
Brief Announcement: On Speculative
Replication of Transactional Systems∗

Paolo Romano

INESC-ID
Lisbon, Portugal

romano@gsd.inesc-id.pt

Roberto Palmieri,
Francesco Quaglia

Sapienza Rome University
Rome Italy

palmieri@dis.uniroma1.it,
quaglia@dis.uniroma1.it

Nuno Carvalho,
Luís Rodrigues

INESC-ID/IST
Lisbon, Portugal

nonius@gsd.inesc-id.pt,
ler@ist.utl.pt

ABSTRACT

We define the problem of speculative processing in a repli-
cated transactional system layered on top of an optimistic
atomic broadcast service. A realistic model is considered
in which transactions’ read and write sets are not a pri-
ori known and transactions’ data access patterns may vary
depending on the observed snapshot. We formalize a set
of correctness and optimality properties ensuring the mini-
mality and completeness of the set of explored serialization
orders within the replicated transactional system.

Categories and Subject Descriptors

D4.7 [Organization and Design]: Distributed Systems;
D4.5 [Fault Tolerance]: Operating Systems

General Terms

Algorithms,Performance,Reliability

Keywords

Replication, Serialization Theory, Atomic Broadcast.

1. INTRODUCTION
Active Replication (AR) is a fundamental approach for

achieving fault-tolerance and high availability. When ap-
plied to transactional systems, classic AR schemes, e.g. [5],
require that, prior to start executing transactions, replicas
agree on a common total order for transactions’ serializa-
tion. This is typically achieved by executing some form of
non-blocking distributed consensus protocol, such as Atomic
Broadcast [3] (AB).

Since the latency of AB can significantly degrade the per-
formance of a replicated system, recent approaches, e.g. [6],
have pursued the idea of overlapping transaction process-
ing and replica coordination by relying on a, so called, Op-
timistic Atomic Broadcast (OAB) service. OAB provides
an “early” (though potentially erroneous) guessing of the fi-
nal outcome of the coordination phase [11]. Exploiting op-
timistic message delivery, each site may immediately start

∗This work was partially supported by the ARISTOS
(PTDC/EIA-EIA/102496/2008) project.

Copyright is held by the author/owner(s).
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
ACM 978-1-4503-0079-7/10/06.

the (optimistic) processing of the transactional request with-
out waiting for the completion of the coordination phase.
Clearly, this strategy pays off only if the final total order does
not contradict the initial guess; otherwise optimistically ac-
tivated transactions may access inconsistent snapshots and
be forced to rollback.

Unfortunately, existing OAB-based replication solutions
suffer from several limitations. First, they only permit the
parallel activation of optimistically delivered transactions
that are known not to conflict with each other [6]. Such a
choice simplifies the management of local processing activi-
ties, sparing from the risks of propagating the results gener-
ated by optimistically delivered transactions. On the other
hand, it requires a-priori knowledge of both read and write
sets associated with incoming transactions in order to label
transactions in distinct conflict classes. This requirement
raises the non-trivial problem of systematically predicting
transaction data access patterns and may, in practice, lead
to significant over-estimation of the likelihood of transac-
tion conflicts, especially in scenarios entailing forms of non-
determinism in the data access pattern. As discussed in [8],
this can yield to a strong reduction of the achievable paral-
lelism, thus representing a major performance impairment
for modern multi-core systems. Further, the effectiveness of
existing OAB-based solutions is severely challenged in geo-
graphical scale replication, where the chances of accurately
guessing the final order are often very small [7]. Finally, if
the ratio between the coordination delay and the computa-
tion granularity is very large, as in the emerging scenario
of Distributed Transactional Memories (DTMs) [2, 12], the
actual performance gains achievable by existing OAB-based
approaches can be extremely limited. As shown in [12], in
fact, the local transaction processing time in a DTM envi-
ronment is typically one or two orders of magnitude smaller
than the replicas’ coordination latency. In such contexts,
the overlap between processing and communication achiev-
able by existing OAB-based approaches provides negligible
performance benefits [8], even in favorable scenarios where
the optimistic guessing of the final delivery order happens
to be correct with an extremely high probability.

In this paper, we address these limitations by investigat-
ing, from a theoretical perspective, the issues related to the
adoption of a speculative approach to replication of trans-
actional systems, which we call Speculative Transactional
Replication (STR). The idea underlying STR is rather sim-
ple and consists of two main aspects: i) exploring multiple
serialization orders for each optimistically delivered transac-



Application

returnValues

Speculative Concurrency Control (SCC)

Speculative Transactional Store (STS)

invoke(xactReq,inputParams)

Speculative Transactional Manager (SXM)
OAB

Service

Figure 1: Software Architecture of Each Process.

tion, so to increase the probability of guessing a serialization
order equivalent to the one finally determined by the OAB
service; ii) allowing to observe the snapshots generated by
optimistically executed transactions, rather than pessimisti-
cally blocking waiting for the outcome of the coordination
phase, so to maximize the performance gains achievable by
overlapping communication with local processing.

We frame the problem in a realistic model which does not
assume the availability of any a-priori information on the set
of data items to be accessed by the transactions (in either
read or write mode), and in which transaction data access
patterns can be influenced by the state observed during exe-
cution. Next, we formalize a set of correctness and optimal-
ity criteria for the speculative exploration of the permuta-
tions of the optimistically delivered transactions, demanding
the on-line identification of all and only the transaction seri-
alization orders that would cause the optimistically executed
transactions to exhibit distinct outcomes.

2. SYSTEM MODEL
We consider a classical asynchronous distributed system

model consisting of a set of processes Π = {p1, . . . , pn} that
communicate via message passing and can fail according to
the fail-stop (crash) model. We assume that the number of
correct processes (i.e. the processes that do not fail) and the
system’s synchrony level are sufficient to permit implement-
ing an OAB service.

OAB provides the following interface: TO-broadcast(m),
which allows broadcasting messages to all the processes in Π;
Opt-deliver(m), which delivers message m to a process in Π
in a tentative, also called optimistic, order; TO-deliver(m),
which delivers a message m to a process in Π in a so called
final order which is the same for all the processes in Π.

The diagram in Figure 1 shows the architecture of each
process pi ∈ Π. Applications generate transactions by call-
ing the invoke method of the local Speculative Transaction
Manager (SXM), specifying the business logic to be exe-
cuted (e.g. a DBMS stored procedure, or a method in a
transactional memory) and any associated input parame-
ters. The SXM is responsible of (i) propagating (through
the OAB service) the transactional request across the set of
replicated processes, (ii) executing the transactional logic on
the underlying Speculative Transactional Store (STS), and
(iii) returning the corresponding result to the application.

The STS layer abstracts low level storage mechanisms,
which may encompass RAM-only memory accesses (as in
transactional memories) and logging on persistent storage
to ensure durability (as in conventional DBMSs). The STS

maintains the state of a replica, modelled as a set of (multi-
versioned) data items, and provides classical facilities for
making visible the new versions of the set of data items up-
dated by transactions. We assume that each data item X
maintained by STS is associated with a set of versions, of
which, at any time, a single committed version exists. Un-
committed versions residing in STS are, on the other hand,
reflections of speculative computations, used to propagate
updates along chains of speculatively executed transactions.

The interactions between the SXM and the STS are medi-
ated by the Speculative Concurrency Control (SCC) layer,
which externalizes a classical interface to trigger read/write
operations on the data items maintained by the STS, as
well as to commit and abort transactions. SCC can addi-
tionally trigger the re-spawn (i.e. the restart) and the fork
of a (not yet committed) transaction, so to speculatively ex-
plore different serialization orders for that transaction. In
order to univocally identify multiple, speculatively executed,
instances of a same transaction Ti, we use the notation T

j
i

to refer to the j-th instance of transaction Ti. We say that
two speculative instances of the same transaction, say T

j

i

and T k
i , are two sibling transactions.

Each transaction Tj
i is associated with a sequence of op-

erations O(T j
i ) = {o

T
j
i

1 , . . . , o
T

j
i

n } where an operation ol ∈

O(T j

i ) is either a read or a write on a data item X, de-
noted, resp., as rl(X) and wl(X). We say that a transac-
tion T

j
i is completed when it has fully executed its sequence

of operation O(T j

i ). We assume that neither the sequence
of operations to be executed within a transaction, nor the
data items to be accessed by each operation are a-priori
known. Conversely, we assume that the transaction data ac-
cess pattern can vary depending on the current state of the
underlying transactional store. More precisely, we assume
that the transactional business logic is snapshot determin-

istic in the sense that if the same transaction is activated
multiple times, the sequence of read/write operations it ex-
ecutes does not change unless the return value of any of
its reads changes. In other words, if whichever instance of
a transaction T always sees a snapshot S, defined as the
set of values returned by all its read operations, then it be-
haves deterministically by always executing the same set of
read/write operations. On the other hand, instances of a
transaction T activated on different snapshots may generate
different sequences of operations. More formally, consider
two sibling transactions T a

i , T
b
i , producing, respectively, the

two sequences of operations O(T a
i ) = {o

Ta
i

1 , . . . , o
Ta
i

n } and

O(T b
i ) = {o

Tb
i

1 , . . . , o
Tb
i

k }. Let us assume, with no loss of
generality, that k ≤ n and that j ∈ [1 . . . k] is the index of

the first operation in O(T a
i ),O(T b

i ) for which o
Ta
i

j 6= o
Tb
i

j .

This implies that before executing o
Ta
i

j , resp. o
Tb
i

j , a read on

a data item X was previously executed by T a
i , resp. T

b
i , and

that the two reads returned two different values.

3. THE STR PROBLEM
Our target correctness criteria is 1-copy serializability [1],

which ensures that a transaction execution history H across
the whole set of replicated processes Π is equivalent to a se-
rial transaction execution history in a non-replicated system.
More specifically, we are interested in view serializability [1,
10] defined as a property of H such that, for any prefix H′ of



H, its committed projection C(H′) (obtained by deleting all
operations not belonging to transactions committed in H′)
is view equivalent to some serial history.

We now introduce the notion of optimality for an STR
algorithm. This is done by formalizing a set of properties
ensuring both the consistency (view serializability) of the
snapshot observed by any speculative transaction, and that
all and only the speculative serialization orders in which the
transactions observe distinct snapshots are explored.

Let Σ = {T1, . . . , Tn} be the set of Opt-delivered, but
not yet TO-delivered, transactions, and denote with Σ∗ =
{T 1

1 , . . . , T
k
1 , . . . , T

1
n , . . . , T

m
n } the set of the corresponding

speculative transactions that have run to completion. We
say that an STR algorithm is optimal if it guarantees the
following properties:

• Consistency: the history of execution of every specula-

tive transaction in Σ∗ is view serializable.

• Non-redundancy: no two sibling transactions in Σ∗ ob-

serve the same snapshot, i.e.:

∀T a
i , T

b
i ∈ Σ∗ ⇒

∃r
Ta
i

l (X) ∈ O(T a
i ),∃r

Tb
i

l (X) ∈ O(T b
i ) s.t. r

Ta
i

l (X) 6= r
Tb
i

l (X)
• Completeness: if the system is quiescent, namely the

OAB service stops Opt-delivering and TO-delivering trans-

actions, then for every permutation of Σ, say π(Σ), there

eventually exists a speculative transaction T
j

i ∈ Σ∗ that ob-

serves the snapshot produced by sequentially executing all the

transactions preceding Ti in π(Σ).

The optimality property of an STR algorithm filters out
trivial solutions based on the exhaustive enumeration of ev-
ery possible permutation of the Opt-delivered transactions
for the construction of plausible serialization orders. In fact,
while such an approach would certainly enumerate the per-
mutation that will be eventually generated by the final TO-
deliver (thus providing completeness), it would require the
processing of

∑
i=1...n

n!
(n−i)!

= Θ(n!) speculative transac-

tions (i.e. the number of nodes of a permutation tree [4] for
a set of cardinality n), being n the number of Opt-delivered
(but not yet TO-delivered) messages. More importantly,
such a number of speculative transactions would be spawned
independently of the actually developed conflict relations.
This would likely cause the useless exploration of a (possi-
bly very large) number of redundant serialization orders in
which transactions execute along identical trajectories, thus
producing the same snapshots and externalizing the same
results to the application.

It is therefore desirable to design conflict-aware mecha-
nisms able to identify all and only the serialization orders
that would cause the Opt-delivered transactions to exhibit
distinct execution trajectories and, ultimately, externalize
different results to the application. The problem’s complex-
ity appears clearly manifest if one considers that the trans-
actions’ data access patterns, and consequently their mutual
conflict relations, can be in practice significantly influenced
by the observed state values. This raises the requirement
for on-line solutions able to correctly deal with scenarios in
which the activation of a same transaction according to dif-
ferent serialization orders causes the generation of different
sequences of operations (as captured by the snapshot de-

terministic transaction execution model formalized in Sec-
tion 2).

4. AN OPTIMAL STR ALGORITHM
An optimal solution to the STR problem can be found

in our technical report in [9]. In order to determine the
set of speculative serialization orders in which transactions
need to be executed, this optimal STR algorithm relies on
a novel graph-based construct, called Speculative Polygraph
(SP). SPs are inspired by Papadimitirou’s polygraphs, orig-
inally introduced in [10] to test the view-serializability of
a non-speculative history. Conventional polygraphs are in
fact unfeasible to reason on view serializability of a specula-
tive transaction history since the simultaneous coexistence
within a polygraph of two sibling transactions, representa-
tive of non-conciliable serialization orders, can corrupt the
polygraph by introducing cycles that might render it useless.

Another interesting finding highlighted in [9] is that, when
considering different realistic application workloads, an opti-
mal STR algorithm requires on average the exploration of at
most 5 serialization orders per transaction when the num-
ber of Opt-delivered, but not yet TO-delivered, messages
is lower than 15. This result highlights, on one hand, the
factual importance of the STR’s non-redundancy property.
On the other hand, it shows that the additional amount of
hardware resources required by an optimal STR algorithm
is, in realistic settings, expected to be relatively low and, we
argue, likely satisfiable by modern multi-core processors.

5. REFERENCES
[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman.

Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[2] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues.
D2STM: Dependable Distributed Software Transactional
Memory. In Proc. Int. Symp. on Dependable Computing
(PRDC). IEEE Computer Society Press, 2009.

[3] D. Powell (ed.). Special Issue on Group Communication,
volume 39. ACM, 1996.

[4] G. Hetyei and E. Reiner. Permutation trees and variation
statistics. Eur. J. Comb., 19(7):847–866, 1998.

[5] B. Kemme and G. Alonso. A suite of database replication
protocols based on group communication primitives. In
Proc. Int. Conf. on Distributed Computing Systems
(ICDCS), IEEE Computer Society, 1998.

[6] B. Kemme, F. Pedone, G. Alonso, and A. Schiper.
Processing transactions over optimistic atomic broadcast
protocols. In Proc. Int. Conf. on Distributed Computing
Systems (ICDCS), IEEE Computer Society, 1999.

[7] J. Mocito, A. Respicio, and L. Rodrigues. On statistically
estimated optimistic delivery in large-scale total order
protocols. In Proc. Int. Symp. on Dependable Computing
(PRDC), IEEE Computer Society Press, 2006.

[8] R. Palmieri, F. Quaglia, P. Romano, and N. Carvalho.
Evaluating database-oriented replication schemes in
software transactional memory systems. In Proc. Workshop
on Dependable Parallel, Distributed and Network-Centric
Systems (DPDNS), IEEE Computer Society Press, 2010.

[9] P. Romano, R. Palmieri, F. Quaglia, N. Carvalho and
L. Rodrigues. On Speculative Replication of Transactional
Systems, INESC-ID Tec. Rep. 38/2009, 2009.

[10] C. H. Papadimitriou. The serializability of concurrent
database updates. J. ACM, 26(4):631–653, 1979.

[11] F. Pedone and A. Schiper. Optimistic atomic broadcast: a
pragmatic viewpoint. Theor. Comput. Sci., 291(1):79–101,
2003.

[12] P. Romano, N. Carvalho, and L. Rodrigues. Towards
distributed software transactional memory systems. In
Proc. of the Workshop on Large-Scale Distributed Systems
and Middleware (LADIS), ACM press, 2008.


