Where does Transactional Memory research stand

and what challenges lie ahead?

WTM 2012, EuroTM Workshop on Transactional Memory

Maria Couceiro and Paolo Romano
IST/INESC-ID, Lisbon, Portugal

Transactional Memory (TM) is a promising technol-
ogy that aims to simplify parallel programming by pro-
viding a programmer friendly alternative to traditional
lock-based concurrency. The past ten years have seen in-
tense research work on software and hardware TM pro-
posals, and has recently led to the first hardware TM
implementation for a commodity high-performance mi-
croprocessor, and to the inclusion of TM support in the
world’s leading open source compiler.

EuroTM (COST Action IC1001), in collaboration with
the CloudTM project!, organized the second edition
of the EuroTM Workshop on Transactional Memory
(WTM 2012). The objective of WTM was to discuss
new developments for this era of maturing TM research.

The workshop took place on April 10, in Bern, Switzer-
land, in conjunction with Eurosys 2012. Below we give
highlights on the topics discussed in the workshop.

1 Theoretical Foundations and

Algorithms

In the first talk of this session, Serdar Tasiran addressed
the problem of how to model and verify programs that
use TM supporting relaxed conflict detection mecha-
nisms. In order to maximize performance, several TM
implementations included mechanisms allowing the pro-
grammer to specify whether TM should ignore certain
conflicts. Serdar presented a method for modelling and
verifying programs using TM with relaxed conflict detec-
tion that allows the programmer to reason sequentially
on an abstracted version of the transaction.
Jons-Tobias Wamhoff’s presentation addressed the
overheads of STMs due to transaction management and
instrumentation, highlighting how these can lead to se-
vere performance degradation compared to sequential
execution especially when few threads are used. He pro-
posed FastLane [27], a new STM system that differenti-
ates between two types of threads: one thread (the pes-

1FP7 STREP Project Cloud-TM, contract no.
http://www.cloudtm.eu

257784,

87

simistic master) is allowed to commit transactions with-
out aborting, thus with minimal instrumentation and
management costs, while other threads (the speculative
helpers) can commit transactions only when they do not
conflict.

Vincent Gramoli’s presentation focused on how to con-
struct re-usable Concurrent Data Types (i.e. abstract
data types that export concurrent methods) that can
be easily extended through inheritance, by overloading
or adding new methods, or via composition. He pre-
sented the Polymorphic Transaction methodology [15],
a methodology that allows synthesizing re-usable con-
current data types by exploiting a pre-existing polymor-
phic set of transactional wrappers (compatible with each
other) that preserve the atomicity and concurrency of
methods.

The two following presentations focused on efficient
distributed consistency algorithms in both fully repli-
cated and partially replicated scenarios.

OSARE [21], presented by Roberto Palmieri, is a re-
cent transactional replication protocol, which aims at
amortizing the overhead of replica coordination by spec-
ulatively exploring multiple transaction serialization or-
ders in parallel with the execution of the replica coor-
dination protocol. OSARE is particularly attractive in
TM settings, in which the latency of replica coordination
is often several orders of magnitudes larger than trans-
action’s processing time [25, 22].

Sebastiano Peluso presented GMU [23], a partial repli-
cation protocol that achieves high scalability (by guar-
anteeing genuineness [17]) by ensuring Update Serializ-
ability (US) [1], a consistency semantics that is slightly
weaker than classic one-copy serializability (1CS) [5]. US
ensures a semantics equivalent to 1CS on the history
of update transactions (hence ensuring consistent state
updates), but allows read-only transactions to observe
the updates performed by non-conflicting transactions
in different orders (which is not admissible in 1CS). The
core of GMU is a distributed multiversion concurrency
control algorithm, which relies on a vector clock based
synchronization mechanism to track, in a decentralized



(and consequently scalable) way, both data and causal
dependency relations among transactions.

2 Hardware Transactional Mem-
ory and Scheduling

Philipp Kirchhofer presented a monitoring infrastructure
for HTM (Hardware TM) which generates zero runtime
overhead. It consists of hardware units attached to each
processor core that monitor state changes, generate cor-
responding events, and send events to a dedicated mem-
ory area of the host system, for later post-processing and
visualization.

The following presentation dealt with how TM could
be adapted to meet Quality of Service requirements in
soft real time systems [20]. Walther Maldonado pro-
posed a state-based approach supporting different execu-
tion modes with varying scalability /predictability trade-
offs that are dynamically selected to minimize the proba-
bility of deadline misses, without however compromising
fairness.

Atomic RMI [28], presented by Pawel Wojciechowski,
is a concurrency control library that allows programmers
to group a sequence of remote method invocations and
execute them as a distributed transaction. Atomic RMI
uses a pessimistic concurrency control algorithm that dy-
namically schedules object calls by relying on knowledge
about the transactions’ access patterns extracted using
an inter-procedural data flow and region-based analysis.

Hugo Rito showed how memoization [24] could be in-
corporated into a Software TM (STM) to runtime to de-
crease the time spent to re-execute transactions upon
their aborts. The proposed approach consists of ex-
tending STM transactions with a per-transaction memo-
cache, which stores information about methods executed
inside the transaction and can be used to accelerate the
execution of valid memoized methods.

Nuno Diegues’s presentation advocated the usage of
parallel nesting of transactions and transaction schedul-
ing as a solution for enhancing the performance of write
intensive, conflict prone applications [11]. He presented
the results obtained by extending a multi-version, lock-
free, STM to incorporate parallel nesting and trans-
action scheduling, which highlighted that these mech-
anisms can boost performance in highly-contending,
write-dominated workloads, by exploring the latent par-
allelism within top-level transactions.

3 Language Integration and Tools

In the first talk of the session, Oscar Plata presented a
mechanism that takes advantage of TM’s optimistic con-
currency control in order to parallelize iterative compu-
tations when no data dependence information is avail-
able before runtime. Transactions are validated us-

88

ing a distributed commit protocol and through an ea-
ger (conflict detection) - lazy (data versioning) model.
This approach has been implemented in a light-weight
STM, TinySTM, and preliminary results using synthetic
benchmarks show a significant reduction of the number
of transaction aborts.

Chris Seaton discussed the idea of combining TM with
dataflow in order to leverage on the benefit of both ap-
proaches [26]. In the proposed approach TM can be used
to make the access to shared state atomic and compat-
ible with the dataflow model of implicit parallelism and
scheduling. To explore this idea, the Scala language was
extended with constructs for dataflow programming and
support for TM. By applying this approach to the Lee’s
algorithm for circuit routing [3], it is possible to demon-
strate not only improvements in programability, in terms
of the required volume of code and number of operations
related to parallelism, but also performance gains over
implementations relying both on coarse-grained locking
and only TM.

Fernando Carvalho presented an extension of his pre-
vious work on adaptive object metadata [7] that enables
switching between two meta-data representation modes:
a compact meta-data representation mode, optimized for
low contention scenarios, as it minimizes memory over-
heads but may suffer of aliasing phenomena leading to
unnecessary aborts; an extended meta-data representa-
tion mode, which has opposite advantages/drawbacks
when compared to the former meta-data representation
technique, thus resulting tailored for high contention
workloads. Preliminary results, obtained by integrating
this adaptive layout mechanism in the lock-free version
of the JVSTM [13] have show an improvement in the per-
formance and a reduction in the memory overheads for
workloads where the number of objects written is much
lower than the total number of transactional objects.

Also the following talk, by Ricardo Dias, addressed
the issue of how to maximize the efficiency of a TM by
optimizing the memory layout of the meta-data associ-
ated with transactional objects. Specifically, the talk de-
scribed the adaptation and extension of DeuceSTM [19]
to support an in-place metadata strategy in an efficient
and trasparent fashion.

Ricardo Filipe also discussed the issue of parallel nest-
ing in STMs, a feature that is still lacking in most of
existing STMs. This limitation, it is argued, hinders
the possibility of developing highly parallel TM-based
applications, by preventing the activation of new, paral-
lel threads from within transactions. Ricardo’s current
work is addressing this issue by developing an STM that
supports any level of parallel nested transactions, while
ensuring constant time overhead and retaining the con-
sistency properties of the underlying STM.



4 Applications and Performance
Evaluation

Thread mapping is an appealing approach to efficiently
exploit the potential of modern chip-multiprocessors by
taking advantage of their cores and memory hierarchy.
However, these architectures are inherently complex and
the efficiency of thread mapping relies upon matching
the behavior of an application to system characteris-
tics. In his talk, Marcio Castro proposed a dynamic
mapping approach for TM applications which relies on a
(off-line trained) machine learning algorithm [8] to deter-
mine, at runtime, if the current thread mapping strategy
should be switched to a more adequate one. This dy-
namic approach was implemented within TinySTM and
results were shown highlighting performance gains of up
to 31% than the best static thread mapping for applica-
tions whose workload varies through different execution
phases.

Diego Didona and Jorg Schenker discussed how to au-
tomatically identify the "natural” degree of parallelism
of an application [9], i.e., the threshold below which
adding or removing threads will hamper performance.
Their talk addressed both the scenario of centralized and
distributed TM systems. In the centralized scenario, the
concurrency degree is dynamically tuned using a gradi-
ent descent based on-line exploration approach. In dis-
tributed TM settings on-line exploration techniques in-
cur in the prohibitive costs associated with state trans-
fer. To circumvent this issue, they introduced a hybrid
performance forecasting methodology, based on the sin-
ergyc usage of machine learning and analytical modelling
techniques [10].

Martin Schindewolf presented an experimental eval-
uation of TM on the BG/Q platform and the devel-
opments of new features in the CLOMP-TM bench-
mark, which included adding MPI routines for a hy-
brid OpenMP/MPI parallelization that exploits TM-
based synchronization primitives. This talk also pre-
sented tools aimed at analyzing the performance of the
TM run time system. These tools use the Blue Gene
Performance Monitoring (BGPM) interface to correlate
the statistics from the TM run time system with perfor-
mance counter values, providing detailed insights in the
run time behavior of TM applications.

Joao Soares talked about applying STM and software
diversity in order to implement fault-tolerant compo-
nents with minimal overhead. Faults are detected by
concurrently executing operations in all replicas, and
comparing the set of obtained results. An STM (Deuce
using TL2) is used to preserve the causal order of these
operations and guarantee that they all execute in the
same order in all replicas.

The final talk of the workshop, presented by Maria
Fazio, focused on the application of STM to simplify
the development of resource brokers for TaaS Cloud plat-

89

forms [12]. In these platforms, resource brokers are re-
sponsible for orchestrating the provisioning of resources
based on user requests, which may be received and pro-
cessed concurrently and having conflicting requirements.
The resource brokers exploit Deuce STM to regulate con-
currency among concurrent resource requests, which are
specified according to XACML policies in order to offer
a differentiated resource provisioning service. The pro-
posed architecture has been developed in the context of
the Cloud@Home project [4], which proposes a new vol-
unteer computing paradigm, where the infrastructure is
obtained by merging heterogeneous resources offered by
different domains and/or providers.

5 Discussion: Where does TM
research stand and what chal-
lenges lie ahead?

The workshop was concluded by a general discussion ad-
dressing a wide range of topics. These included contro-
versial issues concerning the adoption of TM in complex
applications, trade-offs in the design space of APIs for
TM systems, as well as a retrospective analysis of recent
developments in the areas of hardware, compilers and
tool supports. Below we report some important points
of these discussions (in chronological order):

5.1 Combining TM with blocking syn-

chronization mechanisms

Joao Lourenco triggered a discussion on the need, in
real-life scenarios, to have TM-based applications inter-
act with external components, for instance via I/O or
network. He pointed out that the lack of established so-
lutions addressing this issue represents a major impair-
ment to the adoption of TM.

Vincent Gramoli argued that it does not make sense
to combine TM with other synchronization mechanisms
(such as locks) as, achieving this result would imply ex-
posing to the programmers much of the inherent com-
plexity (e.g. reasoning on the possibility of deadlocks)
that the TM abstraction is meant to hide.

Marc Shapiro suggested that there may be portions
of an application for which TM represents the right ab-
straction and others in which a different paradigm (such
as queues or event programming, for instance) fit better.
So TM should be regarded as another tool in the toolbox
and not as the ultimate solution for all applications.

5.2 STM going mainstream thanks to
the recent GCC support?

Patrick Marlier, who has collaborated to define the spec-
ification of the recent GCC support for TM, was asked



to highlight the key characteristics of the internal archi-
tecture of this tool.

Patrick explained that the GCC compiler generates
code that will issue calls to the underlying TM algo-
rithm. This allows decoupling GCC from a specific TM
library, allowing the programmer to plug any TM library
as long as it complies with the interfaces used by GCC.
Of course GCC ships already with a default, lock-based
TM library.

The development of this TM support at the GCC layer
is expected to bring a host of benefits to the community.
Due to the ubiquitous presence of GCC, new benchmarks
and ideas for using TMs are very likely to arise. Besides,
thanks to the open source nature of this software, the
community can contribute to improve it by, for instance,
implementing a richer API that supports more complex
transaction types.

5.3 Which interfaces should STM ex-
pose to programmers?

The previous point led to the discussion on whether it
would be beneficial for TM to expose richer, and there-
fore inherently more complex APIs, to allow program-
mers to maximize performance by triggering optimiza-
tions that could break potentially consistency in general
scenarios.

Rachid Guerraoui commented on this and made a par-
allel with the development of object oriented program-
ming languages. He argued that, in Smalltalk, the choice
of granting excessing “freedom” to programmers led to
the eventual decay of this programming language. JAVA,
conversely, identified a sweet spot in the trade-off be-
tween complexity and features, which favoured its adop-
tion in the software industry. He argued that it is an
important challenge for this community to find the ap-
propriate balance, designing interfaces that can be both
safely usable by non-expert programmers and appealing
to expert, performance craving programmers.

5.4 Hardware supports for TM: will they
go mainstream... this time?

In 2009, the cancelling of the Rock processor, the first
that planned to incorporate hardware support for TM,
cast shadows on the adoption of this technology, at least
in an imminent future. Today, these shadows seem to
have been largely dispelled: IBM microprocessor Blue
Gene/Q ships with hardware support for TM, and Intel
has recently announced that its Haswell architecture, due
to ship in 2013, will include hardware support for TM.
This triggered a short discussion on how this compared
with current research in the hardware TM field and on
the impact this will have in the adoption of TM by a
wider audience.

Regarding the first issue, it was pointed out that Intel’s

90

specifications, in their current form, are not sufficiently
detailed to allow performing a fair comparison with state
of the art solutions in the area.

On the second issue, there was unanimous consensus
on that together with the release of GCC 4.7, these new
processors will broaden significantly the audience of TM.

5.5 Benchmarks for TM: has this gap
been filled?

Despite the number of efforts to develop complex bench-
marks for STMs in recent times, Joao Lourenco pointed
out that the spectrum of benchmarks available for TM
systems is still very narrow. Most papers only present re-
sults using STAMP [6], micro-benchmarks (such as those
provided by DSTM2 [18]), LeeTM [3] and STMBench7
[16].

Paolo Romano commented that this problem is par-
ticularly exacerbated in the area of distributed TM. Re-
searchers working in this area are typically forced to per-
form non-trivial adaptations of benchmarks that were
originally designed for centralized TM. This is not only
a tedious but also a time consuming task. Benchmarks
for centralized TMs, in fact, are not designed to scale to
the high degrees of concurrency achievable in distributed
settings. Further, it is arguable that the workloads gen-
erated by benchmarks originally designed for centralized
TMs are actually representative of the ones that would
be produced by applications developed from scratch to
execute on a distributed TM platform.

5.6 Does TM really simplify the devel-
opment of concurrent applications?

This question was addressed by Osman Unsal, who was
involved in the development of QuakeTM [14] in the con-
text of the Velox project [2], and presented his opinion
on this topic. Osman reported that, at the time in which
QuakeTM was being implemented, the development pro-
cess took actually longer than if locks had been used. At
that time, in fact, no tools (e.g. debuggers) were avail-
able to aid developers, and the only STM that would
compile with QuakeTM had no source code. Hence, it
was necessary to implement a host of tweaks to have a
complex, real-time game such as Quake work on top of
a TM stack.

However, compared to just a couple of years ago, nowa-
days many tools are freely available for the TM com-
munity, such as verification tools, transactional debug-
gers, programs that analyze transactional behavior, etc.
Thanks to these latest developments, the development of
TM applications has been drastically simplified.



References

[1]

A. Adya. Weak consistency: a generalized the-
ory and optimistic implementations for distributed
transactions. PhD thesis, 1999. AAIO800775.

Y. Afek, U. Drepper, P. Felber, C. Fetzer,
V. Gramoli, M. Hohmuth, E. Riviere, P. Stenstrom,
O. Unsal, W. M. Moreira, D. Harmanci, P. Mar-
lier, S. Diestelhorst, M. Pohlack, A. Cristal, I. Hur,
A. Dragojevic, R. Guerraoui, M. Kapalka, S. Tomic,
G. Korland, N. Shavit, M. Nowack, and T. Riegel.
The velox transactional memory stack. IEEE Micro,
30(5):76-87, Sept. 2010.

M. Ansari, C. Kotselidis, K. Jarvis, M. Lujén,
C. Kirkham, and 1. Watson. Lee-tm: A non-trivial
benchmark for transactional memory. In ICA3PP
'08: Proceedings of the 7th International Confer-
ence on Algorithms and Architectures for Parallel
Processing. LNCS, Springer, June 2008.

R. Aversa, M. Avvenuti, A. Cuomo, B. Di Mar-
tino, G. Di Modica, S. Distefano, A. Puliafito,
M. Rak, O. Tomarchio, A. Vecchio, S. Venticinque,
and U. Villano. The cloud@home project: towards
a new enhanced computing paradigm. In Proceed-
ings of the 2010 conference on Parallel processing,
Euro-Par 2010, pages 555-562, Berlin, Heidelberg,
2011. Springer-Verlag.

P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database sys-
tems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1986.

C. Cao Minh, J. Chung, C. Kozyrakis, and
K. Olukotun. STAMP: Stanford transactional ap-
plications for multi-processing. In IISWC ’08: Pro-
ceedings of The IEEE International Symposium on
Workload Characterization, September 2008.

F. M. Carvalho and J. Cachopo. Adaptive ob-
ject metadata to reduce the overheads of a multi-
versioning stm. In Multiprog-2012, Paris, january
2012.

M. Castro, L. F. W. Goées, C. P. Ribeiro, M. Cole,
M. Cintra, and J.-F. Méhaut. A Machine Learning-
Based Approach for Thread Mapping on Transac-
tional Memory Applications. In High Performance
Computing Conference (HiPC), pages 1-10, Banga-
lore, India, 2011. IEEE Computer Society.

D. Didona, P. Felber, D. Harmanci, P. Romano, and
J. Schenker. Elastic scaling for transactional mem-
ory: From centralized to distributed architectures
(poster). In 4th USENIC Workshop on Hot Top-
ics in Parallelism (Hotpar’12), Berkeley, Ca, USA,
June 2012.

91

[10]

[11]

[15]

[16]

[19]

[20]

D. Didona, P. Romano, S. Peluso, and F. Quaglia.
Transactional auto scaler: Elastic scaling of nosql
transactional data grids. Technical Report 50,
INESC-ID, December 2011.

N. Diegues and J. a. Cachopo. Parallel nesting in a
lock-free multi-version software transactional mem-
ory. In the 7th ACM SIGPLAN Workshop on Trans-
actional Computing (TRANSACT), 2012.

M. Fazio and A. Puliafito. Virtual resource man-
agement based on software transactional mem-
ory. In Network Cloud Computing and Applications
(NCCA), 2011 First International Symposium on,
pages 1 -8, nov. 2011.

S. M. Fernandes and J. Cachopo. Lock-free and
scalable multi-version software transactional mem-
ory. In 16th ACM SIGPLAN Annual Symposium
on Principles and Practice of Parallel Programming,
pages 179-188. ACM SIGPLAN, february 2011.

V. Gajinov, F. Zyulkyarov, O. S. Unsal, A. Cristal,
E. Ayguade, T. Harris, and M. Valero. Quaketm:
parallelizing a complex sequential application using
transactional memory. In Proceedings of the 23rd in-

ternational conference on Supercomputing, ICS *09,
pages 126-135, New York, NY, USA, 2009. ACM.

V. Gramoli and R. Guerraoui. Brief announcement:
transaction polymorphism. In SPAA, pages 311—
312, 2011.

R. Guerraoui, M. Kapalka, and J. Vitek. STM-
Bench7: a benchmark for software transactional
memory. SIGOPS Operating Systems Review,
41(3):315-324, 2007.

R. Guerraoui and A. Schiper. Genuine atomic mul-
ticast in asynchronous distributed systems. The-
oretical Computer Science (Elsevier), 254:297-316,
2001.

M. Herlihy, V. Luchangco, and M. Moir. A flexible
framework for implementing software transactional
memory. In Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented program-
ming systems, languages, and applications, OOP-
SLA 06, pages 253-262, New York, NY, USA, 2006.
ACM.

G. Korland, N. Shavit, and P. Felber. Deuce:
Noninvasive software transactional memory in java.
Transactions on HiPEAC, 5(2), 2010.

W. Maldonado, P. Marlier, P. Felber, J. L. Lawall,
G. Muller, and E. Riviere. Deadline-aware schedul-
ing for software transactional memory. In DSN,
pages 257-268, 2011.



[21]

[22]

23]

[24]

[26]

[28]

R. Palmieri, F. Quaglia, and P. Romano. Os-
are: Opportunistic speculation in actively repli-
cated transactional systems. In Reliable Distributed
Systems (SRDS), 2011 30th IEEE Symposium on,
pages 59 —64, oct. 2011.

R. Palmieri, F. Quaglia, P. Romano, and N. Car-
valho.  Evaluating database-oriented replication
schemes in software transactional memory systems.
In Parallel Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International
Symposium on, pages 1 -8, april 2010.

S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and
L. Rodrigues. When scalability meets consistency:
Genuine multiversion update serializable partial
data replication. In 32nd International Conference
on Distributed Computing Systems (ICDCS’12),
Macao, China, June 2012.

H. Rito and J. P. Cachopo. Memoization of meth-
ods using software transactional memory to track
internal state dependencies. In PPPJ, pages 89-98,
2010.

P. Romano, N. Carvalho, and L. Rodrigues. To-
wards distributed software transactional memory
systems. In Proceedings of the 2nd Workshop on
Large-Scale Distributed Systems and Middleware,
LADIS ’08, pages 4:1-4:4, New York, NY, USA,
2008. ACM.

C. Seaton, D. Goodman, M. Lujan, and I. Watson.
Applying dataflow and transactions to Lee routing.
In Workshop on Programmability Issues for Hetero-
geneous Multicores, 2012.

J.-T. Wamhoff, C. Fetzer, P. Felber, E. Riviere, and
G. Muller. Fastlane: Streamlining transactions for
low thread counts. In TRANSACT 12, New Or-
leans, LA, USA, June 2012. ACM New York, NY,
USA.

P. T. Wojciechowski. Extending atomic tasks to
distributed atomic tasks. In Proceedings of (EC)?
08:  Workshop on FExploiting Concurrency Effi-
ciently and Correctly (co-located with CAV ’08: the
20th Int. Conf. on Computer Aided Verification,
Princeton, USA), July 2008.

92





