
Design and Evaluation of a Parallel Edge Server Invocation Protocol
for Transactional Applications over the Web

Paolo Romano, Francesco Quaglia and Bruno Ciciani
DIS, Università di Roma “La Sapienza”

Abstract
Parallel invocation of edge servers within a Web infras-

tructure has been shown to provide benefits, in terms of
system responsiveness, for both content delivery applica-
tions and non-transactional Web services. This is achieved
thanks to the exploitation of path-diversity proper of multi-
hop networks over the Internet, which typically reduces the
likelihood of client perceived link congestion. In this work
we address parallel invocation of geographically spread
edge servers in the context of transactional Web-based ap-
plications. Actually, parallel invocation protocols are not
trivial for this type of applications, since we need to deal
with a set of issues not present in classical content deliv-
ery applications, such as (i) non-idempotent business logic
and (ii) increase of the workload on the data centers. In
this paper we propose a simple and lightweight parallel in-
vocation protocol for distributed transactions over the Web,
which addresses all those issues in a scalable manner by
requiring no form of coordination among (geographically
spread) edge servers. The results of a simulation study are
also reported to show the advantages from our protocol in
terms of user-perceived system responsiveness.

1 Target System Architecture
The architecture of our target system consists of a set of

edge servers and of a set of autonomous back-end data cen-
ters, maintaining different data sets. The edge servers host
the business logic for executing transactions against the data
centers, which are responsible for guaranteeing the avail-
ability and consistency of the application data. End-users
access the transactional logic residing at some edge server
through a client application (e.g. an applet running in a
browser), which interacts with the edge servers via the Inter-
net. The processing of the client request at the edge server
consists in the execution of a distributed transaction against
the data centers, and in the computation of a response mes-
sage (e.g. an HTML file) to be delivered to the client itself.

The execution of the distributed transaction can bee seen
as composed of the following two phases:

Connection Establishment. During this phase an edge
server contacts the data centers in order to set up a fresh
transactional context for the execution of the subsequent
data manipulation statements. We will model this phase
through a round trip exchange of the pair of Connec-
tion/ConnectionACK messages between an edge server
and a data center.

Transactional Business Logic Execution. We abstract
over the details of the transactional logic (e.g. SQL state-
ments) which are obviously application dependent. Any-
way, we assume that the business logic executed by the edge
server consists of a distributed transaction requiring a single
or multiple interactions with the data centers.

2 The Protocol
2.1 Data Center Behavior

Figure 1 shows the pseudo-code describing the behav-
ior of a data center during the connection establishment
phase (the business logic execution is not explicitly de-
scribed since it straightforwardly complies with, e.g., con-
ventional DBMS technology). As stated, to establish a con-
nection with a data center, an edge server sends out a Con-
nection message and waits for a ConnectionACK. We as-
sume Connection messages are tagged with the following
information: (i) The identifier ConnectingES of the edge
server requesting connection establishment; (ii) The iden-
tifier ClientID of the client for which ConnectingES
is currently asking connection establishment; (iii) The list
ESlist of edge servers contacted in parallel by the client
for this same request. With no loss of generality, we assume
this list is formed by a set of distinct values, among which
an ordering relation (e.g. alphabetical ordering) exists.

The data center associates all Connection messages
tagged with the same ClientID value with a list, which we
refer to as Connection List for a given client identifier. In
the following, we will use the notation CLClientID to refer
to this data structure. Each entry in CLClientID maintains
the identifier of one of the edge servers in ESlist. This list
(i.e. its current value) is returned from the data center to the
edge servers requesting connection establishment. Specifi-
cally, it is piggybacked on ConnectionACK messages.

By the pseudo-code in Figure 1, upon the receipt of a
Connection message tagged with a given client identifier
ClientID, the data center waits for incoming Connec-
tion messages with that same client identifier over a short
timeout period (on the order of few tens of milliseconds).
Afterwards, for all the received Connection messages, the
corresponding edge server identifiers are inserted into the
CLClientID list, and then ConnectionACK messages are
sent back to all those edge servers from which connection
establishment requests have been already received within
that timeout period.

1. wait for a Connection message with given ClientID value;
2. set short timeout and wait for other Connection messages

with the same ClientID value;
3. upon timeout expiration:
4. for each received Connection[ConnectingES,ClientID,ESlist] message:

insert the identifier ConnectingES into CLClientID ;
5. reply with ConnectionACK[CLClientID] to

all the already connecting edge servers for that ClientID;
6. while (not received Connection[ConnectingES,ClientID,ESlist] message

from all edge servers in ESlist):
7. wait for a Connection[ConnectingES,ClientID,ESlist] message;
8. if (ConnectingES is greater than the maximum edge server identifier

already in the CLClientID list)
insert the identifier ConnectingES into CLClientID ;

9. reply with ConnectionACK[CLClientID] to ConnectingES;

Figure 1. Data Center Behavior.

It is possible that, within the short timeout period, Con-
nection establishment messages did not come in at the data
center from all the edge servers in ESlist (recall this is the
list of all the edge servers contacted in parallel by the client).
This depends on the current system conditions, which im-
pact both the communication delay between the client and
those edge servers, and the communication delay between
each of those servers and the back-end data center. In case
Connection messages with that same ClientID arrive at
the data center after the timeout has expired, the data center
behaves as follows. It inserts the identifier of the connect-
ing edge server into the CLClientID list only in case the
identifier is greater than the maximum edge server identifier
already stored within that list. Independently of the inser-
tion of that additional entry, the CLClientID list is returned
to the edge server currently requesting connection via the
ConnectionACK message. There are three main observa-
tions we would like to bring to the reader’s attention:

Observation 1. After the statement in line 4 is executed,
the minimum edge server identifier, say MinEdgeServer,
recorded within any entry of the CLClientID list remains
unchanged over time. Hence, given that any Connec-
tionACK message is ever sent out by the data center only
starting from line 5, all ConnectionACK messages ever
sent out for a given client identifier piggyback a connection
list CLClientID with the same MinEdgeServer value.

Observation 2. The edge server with the maximum iden-
tifier in ESlist eventually has a corresponding entry within
CLClientID . In other words, the identifier of that edge
server will eventually be inserted into the CLClientID list
independently of the arrival time (within or outside the short
timeout interval) of the Connection message from that
edge server.

Observation 3. The identifier of any edge server in
ESlist for which the Connection message is delivered at
the data center within the short timeout interval, is certainly
recorded within the CLClientID list. We note that in case
a Connection message from a given edge server is deliv-
ered at the data center within that interval (or even triggers
the timeout interval, being it the first Connection message
for a given client identifier), it means that this edge server is
among those edge servers in ESlist that, depending on cur-
rent network conditions, more timely than others are both

1. ESlist = {ES1, . . . , ESn};
2. ResultType Res;
3. RequestType Req
4. ClientIdentifier ClientID;
5. set a unique value for ClientID;
6. set the content of Req;
7. send Request[ClientID,Req,ESlist] to each edge server in ESlist;
8. wait for a Response[Res] message from any edge server in ESlist;
9. return Res to the client application;

Figure 2. Client Behavior.

1. DataCenterList DClist;
2. ResultType Res;
3. EdgeServerIdentifier ConnectingES;
4. wait for a Request[ClientID,Req,ESlist] message from client;
5. set ConnectingES = GetMyID();
6. determine from Req the list of data centers DClist involved in the request;
7. send Connection[ConnectingES,ClientID,ESlist] to all DCi∈DClist;
8. wait for ConnectionACK[CLi

ClientID
] from all DCi ∈ DClist;

9. if (ConnectingES is included in all the returned CLi

ClientID
lists) AND

(ConnectingES is equal to the maximum value in the set of
MinEdgeServer values across all the returned CLi

ClientID
lists)

10. execute the business logic associated with Req and compute Res;
11. send Response[Res] to client;

Figure 3. Edge Server Behavior.

reached by the client request and, in turn, reach that data
center. Hence this edge server is a good candidate for sup-
porting the whole end-to-end interaction from the point of
view of that data center.

2.2 Client Behavior
We show in Figure 2 the pseudo-code for the client be-

havior. It is quite simple since the client itself only needs
to send Request messages in parallel to the set of edge
servers in the list ESlist, tagged with the client identifier
ClientID, and the request content Req (we abstract over
the transport layer connection phase between the client and
the edge servers, typical of standard Web-oriented interac-
tions, through the use of message passing as the communi-
cation model). After having transmitted its request in paral-
lel to the selected edge servers, the client waits for a reply
from one of them.

For the sake of simplicity, we have illustrated the client
behavior for the case of short lived Web-based interac-
tions with application data in the back-end layer, i.e. the
case of interactions completed through a single pair of re-
quest/reply messages at the client side. Extension to the
case of long lived interactions with data in the back-end
layer (e.g. sessions) is however immediate since the the
client might keep sending requests within the long lived in-
teraction to the only edge server that provided the reply to
its first request message. As we will show, this is one edge
server that revealed highly responsive during the early phase
of the long lived interaction (i.e. the connection phase to-
wards back-end data centers).

2.3 Edge Server Behavior
Figure 3 shows the pseudo-code for the edge server be-

havior. Upon the receipt of a client request, the edge
server sends to each of the involved data centers a Con-
nection message tagged with its identifier, the client identi-
fier, and the list of edge servers contacted in parallel by the

client. It then waits for ConnectionACK messages from
all the data centers. Each ConnectionACK message from
the data center DCi piggybacks the connection list asso-
ciated by that data center with that client identifier. We
have denoted as CLi

ClientID the list piggybacked by the
ConnectionACK message from DCi. After having col-
lected ConnectionACK messages from all the data cen-
ters, the edge server determines whether to start processing
the client request or not. At this end, it checks (see line 9
of the pseudo-code in Figure 3) whether: (A) Its identifier
is within CLi

ClientID lists returned from all the contacted
DCi; and (B) Its identifier is equal to the maximum value
across the set of MinEdgeServer elements over all those
lists. If both conditions in points A and B are verified, the
edge server starts the execution of the distributed transac-
tion on the back-end data centers, computes the result mes-
sage and sends this message back to the client. Otherwise,
the edge server simply terminates (with implicit disconnec-
tion from the data centers).

By Observation 1 in Section 2.1, the minimum val-
ues maintained by CLClientID lists at the back-end data
centers does not vary over time. Hence, no two different
edge servers will both find the condition in point B verified.
Therefore, no two different edge servers will both proceed
processing the distributed transaction on the back-end data
centers. This ensures at-most-once semantic for the pro-
cessing of the client request, and also limits the additional
load on the edge servers and on the data centers even in
the presence of parallel invocations from the client (this is
because additional tasks due to parallel invocations are re-
stricted only to the connection establishment phase).

By Observation 2 in Section 2.1, there is at least one
edge server (i.e. the one with the maximum identifier in
ESlist) for which its identifier is eventually inserted within
whichever CLClientID list. Hence there is at least one ap-
plication server for which the conditions in point A and B
are eventually verified. This ensures at-least-once semantic
for the processing of the client request. Hence, we avoid
at all the problem of multiple updates at the back-end data
centers due to non idempotent transactional logic.

By Observation 3 in Section 2.1, if the identifier of an
edge server is recorded within whichever CLClientID list
returned by the data centers, then it highly likely means that
the edge server is a good candidate for supporting the whole
end-to-end interaction towards all the back-end data centers.
Our protocol captures this aspect since, for that edge server,
condition in point A is verified. Among all those good can-
didates, the one which is allowed by our protocol to proceed
with transaction processing is the only one for which con-
dition B is verified together with condition A.

With respect to the previous point, we also note that, ac-
cording to our protocol structure, an edge server quickly
reached by the client request, which is also highly respon-
sive towards a subset of data centers, but which is not re-
sponsive towards the remaining data centers, highly likely
is not considered as a good candidate for the processing of
the client request (since condition A highly likely does not
hold for that edge server). Hence, our protocol addresses the

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 1000 1500 2000 2500

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
Fu

nc
tio

n

Browser Perceived Response Time (msec)

parallel invocation (0.9 path disjointness ratio)
parallel invocation (0.5 path disjointness ratio)
parallel invocation (0.2 path disjointness ratio)

baseline

Figure 4. Response Times Distribution.

issue of avoiding situations of large variance in the commu-
nication delay towards different data centers, which might
impact the user-perceived system responsiveness.

3 Related Work
Recent works that are close to our approach exploit the

intrinsic diversity of large scale geographically distributed
overlay infrastructures for content delivery, e.g. [5, 15, 4].
The main difference with our proposal is that we deal with
transactional applications.

In [10], various strategies for the invocation of non-
transactional replicated Web-Services were empirically
evaluated and it was found out that parallel invocations
have the potential for reducing the user perceived response
time. One strategy evaluated in [10] is based on the idea
of contacting only the more responsive among the avail-
able servers. This solution was shown to perform better
than pure parallel invocation in case the response message
is large with respect to the available bandwidth at the client.
Our proposal intrinsically provides the same advantages
since only one response message is returned to the client
(i.e. the one from the edge server that really executes the
whole transactional logic), hence not requiring large band-
width at the client to reveal effective (1). Furthermore, let-
ting the client to choose the more responsive server requires
periodic network probing, which is avoided in our approach.

Our proposal is also related to a number of results in the
field of leader election (see, e.g., [14]). Specifically, based
on the management of Connection Lists, our parallel edge
server invocation protocol determines a single edge server
(the leader), among the ones contacted by the client, which
is responsible for processing the distributed transaction on
the back-end data centers. The innovative contribution of
our protocol, compared to existing leader election proto-
cols, is that none of them uses the responsiveness of the
connection to a distributed set of data centers as the elec-
tion criterion.

To our knowledge, there are only two protocols that ad-
dress parallel invocation of transactional Web applications
[11, 12]. Compared to the present proposal, the work in

1In transactional Web-based applications, request messages are signif-
icantly smaller than responses. Hence the large part of bandwidth con-
sumption at the client is related to the response message coming from the
edge server.

[11] addresses the limited and simple case of single back-
end data center, hence not allowing parallel invocation for,
e.g., e-Commerce applications involving multiple business
parties, each represented by a different data center. The so-
lution in [12] can cope with the case of multiple back-end
data centers. However, differently form the present pro-
posal, it does not address the case of non-minimal variance
for the communication delay between the edge server and
the whole set of back-end data centers. In fact, in that so-
lution, the edge server eventually taking care of transaction
processing might be responsive towards some data centers,
but non-responsive towards others. The present proposal
avoids this problem, and it is therefore suited for a wider
range of system settings, including very large infrastruc-
tures possibly built over both private and public networks.

4 Simulation Evaluation
Simulation Model. In order to use realistic values while
simulating network latencies perceived by the hosts partic-
ipating in our protocol, under both normal and congested
situations, we choose to employ empirical distributions of
TCP round trip times (RTTs) that were found out in a num-
ber of recent works [1, 9, 2]. For space constraint we only
report the plots obtained using the data in [2]. The num-
ber of paths that is expected to maximize the benefits from
a parallel invocation protocol leveraging path-diversity has
been shown to be on the order of two [3, 4]. Hence we fo-
cus in the simulation study on the case of two edge servers
contacted in parallel by the client. Also, according to the
results in [4], the two paths from an end-point to different
edge servers are modeled as having a symmetrical disjoint-
ness ratio, defined as Ndisjoint/p (where Ndisjoint is the
disjoint path length and p is the total path length), which
ranges from 0.2 to 0.9.

Since the previous studies on both RTT distributions and
network paths disjointness mostly deal with a “client ori-
ented” perspective, we have decided not to use the related
results in the simulation study for what concerns the net-
work model in between the edge servers and the back-end
data centers. Hence, we have taken the stance of simulat-
ing the case of a Web infrastructure with edge servers con-
nected to the data centers through a communication network
providing relatively low/controlled latency, e.g., a (private)
dedicated WAN under the control of the ASP owning the
infrastructure. Such a latency has been selected according
to [7], and is on the order of 100 msecs average RTT.

For what concerns the transactional workload model, we
rely on the so called “shopping workload”, namely the ref-
erence transaction profile specified by TPC-W [13]. By the
characterization of TPC-W performed in [8], the database
page reference pattern for such a workload exhibits 96.6%
of page references in read only mode, and 3.4% of page ref-
erences in write mode. For what concerns the size of the
data set maintained at each data center and other system
settings, we again exploit the study in [8], where a global
data set size of about 20 GB has been presented as a reason-
able value for typical e-Commerce applications. For this
data set size, the characterization of the shopping transac-

tion profile presented in [8] shows an average number of 35
referenced pages for each interaction. Resource consump-
tion at the data centers are explicitly simulated on the basis
of the benchmarking results obtained in [8] while employ-
ing an IBM eServer xSeries 255 machine. We explicitly
model also the costs for the manipulation of the Connection
Lists, with the hypothesis that such a manipulation is per-
formed according to ACID semantic (hence requiring eager
disk accesses for updates), so to be able to recover from,
e.g., volatile memory losses at the data center side. We con-
sider a whole Web infrastructure consisting of three back-
end data centers and twenty edge servers. Also, we consider
the scenario in which the edge servers do not perform data
caching, hence in our simulation study we have decided not
to explicitly model resource consumption at the edge server
side.

Simulation Results. We report in Figure 4 the distribu-
tion of browser perceived response times while varying the
disjointness ratio between network paths from 0.2, to 0.5
and then to 0.9, and once fixed the timeout period at the
data center for the receipt of connection messages from dif-
ferent edge servers for a same client to the value of 100
msecs (i.e. a value comparable with the expected RTT be-
tween edge servers and data centers). Each reported value
is the average over a number of samples that ensures a con-
fidence interval of 10% around the mean at the 95% confi-
dence level. By the plot, we get that with path disjointness
on the order of 0.5 and 0.9, our parallel invocation proto-
col achieves browser perceived response times less than 1.5
seconds in at least the 90% of the cases. This is not achieved
by the baseline (i.e. no parallel invocation), which, at best,
provides browser perceived response time lower than 1.5
seconds in at most the 75-80% of the cases. On the other
hand, our protocol performs in practice like the baseline
only for the extremely reduced path disjointness value of
0.2. Overall, compared to the baseline, our parallel invoca-
tion protocol exhibits real ability to provide higher system
responsiveness as soon as there is non-minimal disjointness
of network paths towards the contacted servers.

References
[1] J. Aikat, J. Kaur, F. Donelson Smith and K. Jeffay, “Variability in TCP round-trip times”, Proc. of Internet

Measurement Conference, pp.279-284, 2003.

[2] M. Allman, “A Web Server’s View of the Transport Layer”, ACM Computer Communication Review, vol.30,
no.5, pp.10-20, 2000.

[3] J. Apostolopoulos and M.D. Trott, “Path diversity for enhanced media streaming”, IEEE Communications
Magazine, vol.42, no.8, pp.80-87, 2004.

[4] J. Apostolopoulos, T. Wong, W. Tan and S. Wee, “On Multiple Description Streaming with Content Delivery
Networks”, Proc. of IEEE INFOCOM, pp.23-37, 2002.

[5] R.L. Collins and J.S. Plank, ”Downloading Replicated, Wide-Area Files - A Framework and Empirical
Evaluation”, Proc. of IEEE NCA, pp.89-96, 2004.

[6] K. Johnson, J. Carr, M. Day and M. Kaashoek, “The Measured Performance of Content Distribution Net-
works”, Proc. of Web Caching and Content Delivery Workshop, pp.202-206, 2000.

[7] “Internet Traffic Report”, http://www.internettrafficreport.com

[8] F. Liu, Y. Zhao, W. Wang and D.J. Makaroff, “Database Server Workload Characterization in an E-
Commerce Environment”, Proc. of IEEE MASCOTS, pp.475-483, 2004.

[9] H. Jiang and C. Dovrolis, “Passive estimation of TCP round-trip times”, ACM Computer Communication
Review, vol.32, no.3, pp.75-88, 2002.

[10] N. C. Mendona and J. A. F. Silva,“An Empirical Evaluation of Client-side Server Selection Policies for
Accessing Replicated Web Services”, Proceedings of ACM SAC, pp.1704-1708, 2005.

[11] P. Romano, F. Quaglia and B. Ciciani, “A Protocol for Improved User Perceived QoS in Web Transactional
Applications”, Proc. of IEEE NCA, pp.69-76, 2004.

[12] P. Romano and F. Quaglia, “A Path-Diversity Protocol for the Invocation of Distributed Transactions over
the Web”, Proc. of IEEE ICNS, 2005.

[13] Transaction Processing Performance Council, “TPC Benchmark T M W”, http://www.tpc.org/tpcw, 2002.
[14] D. Peleg, “Time Optimal Leader Election in General Networks” Journal of Parallel and Distributed Com-

puting, vol.8, no.1, pp.96-99, 1990.
[15] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin and H. Levy, “On the Scale and Performance of

Cooperative Web Proxy Caching”, Proc. of ACM SOSP, pp.16-31, 1999.

