
Reliability in Three-Tier Systems without Application
Server Coordination and Persistent Message Queues

Francesco Quaglia
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza"

quaglia@dis.uniroma1.it

Paolo Romano
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza"

paolo.romano@dis.uniroma1.it

ABSTRACT
When dealing with fault tolerance in three-tier systems, two
major problems need to be addressed, that is how to pre-
vent duplicate transaction executions when classical timeout
based retransmission logics are employed, and how to en-
sure the agreement among the back-end databases despite
failures (a transaction needs to be aborted or committed at
all the involved databases independently of the failure sce-
nario). In this paper we address these problems by propos-
ing a fault tolerant protocol that, unlike previous solutions,
(i) avoids the additional phase of storing the client request
into a persistent message queue and (ii) avoids explicit co-
ordination of middle tier application servers (during both
normal behavior and fail-over). Our protocol reduces there-
fore the overhead imposed on the end-to-end interaction,
thus improving user perceived responsiveness, and provides
better scalability.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—fault tolerance; H.2.4 [Information Systems]:
Database Management—distributed databases

General Terms
Performance, reliability

Keywords
Distributed protocols, transaction processing

1. INTRODUCTION
When dealing with fault tolerance in three-tier systems,

two major problems need to be addressed. The first one is
how to prevent duplicate transaction executions when clas-
sical timeout based retransmission logics are employed as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05 March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

simple and pragmatical approach to perform failure detec-
tion and activate fail-over. The second one is how to ensure
the agreement among the back-end databases despite fail-
ures, which means that a transaction needs to be aborted
or committed at all the involved databases independently of
the failure scenario.

A classical solution to address these problems [1] con-
sists in inserting the client request into a persistent message
queue before performing any other operation. The request
is then dequeued within the same distributed transaction
that manipulates application data and inserts the result of
the manipulation into the persistent message queue. Actu-
ally, the persistent queue is used as a filter to avoid multiple
updates of the back-end databases in case of client request
retransmissions (1). Also, agreement assurance among the
back-end databases relies on the additional mechanism of
making the transaction coordinator decision (commit/abort)
available at all the application server replicas before notify-
ing the decision itself to the databases (this allows applica-
tion servers to safely perform fail-over of each other, e.g., by
aborting a distributed transaction and then reprocessing the
corresponding request instance from the queue). The main
problem with this approach is that the additional interac-
tions between the application server and the queuing system
plus the need for having all the replicas aware of decisions
on distributed transactions, impose overhead that negatively
affects user perceived latency, especially in the case of ge-
ographical scale distribution of the application servers, like
in recent Web infrastructures offered by Akamai or Edgix
referred to as Application Delivery Networks (ADNs) (2).

More recent solutions proposed in [4, 5] are based on
primary-backup or asynchronous replication of the applica-
tion servers. With these approaches, an application server
needs to notify to the replicas (i) the client request identi-
fier, before performing any further operation, and (ii) the
decision on the distributed transaction, before sending it to

1This is because the attempt to insert the client request
multiple times into the persistent message queue fails either
because (i) a previously enqueued request with the same
identifier is found or because (ii) the transaction result as-
sociated with that same identifier is found.
2In this type of infrastructures, the queuing system is typi-
cally not replicated at the different application (edge) servers
to avoid the excessive overhead required to ensure the repli-
cas coherency. Hence interactions between the application
server and the queuing system, or among different appli-
cation servers to mutually notify commit/abort decisions,
being remote, are costly.

the databases (in the solution in [4], notification to the repli-
cas takes place through a so called write-once register, i.e.
a consensus-like abstraction). This is done in order to make
all the other application servers aware of the existence of the
request, or of the already established decision, so that: (a)
Any other request instance with the same identifier (pos-
sibly retransmitted by the client to whichever application
server), can be discarded. (b) It can be ensured that any
already established decision is not subverted, thus preserv-
ing the agreement among the databases. The main problem
with these solutions is that they require explicit coordination
among the replicas of the application server, which imposes
overhead and reduces system scalability.

In this paper we propose an innovative fault tolerant pro-
tocol that: (i) Does not make use of persistent message
queues, thus avoiding the additional interactions between
the application servers and the queuing system, which helps
reducing the user perceived latency. (ii) Does not prescribe
any form of explicit coordination among middle tier appli-
cation servers, which provides scalability and, hence, the
possibility to efficiently cope with highly replicated applica-
tion servers distributed on a geographical scale (e.g. like in
ADNs).

The key idea of our proposal is to store information con-
cerning the transaction processing state (ITP for short - In-
formation on Transaction Processing) across the distributed
database servers participating in the transaction. The ITP
is exploited by the replicated application servers to guaran-
tee that (a) no more than one update is performed on the
databases for each client request, despite possible retrans-
missions, and that (b) no two back-end database servers
disagree on the final outcome of a distributed transaction.
Actually, the idea of storing recovery information at the data
layer for reliability purposes has been already exploited in [3,
8]. However, the main difference with our approach is that
the proposals in [3, 8] consider the case of a single back-end
database server. Instead we address the more complex and
general case of transactions that are striped across multiple
database servers. Therefore we need to face the additional
problem of enforcing the agreement among multiple trans-
actional resources.

The remainder of the paper is structured as follows. In
Section 2 we present the three-tier system model we con-
sider. Section 3 is devoted to the description of our proto-
col. Finally, Section 4 presents a comparative performance
study of our protocol with other solutions.

2. SYSTEM MODEL
We consider a classical asynchronous distributed system,

in which processes can fail according to the crash-failure
model. Like in [3, 4, 5], we assume the system architecture
to adhere to the three-tier paradigm.

Application servers are stateless in the sense that they
do not maintain states across request invocations (3). Ap-

3There exist some solutions addressing reliability for the
case of stateful application servers, e.g. [7, 9]. These so-
lutions are not treated or discussed in detail in this paper
simply because they deal with a different kind of system or-
ganization. However, as pointed out in [4], having stateless
application servers is an important aspect of three-tier ap-
plications for the following main reasons: (i) Fail-over is fast
because we do not have to wait for a server to recover its
state. (ii) Stateless servers do not have host affinity (which

plication servers collect request messages from the clients
and drive updates over a set of distributed database servers
within the boundaries of a global transaction [2]. For pre-
sentation simplicity, but without loss of generality, we as-
sume that every transaction is executed over the same set
of database servers. Application servers have a primitive
compute, which embeds the transactional logic for the in-
teraction with the databases. This primitive is used to
model the application business logic while abstracting the
implementation details, such as SQL statements, needed
to perform the data manipulations requested by the client.
compute executes the updates on the databases inside a dis-
tributed transaction that is left uncommitted, therefore the
changes applied to data are not made permanent as long as
the databases do not decide positively on the outcome of
the transaction. The result value returned by the primitive
compute, which is assumed to be non-deterministic, repre-
sents the output of the execution of the transactional logic,
which must be communicated to the client.

Database servers in the back-end tier eventually recover
after a crash. A database server is viewed as a stateful, au-
tonomous resource that offers the XA interface [10]. This
interface provides transaction commitment functionalities
that we model through the xa prepare and xa decide prim-
itives. xa prepare takes a transaction identifier in input
and returns a value in the domain V ote = {yes, no}. A
yes vote implies that the database server is able to com-
mit the transaction (i.e. the transaction is pre-committed
at that database), whereas a no vote is returned when the
database server is unable to commit the transaction (i.e.
it is aborted at that database). The xa decide primitive
takes in input a transaction identifier and a decision in the
domain Decision={commit, abort} and returns a value in
the domain Outcome={commit, abort, unknown tid}. The
unknown tid value is an error code reported when an un-
known transaction identifier is passed in input, i.e. the
database server attempts to decide on an unknown trans-
action. (We recall that, according to the XA specification, a
database server is allowed to forget about a transaction iden-
tifier once the transaction is either committed or aborted.)
xa decide returns commit if the database server voted yes

for that transaction and commit is passed in input. Other-
wise the transaction is aborted and xa decide returns the
value abort.

Each database server stores some recovery information,
namely the ITP (Information on Transaction Processing),
which is used to determine the processing state of a given
transaction. The ITP consists of (i) an identifier associated
with the transaction, (ii) the transaction result (i.e. the
output of the compute primitive executed by the applica-
tion server), and (iii) a value identifying one of the following
states for the transaction: Prepared - the transaction has
been pre-committed at that database; Commit - the trans-
action has been committed at that database; Abort - the
transaction has been aborted, or needs to be aborted, at
that database.

The ITP is recorded and accessed through the primitives
insert, overwrite and lookup. insert takes three input
parameters, an identifier for the transaction, a value in the
domain {prepared, abort} and a result, and records them

means that we can freely migrate them), and do not have
client affinity (which means that a client can be easily redi-
rected to a different replica).

Class Client {
CircularList ASList={AS1,AS2,..,ASn}; ApplicationServer AS=AS1;

Result issue(Request req) {
Outcome outcome=abort; Identifier id; Result res;
while (outcome==abort) {

set a new value for id;
send[Request,req,id] to AS;
set TIMEOUT;
wait receive[Outcome,res,outcome,id] or TIMEOUT;
if (TIMEOUT) (res,outcome)=this.terminate(id);

} /* end while */
return res;

} /* end issue */

(Result,Outcome) terminate(Identifier id) {
while (true) {

AS=ASList.next();
send[Terminate,id] to AS;
set TIMEOUT;
wait receive[Outcome,res,outcome,id] or TIMEOUT;
if (received [Outcome,res,outcome,id]) return(res,outcome);

} /* end while */
} /* end terminate */

}

Figure 1: Client Behavior.

(i.e. inserts the corresponding tuple) within a database ta-
ble. This primitive is used to mark the state of the trans-
action within the ITP as prepared or abort. We assume the
transaction identifier to be a primary key for that database
table, therefore, any attempt to insert the previous tuple
within the database multiple times is rejected by the database
itself, which is able to notify the rejection event by rising
an exception. overwrite takes in input two parameters,
namely a transaction identifier, and a value in the domain
{commit, abort}, and is used to set the state maintained
by the ITP associated with that transaction to commit or
abort. Finally, the lookup primitive takes in input a single
parameter, namely a transaction identifier, and is used to
retrieve from the ITP the state and the result associated
with that transaction.

3. THE PROTOCOL
Client Behavior. Figure 1 shows the pseudo-code defin-

ing the client behavior. Within the method issue, the client
generates an identifier associated with the request and sends
the request to an application server, together with the iden-
tifier. It then waits for the reply, namely for an Outcome

message indicating the outcome of the transaction. In case
the outcome is commit, issue simply returns the result of
the transaction.

In case of timeout expiration after the transmission of the
request, the client invokes the terminate method, which at-
tempts to force the abort of the transaction associated with
that request. Within this method, the client keeps on re-
transmitting Terminate messages to the application servers
on the basis of a timeout mechanism, until an outcome is
returned via an Outcome message indicating that the trans-
action was either aborted or committed. If the outcome is
abort, the client chooses a new identifier and simply retrans-
mits the request.

Application Server Behavior. The application server be-
havior is shown in Figure 2. If a Request message arrives,
then compute is invoked to start the distributed transaction.
Next, the application server invokes the prepare method.
While executing this method, the application server sends
Prepare messages to every database server enlisted in the
transaction. These messages are periodically resent on the
basis of a timeout mechanism to all the database servers that
did not respond with a Vote message before the timeout ex-
piration (given that database servers eventually recover after

Class ApplicationServer {
List dbList={DB1, DB2, . . . , DBm};

void main() {
Result res=nil; Outcome outcome;
while (true) {
cobegin

‖ wait receive[Request,req,id] from client;
res=compute(req,id);
if (this.prepare(id,res)==abort)

{res=nil; outcome=abort; this.decide(id,abort);}
else {outcome=commit; this.decide(id,commit);}
send [Outcome,res,outcome,id] to client;

‖ wait receive[Terminate,id] from client;
(res,outcome)=this.resolve(id);
send[Outcome,res,outcome,id] to client;

} /* end while */
} /* end main */

(Result,Outcome) resolve(Identifier id) {
Boolean abortFlag=false; List receiveList=nil;
while (receiveList 6= dbList){
send[Resolve,id] to (dbList - receiveList);
set TIMEOUT;
repeat {
wait until ((receive [Status,id,status,result] from any DBi) or TIMEOUT);
if (received[Status,id,status,result] from DBi) {

receiveList = receiveList + {DBi};
if (status==abort) abortFlag = true;
}

} until (TIMEOUT or (receiveList == dbList));
} /* end while */
if (abortFlag == true) {this.decide(id,abort); return (nil,abort);}
this.decide(id,commit);
return (result,commit);
} /* end resolve */

Status prepare(Identifier id, Result result){
List receiveList=nil;
while (receiveList 6= dbList){
send [Prepare,id,result] to (dbList - receiveList);
set TIMEOUT;
repeat {
wait until ((receive [Vote,id,vote] from any DBi) or TIMEOUT);
if (received [Vote,id,vote] from DBi) receiveList=receiveList+{DBi};

} until (TIMEOUT or (receiveList == dbList));
} /* end while */
if received ([Vote,id,yes] from every DBi in dbList) return prepared;
else return abort;
} /* end prepare */

void decide(Identifier id, Outcome decision) {
List receiveList=nil;
while (receiveList 6= dbList){
send [Decide,id,decision] to (dbList - receiveList);
set TIMEOUT;
repeat {
wait until ((receive [Outcome,id,outcome] from any DBi) or TIMEOUT);
if (received[Outcome,id,outcome] from DBi) receiveList=receiveList+{DBi};

} until (TIMEOUT or (receiveList == dbList));
}/* end while */
} /* end decide */

}

Figure 2: Application Server Behavior.

a crash, they eventually reply to these messages). In case
an unanimous positive vote is collected (i.e. every database
server voted yes), a Decide message carrying a commit de-
cision is sent to all the database servers through the decide

method. If any no vote is received, the whole transaction
has to be aborted. In this case, Decide messages indicat-
ing the intention to abort the transaction are sent to the
database servers. To ensure the termination of the commit
protocol, Decide messages are retransmitted, again on the
basis of a timeout mechanism, until an Outcome message is
received from every database server (database servers even-
tually reply to Decide messages since, as recalled above, they
eventually recover after a crash). Once the interaction with
database servers is concluded, an Outcome message is sent
back to the client with the transaction outcome (commit or
abort) and the result.

Upon the receipt of a Terminate message possibly sent
by the client during fail-over, the application server invokes
the resolve method to determine the final outcome of a
given transaction possibly activated by a different applica-
tion server due to a Request message received from the client.
Within the resolve method, the application server collects
the state of the transaction logged by the ITP maintained

by every database server. Specifically, it sends Resolve mes-
sages to the database servers and waits for Status messages
from all of them. Also in this case we use a timeout based
retransmission logic. If every database server responds with
a Status message carrying either a prepared or a commit

value, the application server exploits the decide method to
commit the transaction on those sites where it is prepared,
but still uncommitted (e.g. due to crash of the application
server originally taking care of it). Otherwise, that same
method is used to abort the transaction at all the databases.
Finally, the transaction outcome and the result are sent to
the client.

Database Server Behavior. Figure 3 shows the behavior
of the database server. To help the reader we present the
pseudo-code first by introducing the main execution paths,
associated with the receipt of different type of messages.
Then we provide additional explanations.

Prepare message in input (A). In this case, the database
server invokes the xa prepare primitive in the attempt to
pre-commit the transaction. If this primitive returns yes,
the database server invokes the prepare method to insert
the ITP associated with the transaction, with prepared as
the state value. Then the vote is sent back to the application
server (through a Vote message).

Decide message in input (B). In this case, the database
server invokes the xa decide primitive to take a final de-
cision for the transaction. Then, through the overwrite

primitive, the state of the transaction maintained by the cor-
responding ITP is overwritten with the value commit/abort.
Afterwards, the Outcome message is sent back to the appli-
cation server.

Resolve message in input (C). In this case, the database
server invokes the try abort method attempting to insert
the ITP associated with the transaction, with abort as the
value for the transaction state. If the latter operation suc-
ceeds, the transaction is aborted through xa decide, and a
Status message is sent back to the application server with
the abort value for the state of the transaction. If the in-
sertion of the ITP fails (we recall that we have assumed the
transaction identifier to be a primary key - see Section 2 -
therefore at most one insertion of the ITP associated with
a given transaction can occur), it means that the database
already keeps the ITP associated with the transaction. In
this case, the transaction state maintained by the ITP is
retrieved through the lookup primitive, and is sent back to
the application server via a Status message.

There is a main point we have left pending while describ-
ing the execution path (A). Specifically, the attempt to in-
sert the ITP, with the prepared value for the transaction
state, might fail by raising a primary key exception. (As
said, the same might happen for the execution path (C)
when attempting to insert the ITP with an abort value for
the transaction state.) This is the mechanism we employ for
ensuring the agreement on the outcome of the distributed
transaction despite failures or suspect of failures. Specifi-
cally, given that:

1. A database server decides to commit a transaction, i.e.
receives a Decide message with the commit indication,
only if one application server has collected Vote mes-
sages with yes or Status messages with prepared (or
commit) from all the database servers. Note that this

Class DatabaseServer {
Result result; Status status; Outcome outcome;

void main(){
while (true) {
cobegin

‖ wait receive [Prepare,id,result] from application server;
if (xa prepare(id)==yes) vote=this.prepare(id,result); else vote=no;
send [Vote,id,vote] to application server;

‖ wait receive [Decide,id,decision] from application server;
outcome=xa decide(id,decision);
if(outcome==commit)

{send [Outcome,id,commit] to application server; overwrite(id,commit);}
if(outcome==abort)

{send [Outcome,id,abort] to application server; overwrite(id,abort);}
if(outcome==unknown tid)

{send [Outcome,id,decision] to application server; overwrite(id,decision);}
‖ wait receive [Resolve,id] from application server;

(status,result)=this.try abort(id);
send[Status,id,status,result] to application server;

} /* end while */
} /* end main */

Vote prepare(Identifier id, Result result) {
try {insert(id,prepared,result); return yes;}
catch (DuplicatePrimaryKeyException ex) {
if (lookup(id).status == abort) {xa decide(id,abort); return no;}
else return yes;

}
} /* end prepare */

(Status,Result) try abort(Identifier id){
try {insert(id,abort,nil); xa decide(id,abort); return (abort,nil);}
catch (DuplicatePrimaryKeyException ex) {return lookup(id);}
} /* end try abort */

}

Figure 3: Database Server Behavior.

implies that all the database servers have performed a
successful insertion of the ITP with the prepared value
for the transaction state.

2. A database server decides to abort a transaction, i.e.
receives a Decide message with the abort indication,
only if one application server has collected a Vote mes-
sage with no or a Status message with abort from at
least one database server. Note that this implies that
either (i) the insertion of the ITP with an abort value
is successful on at least one database, or (ii) the in-
sertion of the ITP with the prepared value for the
transaction state fails on at least one database, or is
not attempted at all due to the fact that xa prepare

returns no at that database.

then no two application servers (possibly performing fail-
over of each other), can take a different decision on the
outcome of a distributed transaction since the conditions
enabling the send of a Decide message with the commit or
abort indication are mutually exclusive. As a direct conse-
quence, if a database server is asked to decide commit or
abort for an unknown transaction (this is the case of the
unknown tid in path (B)), then it must have already taken
the same decision it is currently asked to take (4). Therefore,
it can simply send back to the application server a message
specifying, for that transaction, the same outcome the ap-
plication server has requested for, namely commit or abort.
Then, the database server possibly updates the correspond-
ing ITP to reflect that final outcome for the transaction.

Additionally, agreement on the outcome of a transaction
among the database servers cannot be violated due to Re-

solve messages employed during fail-over. Specifically, after
the insertion of the ITP with the prepared value in path (A),
the database server will reject any successive insertion of the
ITP, thus avoiding the abort of the transaction due to the re-
ceipt of Resolve messages activating the execution path (C).

4As pointed out in Section 2, the XA layer does not keep
track of identifiers of already committed/aborted transac-
tions.

Therefore, when a database server receives a Decide message
to commit a transaction (by point 1, this implies that all the
database servers have performed successful insertion of the
ITP with the prepared value for the transaction state) it is
sure that no database server will ever accept aborting that
transaction due to Resolve messages possibly sent by any
application server.

Our protocol avoids duplicate transactions since the client
resubmits a new request only after it has received the Out-

come message from an application server, carrying the abort

indication for the transaction associated with the last issued
request (otherwise it keeps on performing retransmission of
Terminate messages). On the other hand, the application
server returns to the client the Outcome message with the
abort indication only after each database server either al-
ready recorded an ITP with the abort state or voted no

for that transaction. As a consequence each time a new
request instance is sent by the client, no previous request
instance can give rise to a transaction that gets eventually
committed since after the abort state is logged within the
ITP, the database server rejects voting yes for that transac-
tion. The same happens in case the database server already
voted no since the xa prepare() primitive does not recog-
nize the transaction identifier.

Finally, to tackle failure situations in which pre-committed
transactions remain pending indefinitely (e.g. simultaneous
crash of both the client and the application server process-
ing the client request), an additional type of process can
be envisaged which periodically checks the presence of pre-
committed transactions and resolves them through a logic
similar to the one of the application server resolve method.
This would allow ensuring data availability by unlocking
data pre-committed by those transactions.

4. EVALUATION
In this section, we aim at quantitatively comparing the

performance of our protocol against existing solutions. We
carry out the comparison by providing simple, yet realistic,
models for the response time of each protocol, and studying
the output provided by the models while varying some sys-
tem parameters. We are interested in the case of no data
contention and light system load. This allows us to evalu-
ate the impact of each protocol on the response time more
accurately, since we avoid any interference due to overhead
factors not directly related to the distributed management
of transaction processing performed by the protocols them-
selves (e.g. the overhead caused by delay in the access to
data within the database due to contention). Finally, we
are interested in studying the case of normal behavior, i.e.
when no process crashes. This is because failure free runs
are the most likely to occur in practice, thus representing an
adequate test-bed for the evaluation of the real performance
effectiveness of any solution.

We compare our protocol with the following alternatives:
(1) The persistent queue (PQ) approach [1], whose behavior
is schematized in Figure 4.a. This approach performs the en-
queuing of the client request as the first action. Next, it uses
START and PRECOMMIT logs at the application server
to guarantee the agreement on the distributed transaction
outcome, despite failures. As already mentioned, this trans-
action also includes the enqueuing of the result of the data
manipulation performed during the compute phase. (2) The
primary-backup replication scheme (PBR) presented in [5]

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��� � � �� � � �

(a) (b) (c)

� �� �

� � � �� � � � 	 	 	 	 	 	

ack �� � ��
update
ITP��

��
��
��
��
��
��
�

� � � �� � � � � � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �

� � � � � � � � � �� � � � � � � � � �� � � � � � � � �� � � � � � � � �

����
� �� �� �� �

� � � � � � � � � �� � � � � � � � � ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! !
" " " " " " " "" " " " " " " "# # # # # # # ## # # # # # # #
$ $ $ $ $ $ $ $% % % % % % % %& && &' '' '

((((((((()))))))))
* * * * *+ + + +

, , , , , , ,- - - - - - -

. . . ./ / / /
0 0 0 0 0 0 0 01 1 1 1 1 1 1 12 2 2 2 2 2 23 3 3 3 3 3 3

44
4
55
5 6 6 6 6 67 7 7 7

8 8 8 8 8 89 9 9 9 9 9: :; ;< <=
> > > > > >> > > > > >? ? ? ? ? ?? ? ? ? ? ?
@ @ @ @ @ @A A A A A A

BB
BB
BB
BB
BB
BB
BB

CC
CC
CC
CC
CC
CC
CC

DD
DD
DD
DD
DD
DD
DD

EE
EE
EE
EE
EE
EE
EE

FF
FF
FF
FF
FF
FF
FF

GG
GG
GG
GG
GG
GG
GG

HH
HH
HH
HH
HH
HH
HH

II
II
II
II
II
II
II
I

JJ
JJ
JJ
JJ
JJ
JJ
JJ
JK K K KL L L

M M MN N N O O O O O O OP P P P P P P
Q Q Q Q Q Q QR R R R R R R

SS
S
TT
T

UU
UU
UU
UU
UU
UU
UU

VV
VV
VV
VV
VV
VV
V

WW
WW
WW
WW
WW
WW
W

XX
XX
XX
XX
XX
XX
XX
X

client AS

ack

compute

request enqueue

start log

ack

result enqueue

prepare
yes

commit

precommit log

ack

compute

prepare

coordination

yes

commit

insert
ITP

client DBsclientDBs ASASs

coordination

ack

commit

yes

prepare

compute
DBs

persistent
queue

Figure 4: Behavior of the Compared Protocols.

and the asynchronous replication scheme (AR) presented in
[4]. The behavior of both these protocols can be schematized
as shown in Figure 4.b, where the COORDINATION phase
represents either the activity of propagating recovery infor-
mation (i.e. the client request identifier and the transaction
result) from the primary application server to the backups,
this holds for PBR, or the activity of updating the consen-
sus object (i.e. the write-once register), this holds in case of
AR.

For completeness, we also show (see Figure 4.c) the schema-
tized behavior of our protocol, which performs (i) the in-
sertion of the ITP with prepared state value (this is done
before the database server sends out the Vote message) and
(ii) the update of the state maintained by the ITP to the
commit value (this is done after the database server sends
out the Outcome message to the application server, hence
not directly contributing to the end-to-end latency).

Response Time Models. Response times for the consid-
ered protocols, evaluated with no loss of generality at the
application server side, can be expressed as:

TPQ = Tbase + Tstart + Tprecommit + 2×RTTas/qs +

+ Treq−enqueue + Tres−enqueue (1)

TPBR = TAR = Tbase + 2× Tcoordination (2)

Tour protocol = Tbase + TITP insert (3)

where (a) RTTas/qs is the round trip time between an ap-
plication server and the queuing system used by PQ, (b)
Treq−enqueue (resp. Tres−enqueue) represents the time to en-
queue the client request (resp. the transaction result) within
that system and (c) Tbase is a common term for all the pro-
tocols expressed as:

Tbase = (TSQL +Txa prepare +Txa commit)+3×RTTas/db (4)

under the hypothesis that (i) the the back-end databases
have the same computational capacity, that (ii) the round
trip time between the application server and each back-end
database RTTas/db is equal for all the databases (5) and that
(iii) activation of functions in the XA interface and of the
SQL associated with the transaction needs a single message
exchange from the application server to each database server
and the corresponding acknowledgment (6).

Parameter Treatment. Some parameters appearing in the
latency models are left as independent variables in the per-
formance study. They are: (i) RTTas/db, dependent on the
5In case of heterogeneous databases and/or different round
trip times with the application server, the expressions we
propose are still representative when considering the max-
imum value, across all the databases, for the terms they
contain.
6We model the case of transactional logic activated via a sin-
gle message, e.g. like in stored procedures. This is done in
order to avoid the introduction of an arbitrary delay in the
response time models caused by an arbitrary number of mes-
sage exchanges between application and database servers.

Table 1: Measured Parameter Values (Expressed in msec).
common parameters PQ our protocol

TSQL Txa prepare T
xa decide

T
start

T
precommit

T
req−enqueue

T
res−enqueue

T
IT P insert

T
IT P update

186.78 6.07 9.99 1.66 0.44 20.30 0.77 20.30 0.81

relative locations of application servers and database servers,
(ii) RTTas/qs, dependent on the relative locations of appli-
cation servers and the persistent queuing system, and (iii)
Tcoordination, dependent on the specific algorithm selected
for either the management of the update of backup appli-
cation servers in PBR, or the management of the consensus
object (i.e. the write-once register) in AR, and also on the
communication speed among application server replicas.

Other parameters have been measured through prototype
implementations of PQ and our protocol, relying on DB2
V8.1 and LINUX (kernel version 2.4.21). The prototype of
PQ performs START and PRECOMMIT logs via operations
on the file system, as in the approach commonly used by
transaction monitors [2]. Also, as typically found in indus-
trial environment, persistent message storing is supported
through a database system, namely DB2 in our case. For
what concerns our protocol, we have developed a prototype
that maintains the ITP on a user level table managed via
local transactions on DB2. In order to use a representative
value for TSQL in the comparative study, we have also im-
plemented the New-Order-Transaction profile of the TPC
BENCHMARKTM C [11], and measured the latency for the
related SQL operations. Table 1 lists obtained measures
for the case of application server and database server both
hosted by a Pentium IV 2.66GHz with 512GB RAM and
a single UDMA100 disk. Each reported value, expressed
in msec, is the average over a number of samples that en-
sures confidence interval of 10% around the mean at the 95%
confidence level. As we are interested in the case of no data
contention and light system load, all the measures have been
taken for the case of requests submitted one at a time.

Comparison. While comparing the protocols we have set
Tcoordination = RTTas/qs = RTTas/db (7) and have varied
the value of these parameters between 10 and 250 msec. This
allows capturing different system settings for what concerns
the communication speed among processes, ranging from
configurations such as LANs or WANs with low/controlled
message delivery latency, to geographical infrastructures de-
ployed on public networks over the Internet, exhibiting higher
communication delay.

If the round trip time among processes remains below 25
msecs, the latency for the considered protocols is nearly the
same. On the other hand, as soon as that round trip time
increases, the performance gap between our protocol and
the other solutions rapidly grows. As an extreme, when the
round trip time reaches 250 msec, the solutions in [1, 4, 5]
exhibit response times about 50% higher than our protocol.
This outlines the effectiveness of our proposal for generic
system settings.

7In absence of faults, a round of messages is the lower bound
on the message complexity required for transmission and ac-
knowledgement of recovery information between the primary
and the backup in the PBR solution, and for achieving con-
sensus [6], i.e. for the management of the consensus object
in AR. Hence, in normal behavior, the coordination latency
can be modeled as a round trip delay.

0

200

400

600

800

1000

1200

1400

1600

10 25 50 75 100 150 200 250

Tcoordination=RTTas/qs=RTTas/db (msec)

La
te

n
c

y
 (

m
se

c
)

Our Protocol

PQ

PBR & AR

Figure 5: Protocol Latencies.

5. REFERENCES
[1] P. A. Bernstein, M. Hsu, and B. Mann. Implementing

recoverable requests using queues. In Proc. of the 19th
ACM Int. Conference on the Management of Data
(SIGMOD), pages 101–112, May 1990.

[2] P. A. Bernstein and E. Newcomer. Principles of
Transaction Processing. Morgan Kaufmann, San
Francisco, 1997.

[3] S. Frølund and R. Guerraoui. A pragmatic
implementation of e-transactions. In Proc. of the 19th
IEEE Symposium on Reliable Distributed Systems
(SRDS), pages 186–195. IEEE Computer Society
Press, 2000.

[4] S. Frølund and R. Guerraoui. Implementing
E-transactions with asynchronous replication. IEEE
Transactions on Parallel and Distributed Systems,
12(2):133–146, feb 2001.

[5] S. Frølund and R. Guerraoui. e-Transactions:
End-to-end reliability for three-tier architectures.
IEEE Transaction on Software Engineering,
28(4):378–395, 2002.

[6] I. Keidar and S. Rajsbaum. On the cost of
fault-tolerant consensus when there are no faults.
SIGACT News, 32(2):45–63, 2001.

[7] M. Little and S. Shrivastava. Integrating the object
transaction service with the Web. In Proc. of the 2nd
Int. Workshop on Enterprise Distributed Object
Computing (EDOC), pages 194–205. IEEE Computer
Society Press, 1998.

[8] P. Romano, F. Quaglia, and B. Ciciani. Ensuring
e-Transaction through a lightweight protocol for
centralized back-end database. In Proc. of the 2nd Int.
Symposium on Parallel and Distributed Processing and
Applications (ISPA), pages 903–913. LNCS,
Springer-Verlang, 2004.

[9] G. Shegalov, G. Weikum, R. Barga, and D. Lomet.
EOS: Exactly-Once E-Service middleware. In Proc. of
the 28th Conference on Very Large Databases
(VLDB), pages 1043–1046. Morgan Kaufmann, 2002.

[10] The Open Group. Distributed TP: The XA+
Specification Version 2. 1994.

[11] Transaction Processing Performance Council. TPC
Benchmark C, Standard Specification, Revision 5.1.
2002.

