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Abstract—Nowadays, distributed in-memory caches are in-
creasingly used as a way to improve the performance of
applications that require frequent access to large amounts
of data. In order to maximize performance and scalability,
these platforms typically rely on weakly consistent partial
replication mechanisms. These schemes partition the data
across the nodes and ensure a predefined (and typically
very small) replication degree, thus maximizing the global
memory capacity of the platform and ensuring that the cost
to ensure replica consistency remains constant as the scale
of the platform grows. Moreover, even though several of
these platforms provide transactional support, they typically
sacrifice consistency, ensuring guarantees that are weaker than
classic 1-copy serializability, but that allow for more efficient
implementations.

This paper proposes and evaluates two partial replication
techniques, providing different (weak) consistency guarantees,
but having in common the reliance on total order multicast
primitives to serialize transactions without incurring in dis-
tributed deadlocks, a main source of inefficiency of classical
two-phase commit (2PC) based replication mechanisms.

We integrate the proposed replication schemes into Infinis-
pan, a prominent open-source distributed in-memory cache,
which represents the reference clustering solution for the
well-known JBoss AS platform. Our performance evaluation
highlights speed-ups of up to 40x when using the proposed
algorithms with respect to the native Infinispan replication
mechanism, which relies on classic 2PC-based replication.

Keywords-Partial Replication, Distributed Memory, Transac-
tional Memory, Atomic Multicast

I. INTRODUCTION

Nowadays, distributed in-memory caches are increasingly
used to improve the performance of applications that require
frequent access to large amounts of data, by decoupling
the persistent memory access from the critical path of the
application. YouTube, Wikipedia, Twitter and Facebook are
a few examples of applications that make use of this archi-
tectural approach. The key reason underlying the success
of these platforms lies in their ability to achieve higher
performance, scalability and elasticity (namely, the ability
to dynamically scale up or down the number of distributed
physical nodes composing the platform), when compared to
classical SQL-based database management systems. This is
achieved thanks to the reliance on (i) simpler data models,
e.g., key/value pairs vs. relational model, (ii) more efficient
application interfaces, namely embedded vs. JDBC/ODBC
connections, and (iii) the reliance on in-memory replication

and asynchronous write to disk vs. (per-transaction) syn-
chronous logging to disk.

In this context, data partitioning and in-memory repli-
cation across multiple distributed nodes has two main ad-
vantages: on one hand, it allows distributing load among
multiple replicas, enhancing throughput; on the other hand,
it ensures the survival of data if a replica fails. This last
point is particularly relevant, since the data is first stored in
volatile memory and made persistent asynchronously (and
would therefore be lost in case of failure, if it was not
replicated).

However, there are also costs inherent to replication that
must not be overlooked. Firstly, replicas consume memory,
reducing the amount of information that can be stored in
the cache. Also, the larger the number of replicas, the more
expensive it becomes to ensure their consistency.

Partial replication tries to overcome these disadvantages
by configuring the cache in such a way that each item
is replicated in a subset of nodes and no node stores all
the data. This paper studies the use of partial replication
techniques in the context of in-memory caches. Even though
partial replication has already been applied to distributed
databases [1], there are significant differences in the work-
loads imposed to both systems and on the kind of processing
related to the execution of transactions in both scenarios.
More specifically, database management systems have the
additional overheads of SQL parsing, synchronous storage,
etc., that are absent in distributed in-memory cache sys-
tems [2]. Consequently, the coordination costs associated
with partial replication in the context of in-memory caches
are amplified. Due to these reasons, several of the main-
stream in-memory cache platforms have opted for relaxing
consistency, ensuring weaker semantics than the classical
1-copy seriliazability [3] in order to allow more efficient
implementations.

In this paper we present two replication algorithms, en-
suring different weak consistency criteria, but both relying
on the usage of Total Order Multicast (TOM)[4] to en-
sure agreement on the transaction serialization order in a
genuine fashion [5], i.e. involving in the coordination for
a transaction 7' only the nodes responsible for storing a
copy of the data accessed by 7. The proposed solutions
are inspired by recent literature in the area of 1-copy
serializable partial replication schemes [5], which we adapt
in order to guarantee weaker consistency guarantees. Thanks



to their reliance on TOM, the proposed protocols avoid the
occurrence of distributed deadlocks, which represent the key
source of inefficiency in 2PC-based replication schemes [6].

We integrated the proposed weakly consistent partial
replication protocols into one of the mainstream open-
source distributed in-memory cache platforms, namely Red
Hat’s/JBoss’ Infinispan. Infinispan is a complex, weakly
consistent, in-memory transactional data grid that represents
the reference solution to support clustering of the well-
known JBoss AS (probably the most widely used Java
application server at the time of writing [7]).

We perform an experimental evaluation study in which we
compare the performance of the proposed partial replication
schemes with those built-in into Infinispan, which rely on
a classical Two Phase Commit (2PC) based replication
scheme. We consider both synthetic workloads, which allow
to assess the protocol performance in heterogeneous (and
clearly identifiable) scenarios, and industry standard bench-
marks for OLTP systems, namely the TPC-C benchmark [8].
Our experimental study highlights that the proposed TOM-
based schemes achieve striking speed-ups (up to 40x) with
respect to classic 2PC-based solutions in high contention
scenarios, while achieving very similar performance in pres-
ence of workloads with very limited contention.

The rest of the paper is organized as follows. Section II
briefly describes Infinispan and how it manages replication
and distribution. Section III presents the mechanisms of
partial replication developed to enhance Infinispan. In Sec-
tion IV the performance of the proposed system is evaluated.
Section V compares our solution with related work. Finally,
Section VI concludes this paper.

II. INFINISPAN

Infinispan [9] is a popular open source in-memory dis-
tributed transactional cache developed by JBoss, Red Hat.
Analogously to many other contemporary distributed cache
platforms, Infinispan externalizes a simple key/value store
interface (via the standard JSR-107 [10] JCache interface),
providing support for transactions and for two main opera-
tional modes: partial vs. full data replication (referred to as
distribution vs. replication modes in Infinispan), depending
on whether the data (i.e. key/value pairs) is replicated on
a subset or on the whole set of nodes in the data grid. As
already mentioned, in this paper we focus on the partial
replication mode.

In the partial replication mode, Infinispan relies on a
lightweight consistent hashing scheme [11] to partition data
across replicas, ensuring good load balancing (in terms
of number of keys hosted by each replica) and minimum
reshuffling of keys in presence of joins/departures of nodes
from the platform. Also, it supports replication of each key
across a fixed, user-tunable number of replicas, achieving
fault-tolerance without hampering scalability (unlike full
replication schemes).

Infinispan supports transactions in a weak-consistent
flavour, opting for more relaxed criteria than the classic 1-
copy serializability [3]. Specifically, Infinispan supports the
following (weaker) consistency criteria [12]:

¢ Read Committed (RC) which ensures that a transac-
tion can only read previously committed values.

« Repeatable Read (RR) which ensures that no two con-
secutive reads within the same transaction can return
different values.

+ Repeatable Read with Write Skew Check (RR+WS)
which, in addition to ensure that no two consecutive
reads within the same transaction can return different
values, checks also if the value of a key was changed
between a consecutive read and write operation of a
transaction (aborting, in such a case, the transaction).

The choice to support weak (i.e. non-serializable) con-
sistency criteria has had clearly an impact on the design
of both the local concurrency control mechanism, and on
the replica coordination protocol. More in detail, Infinispan
implements a lightweight, non-serializable variant of the
multi-version concurrency control algorithm which never
blocks or aborts a transaction during a read operation, and
relies on an encounter-time locking strategy to detect write-
write conflicts.

More in detail, for what concerns read operations, if the
RC consistency criterion is being used, Infinispan simply
returns the latest committed value. If, instead, RR is being
used, whenever a transaction issues a read on a data item,
it stores the returned value into its transactional context,
and returns it in subsequent read operations. It is important
to point out that the data is distributed, so read operations
may require contacting other nodes (even though Infinispan
tries to reduce the frequency of remote read operations by
adopting an additional, so called, L1 cache [9]).

Write operations, on the other hand, do not require
distributed interaction during transaction execution. Instead,
whenever a key/value pair is updated/inserted/deleted (sim-
ply referred to as write operation in the following), the
lock on the corresponding key is acquired locally during
the transaction execution phase. If the write skew check is
enabled (namely, the RR+WS consistency criteria are being
used), however, a further check is performed upon issuing
of a write operation: if the transaction had previously read
that key, and its value is found to be different after having
acquired the corresponding lock, the transaction is simply
aborted.

Since objects are distributed through several nodes, it
is necessary to guarantee that the updates made by a
transaction are applied atomically at all replicas or at none
of them. Infinispan achieves this by employing the classic
Two Phase Commit protocol [13] (2PC). During the first
phase of 2PC, the nodes attempt to remotely acquire the
locks on all the replicas that are responsible for storing the
data updated during the local execution of the transaction.
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Figure 1: Proposed Total Order Multicast-based Replication Algorithms.

Replica location is determined by a combination of the group
membership services provided by JGroups [14], along with
the consistent hashing mechanism mentioned above.

If the lock acquisition phase succeeds on all the contacted
replicas, the transaction originator finally sends a commit
message and commits locally. In presence of conflicting,
concurrent transactions, however, the lock acquisition phase
may fail due to the occurrence of distributed deadlocks. In
Infinispan deadlocks are detected using a simple timeout
based approach, which uses conservative values to minimize
the risk of false-positives (the default value is set to 10
seconds), and is coupled with an eager deadlock detection
algorithm that detects circular, direct lock waits between
two transactions (thus not detecting deadlocks due to chains
of more than two transactions in circular transitive wait);
Infinispan resolves the deadlock deterministically by abort-
ing one of the blocked transactions. If the lock acquisition
fails during the prepare phase, a negative vote is sent to the
coordinator, which, in turn, instructs all replicas to abort the
transaction.

III. TOM-BASED PARTIAL REPLICATION

As described in the previous section, Infinispan has al-
ready a built-in support for partial replication. Unfortunately,
the 2PC-based replication scheme used by Infinispan is
known to be prone to thrashing at non-minimal contention
levels [6] due to the occurrence of distributed deadlocks (as
it will also be shown in the following).

In this section we present two TOM-based partial repli-
cation algorithms. These algorithms ensure the same weak
consistency criteria currently supported by Infinispan, but,
not incurring in distributed deadlocks, they can sustain much
higher throughputs (committed transactions per second) es-
pecially in scenarios of moderate/high contention.

In the following, we first introduce the two TOM-based
replication algorithms, and then discuss two alternative
implementations of the TOM primitive, exhibiting a trade-
off between the number communication steps and message
complexity.

A. TOM-based partial replication schemes

Both the partial replication algorithms presented in this
paper rely on the same base principle: using TOM to achieve
agreement among all replicas whose keys have been updated
by a committing transaction 7' on T"s serialization order.

As in Infinispan’s baseline algorithm, in fact, transactions
execute locally (with the exception of remote read opera-
tions, which may require to fetch data from remote nodes)
until they enter their commit phase. At this stage, the entries
updated by transactions (along with their previous values,
in case of RR+WS consistency) are sent, using total order
multicast [4], to all the replicas that need to be updated.
This set of replicas is given by the union of the replicas
maintaining a copy of each of the objects modified by the
transaction and is, typically, only a subset of the number of
nodes that compose the system.

By relying on a TOM primitive to disseminate the above
messages, we can guarantee that if two replicas deliver two
updates, they do it in the exact same order. Therefore, if
the consistency criteria is either RC or RR, see Figure 1,
the replicas can immediately apply the updates in the order
in which they are delivered by the TOM primitive. This is
sufficient to guarantee that all replicas apply the updates
generated by all conflicting transactions in the same order,
and is achieved in our implementation by having a single
dedicated thread, which is awakened whenever a transaction
is TOM-delivered, and is in charge of performing the write-
back phase of both local and remote transactions.

On the other hand, see Figure 1, if the consistency crite-
rion in use is RR+WS, upon TOM-deliver of a transaction,
replicas need to perform the write-skew check in order to
determine the transaction’s outcome. This implies the need
for the replicas to undergo an extra voting phase, during
which each replica performs the write skew (on the keys
of which is responsible) and sends back the result to the
replica that executed the transaction. Before sending the
final commit/ abort message, the replica that executed the
transaction needs to wait until it is informed of the successful
outcome of the write-skew check of all the updated keys.



Note that, since all the replicas that are responsible for the
same set of keys certify the transaction deterministically and
in the same order, it is guaranteed that they all determine
the same outcome for the transaction. Therefore, in order to
commit a transaction, the transaction coordinator does not
need to wait for positive replies from all the nodes that it had
contacted via the TOM primitive, but only until it receives a
positive vote for each updated key from at least one of the
nodes over which the key is replicated. As in classic 2PC,
instead, the transaction is aborted as soon a negative vote
message is received.

B. Implementing Total Order Multicast

We now address the implementation of the Total Order
Multicast (TOM) primitive [4] used in the algorithms above.
Informally, the TOM primitive allows disseminating a mes-
sage m to a subgroup of the system nodes, denoted as m.dst,
while ensuring agreement on the (total) order of delivery of
messages in presence of i) concurrent TOMs triggered by
different senders, ii) possible overlaps among the recipient
sites of two TOMs, and iii) crashes of (a subset of) sites.

Formally, the TOM primitive guarantees the following
properties: (i) uniform integrity: for any site s and any mes-
sage m, s delivers m at most once, and only if s € m.dst;
(i) validity: if a correct site s issues a TOM for a message
m, then eventually all correct sites in m.dst delivers m;
(iii) uniform agreement: if site s delivers a message m, then
eventually all correct sites in m.dst deliver m; (iv) uniform
prefix order: for any two messages m and m’, and any two
sites s and ', such that {s,s'} C m.dest N m’.dest, if s
delivers m and s’ delivers m/, then either s delivers m/’
before m or s’ delivers m before m’; (v) uniform acyclic
order: the relation < is acyclic, where < is defined as
follows: m’ < m if and only if any process delivers m
and m/ in that order.

A simple way to achieve total order in messages to
different groups is simulating the multicast by sending all
messages in total order to all replicas (in other words, to
a single super-group, which is the union of all possible
sub-groups). Afterwards, the replicas which are not the
recipients of the messages discard them. This is clearly an
inefficient approach as if forces all replicas to participate in
all transactions.

In order to overcome this issue, we developed a selective
total order multicast protocol for JGroups, inspired by the
Skeen’s algorithm described in[15] and used in an early
version of the ISIS toolkit[4], which operates as follows
(see Figure 2b). Each machine has a logical clock that is
incremented when DATA or ORDER messages are received.
The ordered multicast starts when a DATA message is sent
to the group of replicas that participate in the transaction.
When this message is received, each replica increments
its logical clock, assigns the resulting timestamp to the
message, changes the message’s state to Pending and puts
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Figure 2: Total Order Multicast Algorithms

it in an ordered queue; the local order number is then sent
to the replica that originally sent the message. The sender
collects all the sequence numbers assigned by the other
replicas, determines their maximum value, and sends it back
to all replicas in an ORDER message. Upon receiving this
ORDER message, each replica updates the order number of
the corresponding message, changing the order in the queue
if necessary, marks the message as Final and updates its
own logical clock. Finally, messages are delivered to the
application when its state is marked as Final and they are
in the head of the queue (i.e., there are no messages marked
as Pending or Final with a lower timestamp).

We have also developed another version of the total
order multicast protocol in order to understand the trade
off of having less communication steps but exchanging
more messages in each round. Its mode of operation is
very similar to the first version, except that, upon delivery
of the DATA message, replicas send the ORDER message
(which piggybacks their logical clock value) to all the
replicas to which the message is being multicast. With
this decentralized approach, a replica can mark a message
as Final, as soon as it receives all the ORDER messages
corresponding to a given DATA message.



This version requires one less communication step to
complete the commit of a transaction, see Figure 2a. How-
ever, the number of point-to-point messages exchanged
between replicas increases quadratically with the number
of participating replicas. The next section compares the two
approaches, identifying the strengths and weaknesses of each
one.

IV. EVALUATION

This section presents the experimental evaluation of the
proposed algorithms implementing partial replication in in-
memory transactional distributed caches. This evaluation
is based on a prototype developed by extending the code
of Infinispan and JGroups to implement the algorithms
described above.

A. Experimental Settings

All tests were ran on a cluster with 10 machines, where
each machine is equipped with two 2.13 GHz Quad-Core
Intel(R) Xeon(R) E5506 processors and 16 GB of RAM,
running Linux 2.6.32-33-server and interconnected via a
private Gigabit Ethernet. We integrated the proposed TOM-
based replication solutions in Infinispan 5.0 and JGroups
2.12. In our experiments, we use a number of machines
varying between 4 and 10, and three distinct configurations
of Infinispan: the native configuration, based on the protocol
with deferred updates and coordination using two phase
commit, and the two versions of the configuration developed
by us, consisting of the algorithm based on genuine total
order multicast. The native configuration uses timers to
acquire locks, which expire after 10 seconds, and uses the
deadlock detection technique described in Section II to de-
tect deadlocks due to circular waits between two transactions
in a more timely fashion. In both configurations we used a
replication degree of 2, which means that each key is stored
in two machines. For what concerns JGroups, we configured
it to use UDP and IP multicast at the transport layer.

We used two different benchmarks to evaluate the system,
Radargun, a benchmark created by RedHat specifically for
this type of caches, and TPC-C[8], a more complex and
realistic benchmark.

With Radargun we can compare the performance of
several distributed caches (such as Infinispan, Ehcache [16],
Coherence [17], etc.), in different scenarios and, by imposing
a fairly high load on the different nodes of the system,
it allows us to assess the maximum throughput of each
configuration. This benchmark was adapted so that we could
define different workloads with different conflict rates (i.e.,
concurrent accesses to the same objects). This enables us to
gain more control over the experiments and easily establish
correlations between the conflict rate, deadlock situations
and throughput of the different configurations.

The workload used in these tests was the following. The
application executes as many transactions as possible for

a period of 5 minutes, using 8 threads in each machine
submitting concurrent transactions to the system. Each trans-
actions is composed of 10 operations. On average, 10%
of these operations are writes and there is always at least
one write operation per transaction. This way, there are no
read-only transactions in the workload, because they do not
require replica synchronization. To simulate low contention
scenarios, transactions access random objects from a set
of 100.000 keys and to simulate high contention scenarios,
transactions access random objects from a set of only 1.000
keys.

TPC-C is a benchmark that simulates a population of
terminal operators executing transactions against a trans-
actional data store. Transactions include entering and de-
livering orders, recording payments, checking the status of
orders, and monitoring the level of stock at the warehouses.
We adapted this benchmark so that only three types of
operations are performed during its execution: entering new
orders, querying the status of existing orders and entering
payments from customers. The configuration we used is the
following: one warehouse, 45% of payment transactions, 5%
of query transactions (which means there will be 95% read-
write transactions and only 5% of read only transactions)
and 8 threads executing transactions on each machine.

B. Results

In the following we present a comparative evaluation of
Infinispan’s native solution (labelled as ”2PC”) and the two
versions of our TOM implementation (labelled as "TOM-
2p” and "TOM-3p” for the 2 and 3 communication step
variants of total order multicast, respectively) using two
consistency models: Read Committed and Repeatable Read,
the latter with write skew anomaly detection enabled. The
three performance metrics used in the plots are: abort rate,
throughput of the system (committed transactions), and
commit latency (time to complete the commit phase).

1) Abort Rate: Figures 3a, 4a, 5a and 6a depict the abort
rate of the three algorithms in low and high contention
scenarios for both consistency models for Radargun. As
expected, for the TOM algorithms, the abort rate is virtually
non-existent, even for the RR+WS model. On the other
hand, the native algorithm needs to acquire locks in every
participating replicas, causing deadlocks (and consequently
transaction aborts) in case locks are acquired in different
orders at different replicas. This issue becomes more no-
ticeable as we increase the number of nodes in the system
and, finally, in high contention scenarios, where the abort
rate peaks at 3% for a system with 11 nodes.

Figures 7a and 8a depict the abort rate for TPC-C. This
benchmark induces a very high contention on a small subset
of data items. Specifically, each write transaction must
update one out of 10 existing instances of the, so called,
District entity. Let us analyze first the Read Committed
isolation level scenario. In this scenario, 2PC suffers from
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Figure 3: Radargun: Low Contention using Read Committed

an abort rate ranging from 30% to 45%, which is entirely
due to the occurrence of deadlocks. On the other hand, with
the same isolation level, the TOM-based solutions do not
suffer from any aborts.

When considering the Repeatable Read isolation level
with write skew detection, we observe that the 2PC and the
TOM-based solutions incurs on a very similar abort rate,
ranging from 40% to 70%. This depends on the fact that
TPC-C is very likely to generate read-write conflicts which,
in turn, cause the failure of the write-skew test. Note that

4 5 6 7 8 10
Number of Machines
TOM-2p —H— TOM-3p —%— 2PC —O—
(b) Throughput
T T T T T
1l
10 q
o
]
)
£
c
o
g
g
1 L L L L L
4 5 6 7 8 9 10
Number of Machines
TOM-2p —— TOM-3p —X%— 2PC —o—

(c) Average Latency
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with write skew detection

failure of the write-skew test represents the only abort cause
for the TOM-based solutions. With 2PC, instead, only 27%
of the transaction aborts are imputable to write-skew test
failures, with (distributed) deadlocks being by far the most
common cause of aborts.

2) Throughput: Figures 3b, 4b, 5b and 6b present the
effects of the abort rate on the throughput of the system
using the Radargun benchmark, measured as the number
of committed transactions per second. In low contention
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scenarios, which is the most favourable scenario for the
2PC protocol, 2PC, and TOM-2p have a similar through-
put. However, TOM-3p has the best throughput. This is
explainable by the fact that TOM-3p and 2PC have very
similar communication patterns, but, unlike 2PC, TOM-3p
does not incur in any deadlocks. The lower throughput for
the TOM-2p is due to the high number of messages, which
originate conflicts in the network and retransmissions, and
additional processing load at the JGroups level. In the high
contention scenario, however, 2PC’s throughput is severely
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with write skew detection

affected by the deadlocks, which results in our solutions
delivering around 40 times higher throughput.

Figures 7b and 8b depict the throughput of the system
using TPC-C. Due to the high contention generated by this
benchmark, also in these scenarios, the TOM-based solutions
achieve striking throughput gains with respect to 2PC, which
thrashes due to the frequent occurrence of deadlocks.

3) Latency: Figures 3c, 4c, 5c and 6¢ show the average
latency of the commit phase for Radargun.
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Figure 7: TPC-C: using Read Committed

With low contention, the performance of all algorithms
is similar, due to the very low abort rate. In high con-
tention scenarios, however, the commit phase latency for
2PC becomes up to 2 orders of magnitude higher than
for the TOM-based solutions. This is explained considering
that the commit latency includes also the time necessary
to detect deadlocks occurring during the commit phase,
and that these become very frequent at high contention
levels when using 2PC. The plots highlight also that the
latency for the TOM protocols is stable in both high and
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Figure 8: TPC-C: using Repeatable Read with write skew
detection

low contention scenarios, contrarily to what happens when
using 2PC, whose performance is very dependent on the
workload of the system. Analogous results are highlighted
by Figures 7c and 8c, which show the latency of the commit
phase for TPC-C. Also in this (high contention) scenario, the
commit phase latency is significantly lower for the TOM-
based protocols, being on average around one order of
magnitude shorter than in the case of 2PC.



C. Discussion

Based on the previous results we can conclude that
using TOM is beneficial in all the analysed scenarios. In
addition, it is clear that the performance of 2PC is extremely
dependent on the workload of the system; on the contrary,
the performance of TOM is fairly stable both in low and
high contention scenarios.

Interestingly, the TOM-3p solution outperforms the 2PC-
based replication scheme even in the most favourable set-
tings for 2PC, namely very low contention and RR+WS
consistency model. We recall that, in these settings TOM-3p
incurs in two additional communication steps with respect
to 2PC. Also, the deadlock probability is below 0.02% with
2PC (being zero of course for the deadlock-free TOM-based
solutions). Despite such a low deadlock probability, the large
penalty affecting 2PC upon the occurrence of deadlocks has
a non-negligible impact on 2PC performance, which result
around 20% lower than for TOM-3p.

For what concerns TOM-2p, its overall performance is
poorer than that of TOM-3p. Despite the fact that TOM-
3p incurs in an additional communication step latency with
respect to TOM-2p, our results highlight that the quadratic
message complexity of TOM-2p leads in practice (at least
in our experimental platform) to a detrimental effect on
performance of the Group Communication System, which
offsets the possible gains associated with the reduction in
the number of communication steps.

With Radargun, the difference between RC and RR+WS
consistency model is almost negligible. This is justified
by the fact this is a synthetic benchmark in which the
probability that the same key is read and written by the same
transaction is quite low. Hence, the write skew mechanism
is not activated frequently. However, in the TPC-C results it
is possible to see the effects of this mechanism.

V. RELATED WORK

This work results from the confluence of three different
but closely related lines of investigation, namely: distributed
in-memory cache systems, database replication techniques,
and distributed transactional memory systems.

Distributed in-memory caches have emerged as tools
to increase the performance of applications that require
frequent low latency access to large amounts of data. The
first proposed systems did not support transactions[18],
[19], but more recent approaches have incorporated them
in their architectures. Sinfonia[20] provides support for
transactions and replication, but assumes that transactions
are static, i.e., their read and write sets are known a
priori. TxCache [21] relies on a back-end database to handle
update transactions and ensures that read-only transactions
users observe a strongly consistent snapshot of the cache
(namely a consistent view of the system as of a specific
timestamp). Conversely, our solution is designed to ensure
weaker consistency criteria (read-committed with write-skew

check being the strictest supported consistency criterion) and
does not rely on any external transactional store to serialize
update transactions.

The area of database replication is very rich in algorithms
that ensure replica consistency in transactional environ-
ments. While most of these systems use full replication [22],
[23], our focus is on those supporting partial replication [1],
[24], [25]. P-Store,[5] is probably the solution that is closer
in spirit to the approaches proposed in this paper. Also P-
Store relies on a genuine algorithm, i.e., only the replicas
involved in a given transaction participate in the coordination
phase that ultimately leads to its commit or abort, and is
built on top of a totally ordered multicast primitive. How-
ever, since P-Store’s algorithm provides stronger consistency
guarantees, it also incurs in additional costs (e.g. always
requiring the certification of read-only transactions accessing
data hosted by remote replicas, the dissemination of the
whole transaction read-set during the commit phase, and a
voting phase to determine the outcome of update transactions
spanning multiple replica groups) when compared to the
solutions proposed in this paper, which exploit a set of
optimizations that are possible precisely because we target
more relaxed consistency models.

Finally, distributed transactional memory systems [2] ap-
peared as an extension to software transactional memory
systems [26] developed for multi-core machines. The vast
majority either does not consider fault-tolerance [27], [28],
or are fully replicated [29], [30], [31].

VI. CONCLUSION

In this paper we presented a solution for supporting partial
replication in distributed in-memory transactional caches.
The proposed solution is inspired by algorithms developed
in the context of database replication, and later adapted
to support weaker consistency models. The result consists
of a genuine partial replication algorithm (in which only
the replicas of the data updated during a given transaction
participate in its commit phase) which distributes the load of
the system among its nodes. This solution was implemented
in Infinispan and its performance was compared against
the native support offered by the platform. Unlike the
native solution, based on the two phase commit protocol,
ours prevents deadlocks. The performance evaluation shows
that the proposed solution, based on total order multicast,
achieves a throughput up to forty times higher than the
native one. As future work, we plan to extend our solution to
support a stricter consistency model, namely, Serializability.
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