rate associated with transactions of class x, which is expressed
as

cxr =
1

rxt,i1,..,iq
· pxc,i1,..,iq (38)

Finally, the update rate by concurrent transactions of a transaction of class
m, which is expressed as

um
r =

q
∑

x=1,x 6=m

cxr · ix
nx · pxwrite

d
+ cmr · (im − 1)

nm · pmwrite

d
. (39)

After solving the previous equations, we evaluate in each iterative step all
the parameters we list below. The probability po,mu,l for a read operation,
executed as the l-th operation of a transaction T of class m, to access a data
item that has been updated by some successfully committing transaction
after T started, which can be expressed as

po,mu,l = 1− e−um
r ·tm

b,l (40)

where tmb,l is the average elapsed time since the validation performed on the
data item upon the read access by the transaction of class m, which can be
evaluated the same way as the single-class case.

23

The probability to abort while executing the 1-st operation on a shared
data item for a transaction of class m, expressed as

po,ma,1 = (1− pmwrite) · (p
m
lock + (1− pmlock) · p

o,m
u,l), (41)

and the probability to abort while executing the l-th operation with l ≥ 2
for a transaction of class m, expressed as

po,ma,l = po,mna,l · (1− pmwrite) · (p
m
lock + (1− pmlock) · p

o,m
u,l) (42)

where po,mna,l is the probability of not aborting until the completion of the
(l − 1)th operation, for which we have

po,mna,1 = 1 (43)

and
po,mna,l = (1− po,ma,l−1) · p

o,m
na,l−1 (44)

The contention probability during write-lock acquisition phase for a trans-
action of class m can be then approximated as

pmwlc = 1− (1− pmlock)
nm·pwrite (45)

Hence the probability for a transaction of class m to abort at commit
time due to write-lock contention is

pmalc = po,mna,nm+1 · p
m
wlc (46)

The probability for a transaction of class m not to be aborted during its
execution and to succeed in its commit-time lock acquisition phase is

pla,mna = po,mna,nm+1 · (1− pmwlc) (47)

The probability that a data item in the read-set of a transaction belonging
to class m, which is accessed at the l-th transactional operation, has been
updated when T executes the read-set validation can be expressed as

pr,mu,l = 1− e−um
r ·tm

v,l (48)

where tmv,l is the elapsed time since the original validation, which can again
be computed teh same way as for the single-class case.

24

Thus the abort probability due to failure in the validation of the lth data
item within the read-set can be evaluated as follows

pr,ma,l = pr,mna,l · (1− pmwrite) · (p
m
lock + (1− pmlock) · p

r,m
u,l) (49)

where pr,mna,1 = 1 and, for l > 1, pr,mna,l = (1 − pr,ma,l−1) · p
r,m
na,l−1. Hence, the

probability for a transaction of classm to abort during the read-set validation
phase can be expressed as

pmavf = pla,mna · pmrvf (50)

where

pmrvf =
nm
∑

l=1

pr,ma,l (51)

Finally we can evaluate the probability of successful commit when residing
within state

(i1, .., iq) as
pmc,i1,..,iq = pla,mna (1− pmrvf) (52)

For brevity we do not detail the equations for the evaluation of average
transaction execution time and tGV C because they can be simply derived by
using the same approach we have show at the end of Section 4.4.2. In fact,
the evaluation of the average transaction execution time for a transaction
of class m can be done by using the already provided set of equations, by
substituting the parameter values that depend on the specific transactional
class with the ones we calculated in this section. Regarding the evaluation
of tGV C , by using the approach discussed in Section 4.4.2, we have just to
evaluate λ as the sum of the lock rate due to all the active transactions across
the different classes, namely

λ =
q
∑

m=1

lmr · im (53)

4.6. Hints on Model Extension for Non-uniform Data Access

By relying on the approach in [9], which has been proposed for the case
of concurrency control algorithms in database systems, our model could be
extended to cope with non-uniform data accesses. We provide hints on how
the extension could be realized in this section.

The proposed approach considers the whole set of d shared data items as
grouped in s disjoint subsets, possibly exhibiting different cardinalities. The

25

set of n operations executed by a transaction are grouped in s different sub-
sets, possibly exhibiting different cardinalities, where each operation accesses
a data item belonging to a different data subset. The accesses executed on
each subset of data items by a transaction are uniformly distributed over the
subset.

Different subsets of data items exhibit different access frequencies. As a
consequence, the probability to find a lock raised on a data item and the
data item update rate are different for each specific subset of data items.
To evaluate them for a given subset we can use the same equations (9) and
(11) by considering, in place of n, only the subset of operations executed
by the transactions on that specific subset of data items. Consequently,
the subsequent equations, expressing the abort probability for a transaction,
can be determined by considering the probability of finding the lock raised
and the data item update rate as differentiated for each subset, and then
weighting the corresponding effects by the fraction of operations executed on
the specific subset.

4.7. On Removing Exponential Assumptions

In the model presented so far we have exploited the assumption of expo-
nential distribution of several random variables. In this section we discuss
how our modelling approach could be extended to relax these assumptions.

As for the thread-level model in Section 4.3, the reliance on a CTMC
representation maps onto exponential assumptions for the frequency with
which i) transactions complete their execution (either due to a commit or
to an abort event), ii) transactions exit from their back-off period following
an abort event, and iii) the execution of a non-transactional code block is
completed. We also recall also that the output of the thread-level model is
represented by the stationary probability vector v associated with the CTMC.

If one wanted to account in the model for generic, but known, distribu-
tions of the above transition rates, it would be simply sufficient to replace
the CTMC with an equivalent Semi-Markov process [41]. At this point one
should rely on well-known solution techniques [41] for the stationary proba-
bility vector of Semi-Markov processes.

For what concerns the transaction-level model, we exploited the assump-
tion on the exponential distribution of the transactions’ arrival rate to the
commit phase to compute pou,l in equation (13) and pru,l in equation (21). Fur-
ther, we exploited the assumption that the execution rate of read operations

26

on shared data items forms a Poisson process to derive the expression of plock
in equation (9).

As for equations (13) and (21), they could be extended to account for
arbitrary distributions of the transaction arrivals to the commit phase. We
could in fact write them as

pou,l = Φ(tb,l, ur) (54)

pru,l = Φ(tv,l, ur) (55)

where Φ(t, η), t ∈ (0,∞) expresses the generic cumulative distribution func-
tion of the arrival process to the commit phase, having as η = rt,i = 1/E[Φ(t, η)]
its average arrival rate, and ur could be computed as before using equation
(11) and equation (12).

More problematic would be, instead, relaxing the assumption that the
rate of read operations forms a Poisson process. In equation (9), in fact,
we exploited directly the PASTA property [40] of Poisson arrival processes
to compute the probability of finding a write-lock busy during a read on
a data item x, as the probability for x to be locked at a random instant.
However, if one were to assume that the arrival process of read operations
on x formed a generic renewal process, one should explicitly account for
the dynamic of interleaving between the arrival process of read operations
on x and the stochastic process associated with the arrival of transactions
that updated x to the commit phase. This would require determining the
conditioned probability that, given an arbitrarily small interval [t−h, t], there
is a transaction T that is locking the data item x during its commit phase
given that a transaction T’ issues a read on x in the same time interval, or
more formally:

limh→0Pr{X(t− h) = 1|N(t− h) ≥ 1} (56)

where X(t) expresses the number of transactions (that updated x) to be in
the commit phase at time t and N(t) is the counting process associated with
the arrival of read operations (on x).

5. Validation

In this section we provide the results of an evaluation study aimed to
verify the accuracy of the proposed modeling methodology, and of the pre-

27

sented CTL model. The study is based on the comparison between some
key performance parameters determined via our analytical model and the
corresponding values as obtained by means of a discrete event simulator.
The latter relies on a detailed simulation model of CTL as implemented by
the TL2 STM layer [15]. The simulation model mimics the execution of a
closed system entailing k concurrent worker threads, whose conflicts when
executing transactional code portions are regulated by CTL. The simulation
results were obtained by repeating a number of independent runs (with dif-
ferent initial seeds for the random generators) until the amplitude of the 90%
confidence intervals on the throughput (committed transactions per second)
became smaller than 10% of the average throughput value.

The workload parameters for this study have been selected on the basis of
measurement and tracing activities, carried out for the STAMP benchmark
[17]. To this end, we have exploited an implementation of TL2 which we have
instrumented to trace the data access pattern and the costs associated with
the corresponding operations, as well as the internal operations performed
by the STM layer. Measurements have been carried out using a quad-core
2.4 GHz machine equipped with 4 GB of RAM and running the Suse Linux
operating system (kernel 2.6.17).

In our study we focus on two of the applications included in the STAMP
benchmark, namely Intruder and Vacation. Intruder is a signature-based net-
work intrusion detection system which processes network packets in parallel
via a user-tunable number of threads that concurrently update two main data
structures, namely a FIFO queue and a self-balancing tree. In this bench-
mark, each thread spends around 33% of the time executing transactional
code, and generates relatively short transactions, belonging to three differ-
ent classes (capture, reassembly, and detection), the 90% percent of which
exhibit a read plus write set made of up to n = 71 items, 30% of which are
accessed in write mode. Based on our measurements, we set ttcb = 0.5µsec,
tntcb = 5µsec and tcommit = 2µsec.

Vacation, on the other hand, implements an on-line transaction process-
ing system emulating a travel reservation system. The system is implemented
as a set of trees that keep track of customers and their reservations for various
travel items. Client threads perform a number of sessions, each one enclosed
in a coarse-grained transaction (compared to Intruder), which are again dif-
ferentiated into three classes (reservations, cancellations, and updates), all
interacting with the travel system’s data layer. In this application, client
threads spend almost all their execution time (92%) executing transactions,

28

 0.05

 0.1

 0.15

 0.2

 0.25

 4 8 12 16 20 24 28 32 36

T
ra

ns
ac

tio
ns

 p
er

 µ
se

c

Threads

Throughput (Intruder Benchmark)

1K Address Space Size - Sim
1K Address Space Size - Model
10K Address Space Size - Sim

10K Address Space Size - Model

 0.05

 0.1

 0.15

 0.2

 0.25

 4 8 12 16 20 24 28 32 36

T
ra

ns
ac

tio
ns

 p
er

 µ
se

c

Threads

Throughput (Vacation Benchmark)

10K Address Space Size - Sim
10K Address Space Size - Model
100K Address Space Size - Sim

100K Address Space Size - Model

Figure 2: Throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28 32 36

C
om

m
it

P
ro

ba
bi

lit
y

Threads

Commit Probability (Intruder Benchmark)

1K Address Space Size - Sim
1K Address Space Size - Model
10K Address Space Size - Sim

10K Address Space Size - Model

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28 32 36

C
om

m
it

P
ro

ba
bi

lit
y

Threads

Commit Probability (Vacation Benchmark)

10K Address Space Size - Sim
10K Address Space Size - Model
100K Address Space Size - Sim

100K Address Space Size - Model

Figure 3: Commit probability.

the 90% percent of which exhibit a read plus write set made of up to n = 200
items, 12% of which are accesses in write mode. Based on our measurements,
we set ttcb = 0.2µsec, tntcb = 5µsec and tcommit = 5µsec

In addition to the above parameters, we used our tracing facility to deter-
mine also the following set of parameters: tbegin = 0.2µsec, tread = 0.25µsec,
twrite = 0.2µsec, tabort = 1µsec. Finally, the back-off period, tbackoff , was set
to 2µsec.

By the above description, both the selected benchmark applications entail
multi-class transactions. Hence the tracing process and the related outcomes
have been used in a differentiated manner depending on whether the target
is the validation of the single-class or the multi-class model.

To validate the single-class model, we configured the simulator to gener-
ate durations of the above mentioned timing activities based on exponential
distributions. On the other hand, the validation of the multi-class version

29

 30

 35

 40

 45

 50

 55

 60

 65

 70

 8 16 24 32

M
ea

n
R

un
 E

xe
cu

tio
n

T
im

e
(µ

se
c)

Threads

Mean Run Execution Time (Intruder Benchmark)

1K Address Space Size - Sim
1K Address Space Size - Model
10K Address Space Size - Sim

10K Address Space Size - Model

 50

 60

 70

 80

 90

 100

 110

 8 16 24 32

M
ea

n
R

un
 E

xe
cu

tio
n

T
im

e
(µ

se
c)

Threads

Mean Run Execution Time (Vacation Benchmark)

10K Address Space Size - Sim
10K Address Space Size - Model
100K Address Space Size - Sim

100K Address Space Size - Model

Figure 4: Mean run execution time.

of the model, which captures more in detail the execution dynamics of the
STM system, has been performed by replaying within the simulator the exact
timing of actions as logged in the execution traces.

For what concerns data accesses, the simulator generates them according
to a uniform distribution across the total number of d data items/memory
words (in compliance with the assumptions of our analytical model). The
parameter d is treated as an independent parameter of the validation study.
Note that, once fixed the number of worker threads, variations of d allow
capturing settings with differentiated levels of contention, which, in their
turn, determine different transactions’ abort probabilities. Clearly, higher
levels of data contention are achieved when the memory is configured with
lower values of d, since transactional memory accesses by the worker threads
are distributed on a smaller number of distinct memory words. We consider
different values for the parameter d, associated, respectively, with reduced
and increased values of the benchmarks’ data-set size according to the in-
dications provided in [17]. Specifically, for Intruder, we set d to 1,000 and
10,000, whereas, for Vacation, we set d to 10,000 and 100,000.

5.1. Single-class Case

The comparison between analytical and simulation results is based on the
following four parameters: (A) the system throughput (Figure 2), (B) the
commit probability (Figure 3), (C) the mean execution time evaluated over
each single transaction run, independently of whether the run is committed
or aborted (Figure 4) and (D) the likelihood of each of the possible causes of
transaction abort (Figure 5).

30

The plots in Figure 2 and Figure 3 point out the accuracy of the presented
analytical model, highlighting how analytical and simulation results coincide
across the whole considered region of the parameters space, namely low vs
high number of worker threads, as well as large vs small address space. By
Figure 3, in correspondence with the lower value of d, we can appreciate the
accuracy of the analytical model even in high contention scenarios (namely,
for very reduced values of the transaction commit probability). By Figure
4, we remark how, when considering the case of smaller address spaces, the
relatively high contention probability often leads transactions to be early
aborted (i.e., as soon as the first conflicting memory reference is issued),
thus contributing to a reduction of the mean value for the run execution time.
(Recall that the mean run execution time is evaluated over both committed
and aborted run instances.) On the other hand, we observe an increase of
the mean run execution time in the configuration with larger address space,
where the weight of aborted run instances becomes lower. Note that, due to
the aforementioned early abort phenomenon, the variance of the mean run
execution time grows in high contention scenarios. The above phenomenon,
and their effects on the observed mean value, are correctly captured by our
analytical model with very limited error, which is an additional support of the
high accuracy of our analytical approach. The only exception is represented
by the case of the Vacation benchmark when configured to use the smaller
address space. In this case, the accuracy of the analytical model in predicting
the mean run execution time is in fact subject to a slight deterioration as the
number of worker threads increases. We argue that this is imputable to the
fact that the Vacation benchmark comprises transactions whose execution
latency is (on average) significantly longer than the Intruder benchmark.
This leads to an increase of the variance of the run execution time and to a
corresponding amplification of the model’s prediction error.

In Figure 5 we evaluate the accuracy of the analytical model in predict-
ing the different causes of aborts for the transactions. Specifically, we set the
number of worker threads to eight and report: (i) the probability for a trans-
action to abort during its execution before reaching the commit phase (recall
that this can only happen due to a validation failure during a read operation),
denoted as pa,ex = 1− pona,n+1 (see equations (15-17)); (ii) the probability for
a transaction to abort in the commit phase during the writeset lock acquisi-
tion, namely pwlc (see equation (18)); (iii) the probability for a transaction
to abort in the commit phase due to read-set validation failure, namely prvf
(see equation (25)). Also in this case we observe that the accuracy of the

31

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

pa,ex pwlc prvf pa,ex pwlc prvf

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n
Abort Causes (Intruder)

1K Address Space Size 10K Address Space Size

Sim
Model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

pa,ex pwlc prvf pa,ex pwlc prvf

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

Abort Causes (Vacation)

10K Address Space Size 100K Address Space Size

Sim
Model

Figure 5: Abort causes.

proposed analytical model is very good for the scenarios in which the bench-
marks are configured to use the larger datasets. On the other hand, with
smaller datasets, namely the ones associated with very high contention rates
(note that the probability of abort is around 0.7 and 0.8 in these scenarios),
there is a slight degradation of the analytical model accuracy. We argue that
this is imputable to the fact that the error introduced by assuming a Poisson
assumption for the distribution of the transaction interarrival time to the
commit phase, which remains negligible at low/medium contention levels,
shows an increasing trend at very high contention levels. This phenomenon
is confirmed by the plots in Figure 6, where we evaluate the goodness of
this assumption in different workload scenarios by contrasting the empirical
density functions of the transaction interarrival time to the commit phase, as
computed by the simulator, and the exponential distribution functions whose
average value has been computed via the analytical model. More in detail,
the plots on the right side of Figure 6 have been obtained by considering
moderate contention scenarios obtained by selecting, for each benchmark,
the largest address spaces and degree of concurrency equal to eight, that
give rise to probability of abort on the order of 20% and 35% for Vacation
and Intruder, respectively. On the other hand, the plots on the left side of
Figure 6 are associated with a very high (and, arguably, somewhat patholog-
ical in practice) contention scenario, in which we select for each benchmark
the smallest address spaces and degree of concurrency equal to eight, that
give rise to probability of abort on the order of 70% and 80%, for Vacation
and Intruder, respectively. The reported results clearly highlight that, up to
medium contention levels, there is an excellent match between the empirical
and analytical distributions, thus confirming the validity of the Poissionian-

32

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50 60 70 80

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

µsec

Interrarival Time to Commit Phase (Intruder Benchmark)

1K Address Space Size - Sim
1K Address Space Size - Model

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

µsec

Interrarival Time to Commit Phase (Intruder Benchmark)

10K Address Space Size - Sim
10K Address Space Size - Model

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 10 20 30 40 50 60 70 80

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

µsec

Interrarival Time to Commit Phase (Vacation Benchmark)

10K Address Space Size - Sim
10K Address Space Size - Model

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n

µsec

Interrarival Time to Commit Phase (Vacation Benchmark)

100K Address Space Size - Sim
100K Address Space Size - Model

Figure 6: Distribution of the transaction interarrival times to the commit phase.

ity assumption for the commit phase arrival in case the timing of actions
natively associated with the transactions follows exponential distributions.
The left side plots, conversely, highlight a higher discrepancy between the
empirical and analytical density functions in very high contention scenarios.

However, it is interesting to highlight that the degradation of the goodness
of the poissionianity assumption leads to a (slight) increase of the model’s
error only when predicting some internal state variables, such as the likeli-
hood of the various abort causes. On the other hand, the model’s accuracy
in predicting external performance metrics, such as throughput and commit
probability, remains very high across every analyzed workload, even those
associated with very high contention rate (see Figure 2 and Figure 3).

5.2. Multi-class Case

In this section we validate the variant of the analytical model capturing
multi-class transactional profiles. To this purpose, the timing of accesses to
shared memory data items has been simulated by replaying the execution
traces of the Vacation benchmark. On the other hand, we used the reduced

33

data set size selected for this benchmark (i.e., 10,000 data items) in order to
stress the accuracy of the model when considering non-minimal contention
scenarios. The parameters characterizing this workload are summarized in
Table 1.

By the results shown in Figure 7, we have that the analytical model again
shows a very good match vs simulative results. In particular, throughput,
response time and commit probability for each individual class are evaluated
by the model in a very accurate manner while increasing the number of
worker threads. Also, the curves show that the matching is good up to a
number of worker threads yielding towards flat throughput values.

Parameter Class 1 Class 2 Class 3
Transaction Class Probability (Pm) 0.898 0.047 0.056
Transaction Class Length (nm) 154 57 121

Write Probability per Class (pmwrite) 0.046 0.117 0.080

Table 1: Parameters used for the multi-class study (Vacation benchmark)

6. Conclusions

In this paper we have addressed the issue of analytical modeling of con-
currency control schemes in Software Transactional Memories (STMs). Com-
pared to their counterpart in the context of database systems, concurrency
regulation approaches for STMs are different in nature, given that the focus
is on optimizing design/implementation aspects that have been traditionally
treated as less relevant for databases. The provided modeling methodology
is general, and can be used to capture differentiated mechanisms within the
concurrency regulation layer. We have also specialized our approach to the
case of Commit-Time-Locking (CTL) concurrency control algorithms, and
we have evaluated the accuracy of the presented CTL performance model
against simulation results based on execution patterns resembling the be-
havior of the STAMP STM benchmark.

Acknowledgements

This work has been partially supported by the “Cloud-TM” project (co-
financed by the European Commission through the contract no. 257784),
COST Action IC1001 EuroTM, the FCT project ARISTOS (PTDC/EIA-

34

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 5 10 15 20 25 30 35

T
ra

ns
ac

tio
ns

 p
er

 µ
se

c

Threads

Throughput (Vacation Benchmark)

Class1-Mod
Class2-Mod
Class3-Mod
Class1-Sim
Class2-Sim
Class3-Sim

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35

M
ea

n
R

un
 E

xe
cu

tio
n

T
im

e
(µ

se
c)

Threads

Run Response Time (Vacation Benchmark)

Class1-Mod
Class2-Mod
Class3-Mod
Class1-Sim
Class2-Sim
Class3-Sim

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35

C
om

m
it

pr
ob

ab
ili

ty

Threads

Commit probability (Vacation Benchmark)

Class1-Mod
Class2-Mod
Class3-Mod
Class1-Sim
Class2-Sim
Class3-Sim

Figure 7: Analytical vs Simulative Results for the Multi-class Scenario.

EIA/102496/2008) and by FCT (INESC-ID multiannual funding) through
the PIDDAC Program Funds.

References

[1] A.-R. Adl-Tabatabai, C. Kozyrakis, and B. Saha, “Unlocking concur-
rency,” ACM Queue, vol. 4, no. 10, pp. 24–33, 2007.

[2] N. Shavit and D. Touitou, “Software transactional memory,” in Proc.
of the 14th Annual ACM Symposium on Principles of Distributed Com-
puting. Ottawa: ACM Press, 1995.

[3] J. Cachopo and A. Rito-Silva, “Versioned boxes as the basis for memory
transactions,” Sci. Comput. Program., vol. 63, no. 2, pp. 172–185, 2006.

[4] P. Felber, C. Fetzer, R. Guerraoui, and T. Harris, “Transactions are
back—but are they the same?” SIGACT News, vol. 39, no. 1, pp. 48–
58, 2008.

35

[5] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis,
“Sinfonia: a new paradigm for building scalable distributed systems,”
in SOSP ’07: Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles. New York, NY, USA: ACM, 2007, pp.
159–174.

[6] P. Romano, L. Rodrigues, N. Carvalho, and J. Cachopo, “Cloud-tm:
Harnessing the cloud with distributed transactional memories,” in Pro-
ceedings of the 3rd ACM SIGOPS International Workshop on Large-
Sacle Distributed Systems and Middleware (LADIS), Big Sky Resort,
Big Sky (MT), USA, Oct. 2009.

[7] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning of
word-based software transactional memory,” in PPoPP ’08: Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming. New York, NY, USA: ACM, 2008, pp. 237–246.

[8] P. Wu, M. M. Michael, C. von Praun, T. Nakaike, R. Bordawekar, H. W.
Cain, C. Cascaval, S. Chatterjee, S. Chiras, R. Hou, M. Mergen, X. Shen,
M. F. Spear, H. Y. Wang, and K. Wang, “Compiler and runtime tech-
niques for software transactional memory optimization,” Concurr. Com-
put. : Pract. Exper., vol. 21, no. 1, pp. 7–23, 2009.

[9] P. S. Yu, D. M. Dias, and S. S. Lavenberg, “On the analytical modeling
of database concurrency control,” Journal of the ACM (JACM), vol. 40,
no. 4, pp. 831–872, September 1993.

[10] S. T. Leutenegger and D. Dias, “A modeling study of the tpc-c bench-
mark,” SIGMOD Rec., vol. 22, no. 2, pp. 22–31, 1993.

[11] P. di Sanzo, B. Ciciani, F. Quaglia, and P. Romano, “A performance
model of multi-version concurrency control,” in Proceedings of the 16th
IEEE International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems (MASCOTS 2008).
IEEE Computer Society, 2008, pp. 41–50.

[12] A. Thomasian and I. Ryu, “Performance analysis of two-phase locking,”
IEEE Transactions on Software Engineering, vol. Volume 17, no. Issue
5, pp. 386 – 402, May 1991.

36

[13] I.K.Ryu and A.Thomasian, “Analysis of database performance with dy-
namic locking,” Journal of the ACM (JACM), vol. Volume 37, no. Issue
3, pp. pp. 491 – 523, July 1990.

[14] B.Ciciani, D.M.Dias, and P.S.Yu, “Analysis of concurrency-coherency
control protocols for distributed transaction processing systems with re-
gional locality,” IEEE Transactions on Software Engineering, vol. Vol-
ume 18, no. 10, pp. pp. 899–914, October 1992.

[15] D. Dice, O. Shalev, and N. Shavit, “Transactional locking ii,” in Proc.
of the 20th International Symposium on Distributed Computing (DISC
2006), 2006, pp. 194–208.

[16] M. Herlihy, V. Luchangco, and M. Moir, “A flexible framework for im-
plementing software transactional memory,” SIGPLAN Not., vol. 41,
no. 10, pp. 253–262, 2006.

[17] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in IISWC ’08:
Proceedings of The IEEE International Symposium on Workload Char-
acterization, September 2008.

[18] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural
support for lock-free data structures,” in Proceedings of the 20th annual
international symposium on Computer architecture, ser. ISCA ’93.
New York, NY, USA: ACM, 1993, pp. 289–300. [Online]. Available:
http://doi.acm.org/10.1145/165123.165164

[19] R. Palmieri, F. Quaglia, P. Romano, and N. Carvalho, “Evaluating
database-oriented replication schemes in software transactional memory
systems,” in Proc. of International Workshop on Dependable Parallel,
Distributed and Network-Centric Systems, Oct. 2006.

[20] R. Guerraoui and M. Kapalka, “On the correctness of transactional
memory,” in Proc. of PPOPP, 2008.

[21] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

37

[22] A. Heindl and G. Pokam, “Modeling software transactional memory with
anylogic,” in Simutools ’09: Proceedings of the 2nd International Con-
ference on Simulation Tools and Techniques. ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2009, pp. 1–10.

[23] M. Moir, K. Moore, and D. Nussbaum, “The adaptive transactional
memory test platform: a tool for experimenting with transactional code
for rock (poster),” in SPAA ’08: Proceedings of the twentieth annual
symposium on Parallelism in algorithms and architectures. New York,
NY, USA: ACM, 2008, pp. 362–362.

[24] A. Heindl and G. Pokam, “An analytic framework for performance mod-
eling of software transactional memory,” Comput. Netw., vol. 53, no. 8,
pp. 1202–1214, 2009.

[25] Z. He and B. Hong, “On the performance of commit-time-
locking based software transactional memory,” in Proceedings of
the 2009 11th IEEE International Conference on High Perfor-
mance Computing and Communications. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 180–187. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1581383.1582122

[26] A. Thomasian, “Concurrency control: Methods, performance, and anal-
ysis,” ACM Computing Surveys, vol. 30, no. 1, March 1998.

[27] P. Di Sanzo, R. Palmieri, B. Ciciani, F. Quaglia, and P. Romano, “Ana-
lytical modeling of lock-based concurrency control with arbitrary trans-
action data access patterns,” in WOSP/SIPEW ’10: Proceedings of the
first joint WOSP/SIPEW international conference on Performance en-
gineering. New York, NY, USA: ACM, 2010, pp. 69–78.

[28] Y. C. Tay, R. Suri, and N. Goodman, “A mean value performance model
for locking in databases: the no-waiting case,” J. ACM, vol. 32, no. 3,
pp. 618–651, 1985.

[29] B.Ciciani, D.M.Dias, and P.S.Yu, “Dynamic and static load sharing in
hybrid distributed-centralized systems,” Computer Systems Science and
Engineering, vol. Volume 7, no. 1, pp. pp. 25–41, January 1992.

38

[30] R. Agrawal, M. J. Carey, and M. Livny, “Concurrency control perfor-
mance modeling: Alternatives and implications,” ACM Transactions on
Database Systems, vol. 12, no. 4, December 1987.

[31] N. Al-Jumaha, H. Hassaneinb, and M. El-Sharkawia, “Implementation
and modeling of two-phase locking concurrency,” Information and Soft-
ware Technology, vol. 42, no. 4, pp. 257–273, March 2000, elsevier Sci-
ence.

[32] M. J. Carey and W. A. Muhanna, “The performance of multiversion
concurrency control algorithms,” ACM Transactions on Computer Sys-
tems, vol. 4, no. 4, pp. 338–378, November 1986.

[33] D. R. Ries and M. Stonebraker, “Locking granularity revisited,” ACM
Transactions on Database Systems (TODS), vol. 4, no. 2, 1974.

[34] ——, “Effects of locking granularity in a database management sys-
tem,” ACM Transactions on Database Systems (TODS), vol. 2, no. 3,
September 1977.

[35] R. Guerraoui, M. Kapalka, and J. Vitek, “STMBench7: a benchmark
for software transactional memory,” SIGOPS Oper. Syst. Rev., vol. 41,
no. 3, pp. 315–324, 2007.

[36] M. Ansari, C. Kotselidis, I. Watson, C. C. Kirkham, M. Lujn, and
K. Jarvis, “Lee-tm: A non-trivial benchmark suite for transactional
memory.” in ICA3PP, ser. Lecture Notes in Computer Science, A. G.
Bourgeois and S.-Q. Zheng, Eds., vol. 5022. Springer, 2008, pp. 196–
207.

[37] L. Kleinrock, Queuing Systems (Vol1 and Vol2). Wiley-Interscience,
1975.

[38] R. Nelson, Probability, stochastic processes, and queueing theory: the
mathematics of computer performance modeling. New York, NY, USA:
Springer-Verlag New York, Inc., 1995.

[39] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

39

[40] R. W. Wolff, “Poisson arrivals see time averages,” Operations
Research, vol. 30, no. 2, pp. 223–231, 1982. [Online]. Available:
http://www.jstor.org/stable/170165

[41] A. A. Tomusyak, “Computation of an ergodic distribution of markov
and semi-markov processes,” no. 1, 1969.

40

