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Abstract

Transactional Memory (TM) is a promising approach that simplifies parallel programming. However,
in the broad spectrum of available TM implementations, there exists no one size fits all solution that
can provide optimal performance across all possible workloads. This has motivated an intense research,
over the last years, on the design of self-tuning solutions aimed at transparently adapting the choice
and configuration of the TM run-time system. This report focuses on advancing a recent, state of the
art solution in the area of TM self-tuning, called ProteusTM. ProteusTM builds on recommendation
systems and Bayesian analysis techniques in order to automate the tuning process of a TM system over
a multi-dimensional configuration space — a unique feature in the literature on TM self-tuning. In
particular, this report investigates two key research questions: i) how to extend ProteusTM to support
sparse training sets, and ii) to what extent can the inclusion of workload characteristics (e.g., abort
rate) enhance the accuracy achieved by ProteusTM.
Keywords: parallel programming, transactional memory, self-tuning, ProteusTM, recommender
systems

1. Introduction

Multi-core architectures are nowadays ubiqui-
tous, bringing parallel programming to the fore-
front of software development, with the objective
of achieving better performance results.

Transactional Memory (TM) [1] is a promis-
ing approach to solve the problems of concurrent
programming, based on a key concept from the
database community, namely transactions. TM of-
fers a powerful abstraction to programmers, reduc-
ing the complexity of building parallel programming
applications. With the TM abstraction program-
mers need only to specify which region of code to
run atomically without worrying about how concur-
rent accesses should be synchronized (in contrast
with locks) to guarantee correctness.

Over the years, several works have provided ev-
idence of the effectiveness of TM in simplifying
the development of parallel programs and deliver-
ing good performance [5, 11, 16]. However, in or-
der to pave the ground for the adoption of TM as
a mainstream paradigm for parallel programming,
there is one crucial issue to address. Despite the nu-
merous existing implementations, either in software
or hardware, there exists no single solution that
can provide optimal performance across all possi-
ble workloads [6, 28, 8]. Research has provided ev-

idence that the choice of the best TM implementa-
tion and of its internal parameters (i.e., number of
threads) is affected, in complex ways, by a number
of workload characteristics [6, 9, 8]. In addition,
performance can be affected by several factors, for
instance programs inputs, phases of program exe-
cution, as well as the architectural aspects of the
underlying hardware. Further, as heterogeneity of
hardware/software architecture keeps on increasing,
it appears quite unlikely that an “universal” solu-
tion will be identified in the near future.

Self-Tuning reveals as an appealing solution to
cope with heterogeneity in workloads and TM op-
timization, removing the burden of the program-
mer to identify the optimal configuration. Existing
self-tuning techniques for TM systems [8, 6, 28] rely
on modelling and forecasting techniques to optimize
TM performance, , i.e., to identify the optimal con-
figuration of one or more parameters controlling the
behaviour of a TM algorithm based on the workload
generated by some target application. Some exam-
ple of black-box modelling techniques used in self-
tuning systems for TM include neural networks [2],
decision trees [20] and collaborative filtering [17].

Most of existing works using self-tuning to opti-
mize TM performance aim to adapt dynamically
either: (i) internal TM parameters, for instance
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number of retries when a transaction aborts [8];
(ii) the concurrency level of a TM, adapting the
number of active threads [24, 7]; (iii) the choice of
the TM algorithm to employ [28]. However, these
solutions optimize the TM run-time along a single
dimension, which is clearly unsatisfactory given the
multitude of configuration choices/alternative im-
plementations that exist.

To the best of my knowledge, the first and only
multi-dimensional self-tuning solution for TM is
ProteusTM [6]. For this reason, we have chosen
ProteusTM as the main focus of this study.

ProteusTM leverages on Collaborative Filtering
and Baeysian Optimization to identify the configu-
ration that optimizes a given Key Performance In-
dex (KPI) (e.g., throughput, execution time).

The goal of this dissertation is to investigate two
research questions originated by ProteusTM:

1. One of the main problems of ProteusTM is that
it requires a key pre-processing step, namely
Rating Distilation (RD), which assumes the
availability of full information regarding the
performance of every application (included in
the training set) across every available TM con-
figurations. This is quite a relevant limitation,
given that even in a small scale system the
number of available TM configurations are on
the order of hundreds and that the configura-
tion space grow exponentially with its dimen-
sionality (the well-known curse of dimensional-
ity [3])

The first research question addressed, deals
precisely with this limitation of ProteusTM,
proposing and systematically evaluating tech-
niques aimed at supporting the use of sparse
training information.

2. ProteusTM’s training phase relies solely on the
knowledge of the target KPI achieved by a
workload when deployed over different set of
configurations. In other words, it does not ex-
ploit any information regarding intrinsic work-
load characteristics (e.g., abort rate or trans-
action duration). Hence, a natural question,
which is addressed in this dissertation, is to
what extent can the accuracy of ProteusTM
be improved by incorporating information on
workload characteristics in its knowledge base.

We provide an answer to this question by con-
sidering different learners and normalization
techniques.

This document is structured as follows. Chapter
2 provides a background on TM and Collaborative
Filtering (CF) techniques. Chapter 3 describes Pro-
teusTM in detail, and highlights the research direc-
tions we intend to study in this report. Chapter

4 addresses the problem of how to support sparse
training sets in ProteusTM. Chapter 5 studies the
problem of incorporating workload information in
ProteusTM’s knowledge base. Finally, Chapter 6
concludes the report.

2. Background
This section provides some background about TM
and an overview CF techniques from the Recom-
mendation Systems (RS) literature.

2.1. Transactional Memory
TM is a concurrency-control mechanism that re-

duces the complexity of building parallel program-
ming applications, relying on a powerful abstrac-
tion used for decades in the database community,
namely transactions [1]. In practice, a TM system
runs several transactions in parallel, and is up to
the TM library to enforce isolation and atomicity
via some concurrency-control algorithm.

TM systems allow transactions to run in parallel,
by relying on the abstraction of atomic blocks to de-
termine which portions of the code to run as atomic
code blocks. Consequently the problem of regulat-
ing concurrency is shifted from the programmers to
the TM designers. Over the years many different
TM designs have been proposed to tackle this is-
sue. We discuss them in the next paragraph which
have to consider the key mechanisms of TM design
such as data versioning and conflict detection.

2.1.1 TM implementations:

The TM abstraction has been implemented ei-
ther in software (STM) [5], hardware (HTM) [8]
and hybrid-approaches [4]. Software Transactional
Memory (STM) implements the TM abstraction
entirely in software and needs costly software in-
strumentation of reads and writes memory accesses
to trace conflicts between concurrent transactions.
HTM, instead leverages on the processor’s cache co-
herence mechanism to track memory accesses. On
the one hand this leads to lower overhead and, thus,
potentially better performance. On the other hand
it requires that the memory accesses performed by
a transaction can be entirely stored in the cache hi-
erarchy. Hybrid TMs combine the two approaches:
transactions are executed in HTM whenever possi-
ble, and in STM when necessary.

Despite the variety of TM implementations [11,
5, 16, 21], existing literature in the area seems to
have reached consensus on the fact that there is no
”one-size-fit-all” solution that can provide optimal
performance across all possible workloads. In fact
the best TM for a given workload can deliver per-
formance that are orders of magnitude lower than
the optimal for another workload [6].

Self tuning represents a very appealing solution
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to tackle this issue. A step towards this direction is
represented by ProteusTM. Next, we describe CF,
namely the technique used by ProteusTM to predict
the quality of different configurations depending on
the workload.

2.2. Collaborative Filtering

CF is one of the most popular techniques in the
literature of RS. The basis of CF is that if user X
and Y rate the same items similarly, they will rate
or recommend other items similarly [27].

In order to infer a rating between a 〈user, item〉
pair, CF exploits the preferences expressed by other
users or the relationships between items. CF sys-
tems use a database of preferences in order to cre-
ate an Utility Matrix (UM): the rows represent the
users and the columns the various items. The ele-
ments of the UM are the ratings the user attributes
to an item, normally in very homogeneous scales
(e.g. 0-5 stars). In order to give recommenda-
tions CF algorithms fill the missing ratings of the
UM which are typically very sparse. Two of the
most prominent approaches to predict missing rat-
ings are: K Nearest Neighbours (KNN) and Matrix
Factorization (MF).

KNN uses a similitarity function that identifies
similarities between users or items [10]. To compute
the recommendations if first chooses the neighbour-
hood of K elements. Then the rating predictions are
normally obtained by computing the weighted aver-
age of the neighbouring user’s/item’s ratings using
the similarity as the weights.

MF maps both users and items to a joint latent
vector space of dimensionality [17], where the user-
item interactions are modelled as inner products in
that space. Intuitively, borrowing from the movie
recommendation scenario, MF tries to understand
how much a movie belongs to hidden categories such
as drama or action, and how much a user likes those
genres. Single-Value Decomposition (SVD) is one
of the commonly adopted method to identify and
extract latent factors, which aims to reconstruct a
full matrix starting from the sparse initial UM, M .
It infers two matrices P and Q, which represent,
respectively, users and items in the aforementioned
f -dimensional space, and computes R = QTP ≈
M , which contains the missing values of M .

3. Study on ProteusTM

To the best of my knowledge, ProteusTM [6] is the
only self tuning solution for TM systems that sup-
ports a multi-dimensional optimization scheme.

At its core ProteusTM has two main components
PolyTM and RecTM (see Figure 1). PolyTM con-
sists of a Polymorphic TM library, with several
TM implementations (HTM, STM, HyTM) and al-
lows the reconfiguration of TM along the following
dimensions: (i) switch between different TM im-

plementations (TinySTM to NOrec for example);
(ii) reconfigure internal parameters of a TM; (iii)
adapt the number of threads concurrently generat-
ing transactions.

Figure 1: ProteusTM [6] architecture.

RecTM, the main component studied for this re-
port, is responsible for identifying the best configu-
ration of PolyTM for the current workload. Briefly,
ProteusTM applies CF to the problem of identify-
ing the best TM configuration that maximizes the
KPI for some workload.

3.1. RecTM
In Figure 1 note that RecTM, the component re-
sponsible for predicting the best TM configuration,
is composed by 3 sub-modules [6]:

1. Recommender, the recommendation system
that acts as the predictor and supports differ-
ent CF algorithms.

2. Controller, which selects the configuration to
be used and triggers the adaptation in PolyTM,
by queriyng the Recommender with the values
obtained from the Monitor.

3. Monitor, which is responsible for gathering
the target KPI to give feedback to the Con-
troller about the quality of the current config-
uration. Also, it detects changes in the work-
loads with the objective of triggering a new op-
timization phase on the Controller.

As mentioned, RecTM casts the performance pre-
diction task to a recommendation problem. In Pro-
teusTM the UM associates each row to a different
workload, and each column to a different TM config-
uration. Exploiting CF-based recommendation sys-
tems for the self-tuning of TM raises a non-trivial
problem, which is discussed next.

3.1.1 The Rating Heterogeneity Problem

CF algorithms assume the use of homogeneous rat-
ing scales, e.g., from 0 to 5 stars. Conversely, per-
formance metrics of TMs (such as throughput, ex-
ecution time, abort rate) typically span across very
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Figure 2: Parameters tuned by ProteusTM. STMs
are TinySTM [11], SwissTM , NORec [5] and TL2

heterogeneous scales, depending on the applications
characteristics (e.g., long vs short transactions) and
hardware characteristics (e.g., CPU clock speed).

A solution to the problem of heterogeneity is to
normalize the whole UM. Normalization in this
scenarios is not trivial because the best and worst
configuration for a given workload (and their cor-
responding performance) are not known a priori.
Ideally, an efficient normalization should be able
to transform the entries so that similarities can be
mined and enable the use of CF techniques.

To further motivate the use of normalization we
present a study on the performance of ProteusTM
predictor capabilities, using different methods of
normalization.

The purpose of this study is to assess the effect
of different normalization strategies on the quality
of the recommendation made by ProteusTM. The
different types of normalization used were:

(i) NONE: No normalization, the CF algorithm
is applied in the raw UM; (ii) MAX: normalization
with respect to the max in the training set; (iii)
WRT-BEST/IDEAL: an ideal normalization tech-
nique that assumes to know a priori the absolute
value of the KPI in the optimal configuration for
each workload and is then used as normalization
factor. (iv) Rating Distillation (RD): a normaliza-
tion procedure proposed in the ProteusTM work [6]
and described more in detail in the following sub-
section.

The performance of ProteusTM will be evaluated
using two accuracy metrics: Mean Average Percent-
age Error (MAPE) and Mean Distance From Opti-
mum (MDFO).

We note ru,i represents the real value of the tar-
get KPI for workload u when running i as con-
figuration, ˆru,i the corresponding prediction of the
Recommender, and S the set of testing 〈u, i〉. The
MAPE is defined as:

∑
〈u,i〉∈S |ru,i − ˆru,i|/ru,i .

Note i∗u is the optimal configuration for work-
load u, and î∗u the best configuration found be
the Recommender. The MDFO is identified by:∑
〈u,i〉∈S |ru,i∗u − ru,î∗u |/ru,i∗u .

The MAPE reflects how well the CF learner pre-
dicts performance for an application, while MDFO
captures the quality of the final recommendations.

In order to build the experimental test-bed used
in all the experiments of this report, ProteusTM

was deployed in two machines with different charac-
teristics with a wide variety of TM applications, and
tuning parameters depicted in Figure 2. In these
two machines, over 300 workloads were deployed
which are representative of heterogeneous applica-
tions such as: STAMP [19], Data Structures, STM-
Bench7 [12], TPC-C and Memcached [14]. The ex-
perience data set was built by collecting over 5 runs,
the KPI (e.g., throughput and execution time) in a
real-time trace driven evaluation of over 300 work-
loads and 160 TM configurations.

The KPI used for this study was the execution
time.

The evaluation’s learner was KNN with cosine
similarity and two neighbours, depicted in Figure 3
trained with a random sub-set of the original data
set split into 30% of training set and the remaining
70% the corresponding test set. The results pre-
sented are an average of 10 runs, for 10 different
sub-sets of the original data set and for a different
number of configurations with known performance
for a given workload (chosen at random). The train-
ing set is used to instantiate the predictive model
and where the normalization techniques are applied.
The test-set has no intersection with the training set
and provides each workload to ProteusTM, so that
this can predict the values not present in the sam-
pling. To simulate sampling for the performance of
an workload for a given configuration, we use the
corresponding value from the test-set and add this
value to the UM of the Recommender.

To ensure fairness, the study was conducted with
the same training sets and the same initial config-
urations were provided for the different normaliza-
tions. Figure 3a represents how far in average are
the predictions from the actual rating, while Figure
3b quantifies the quality of the final recommenda-
tion, i.e., how far is the recommended configuration
from the actual optimum.
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Figure 3: Normality study using ProteusTM for a
30% training set and 70% test set

The results depicted in Figure 3 show that the
predictive accuracy of CF algorithms is strongly af-
fected by the choice of the normalization procedure.
We can verify that applying no normalization or us-
ing the normalization with respect to the max, the
predictor performs very poorly in terms of overall
predictions (Fig. 3a) and when finding the optimal
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configuration (Fig. 3b). While using an ideal solu-
tion or RD the recommendations are really close to
the optimum configuration and to the overall abso-
lute values of the predictions.

3.1.2 Normalization in the Recommender

An ideal normalization cannot be used in Pro-
teusTM since it would require knowing a priori the
KPI of the optimal configuration for an unknown
workload.

RD, the normalization techniques proposed in the
ProteusTM’s work [6], aims at approximating the
ideal solution described in the previous sub section
by ensuring that for any workload w: (i) of two con-
figurations ci and cj , namely kpiw, ci and kpiw, cj,
the ratio is preserved in the rating space, i.e.,
kpiw,ci
kpiw,cj

=
rw,ci
rw,cj

where rw, ci and rc, cj represent the

ratings attributed, respectively, to configurations ci
and cj for workload w; (i) the ratings of the vari-
ous configurations of a workload w are distributed
in the range [0, Mw] so as to minimize the the index

of dispersion of Mw : D(Mw) = var(Mw)
mean(Mw) .

Algorithm 1 Rating Distillation algorithm [6].
1: for Ci ∈ C1 . . . CK do
2: Normalize Matrix KPI w.r.t. Ci

3: Collect the vector Mw with the max values per row
4: Compute meani(Mw) and vari(Mw)
5: end for
6: Return C∗ = argmini∈1...M vari(Mw)/meani(Mw)

Rating Distillation (RD) used by the Recom-
mender is depicted in Algorithm 1. RD is a nor-
malization technique that assumes the availability,
for each workload included in the training set, of
the KPI achieved by using all the available TM
configuration Ci ∈ C1, . . . , CK . In other words,
RD assumes a dense UM in the training set, ex-
cept of course, for the workload being queried for
which only a small subset of configurations is as-
sumed to have been sampled. It starts by normal-
izing the dense UM with respect to a configuration
Ci (line 2), and collects the maximum performance
of each workload , building the vector Mw that con-
tains the maximum values on a per workload basis
(line 3). Rating distillation selects as “pivot” col-
umn C∗ for the normalization of the whole UM,
the one whose corresponding Mw has the smallest
coefficient of variation.

Note that not only does this function reduce the
numerical heterogeneity of ratings; it ensures the
distance between two configurations is correctly en-
coded when the ratings are normalized (property
(i)). Also, minimizing the dispersion of the max-
imum values allows to align the upper extreme of
the rating distributions of each application (i.e., ma-
trix row) to a common value: the tighter the dis-

tribution around a common value Mw, the closer it
approximates an ideal ”omniscient” normalization
(property (ii)).

3.1.3 RecTM Workflow

After addressing how the recommender tackles het-
erogeneity, the next step is to understand how does
RecTM optimize PolyTM (see Algorithm 2).

Algorithm 2 RecTM work-flow [6]
1: Off-line performance profiling of an initial training set of

applications
2: Rating distillation and construction of the Utility Ma-

trix.
3: Selection of CF algorithm and setting of its hyper-

parameters.
4: Upon the arrival of a new workload:
5: Sample the workload on a small set of initial configu-

rations.
6: Recommend the optimal configuration).

RecTM employs a black-box approach that relies
on on-line and off-line training. Firstly it does off-
line performance profiling of an initial training set,
in which it explores a mix of workloads on the full
spectrum of the available TM configurations. Next,
it applies the rating distillation to obtain homoge-
neous ratings for each workload, resulting in the ini-
tial/training dense UM. Based on the training UM,
the sub-module Recommender, selects and config-
ures the CF algorithm (choosing between KNN and
SVD) to use at run-time, cross-validation. Now
that the off-line configurations ended, the system
is ready to receive new workloads.

At the arrival of a new workload, the Controller
drives the on-line profiling using Sequential Model-
based Bayesian Optimization (SMBO). This tech-
nique samples the new workload in a small number
of initial configurations, and tries to fit a probabilis-
tic model. Then, it identifies the next point (TM
configuration) to be sampled based on the expected
gain computed on the basis of the CF-based recom-
mendations (Expected Improvement [15]).

Based on the selected CF algorithm, it recom-
mends the optimal configuration for the new work-
load. The Monitor is responsible for collecting the
target KPI at the arrival of new workloads and feed
it to the Controller, so that the later can realize
the on-line profiling. The Monitor is also respon-
sible for the detection of workload changes and for
triggering the optimization process.

3.2. ProteusTM Limitations

As stated, Collaborative Filtering techniques in
ProteusTM, bases its estimations assuming the ex-
istence of a fully populated UM. This is only feasible
in the order of a few hundreds of training work-
loads and possible configurations. In fact, adding

5



a new tuning parameter in ProteusTM would lead
to an exponential growth in the number of possi-
ble configurations (the so-called curse of dimension-
ality [3]). Hence, it would make the use of Pro-
teusTM’s RD technique impractical or even pro-
hibitively onerous/time consuming.

3.2.1 Scalability of the normalization

The first extension we apply to ProteusTM is the re-
design of the UM to consider sparsity. A tightly in-
tertwined problem is to identify normalization tech-
niques alternative to RD that do not assume the
availability of a dense UM.

The first part of this thesis targets precisely
this problem by proposing two normalization tech-
niques: Box-Cox and Sparse Rating Distillation.

3.2.2 Lack of workload characterization
info

A common technique adopted in the CF literature
to cope with sparse UM matrix is to incorporate in
the knowledge base not solely the explicit users rat-
ings of the various items, but also a characterization
of the user’s profile.

This class of approaches motivates the research
direction that this dissertation investigates: to what
extent can the availability of information on the
workload characteristics (e.g., transaction duration
or abort rate) enhance the accuracy of RecTM,
which, we recall, relies solely on KPI information.
The key idea here is to extend the UM used in Pro-
teusTM to incorporate workload information, i.e.,
extending the UM to include columns containing
workload characteristics, information traceable at
run-time.

In summary in this report we intend to answer
the following research questions:

1. How can ProteusTM be extended to exploit a
sparse training set/UM?

2. Would incorporating workload information im-
prove ProteusTM accuracy?

4. ProteusTM Extension: Sparsity
This chapter will address the scalability problem
of ProteusTM by investigating the problem of how
to support sparse UM matrices in the ProteusTM
framework.

As already mentioned, the base CF algorithms
(SVD and KNN) employed by ProteusTM are al-
ready equipped to cope with sparse UM matrices.
The key problem to address, though, is how to
adapt the normalization procedure that generates
the UM that is then fed to the CF algorithms, since
RD assumes the use of a dense matrix.

In the following we propose and evaluate the use
of two normalization schemes designed to cope with
sparse matrices namely: Box-Cox (BC) and Sparse
Rating Distilation (SRD). Box-Cox transformation,
a well known data transformation technique [25]
that has been already successfully used in other
(non-TM related) optimization problems [29] and
that aims to generate data that follows normal dis-
tributions. And the second SRD, namely a vari-
ant of the RD procedure, that uses a normalization
technique similar in spirit to RD but adapted to
cope with sparse matrices.

4.1. Box-Cox
Box-Cox is a parametric power data transforma-
tion, proposed in 1964, used in order to reduce
anomalies such as non-normality in data [25].

The work in [29] used this transformation in order
to stabilize data variance and make the data more
normal distribution-like to fit their matrix factor-
ization technique. Similarly in our own context,
Box-Cox will be used to normalize the original UM.

Box-Cox is defined as follows, when the original
data set S ∈ R+:

boxcox(y) =

{
(yλ−1)
λ , if λ 6= 0

log(y), if λ = 0
(1)

where the parameter λ controls the extent of the
transformation. The quality of the normalization
is defined as the ability to map the data to a nor-
mal distribution. Unfortunately, the value of λ that
gives the best normalization varies depending on
the data set. Thus, a first challenge that we have
tackled is to find a procedure to find the best λ.
The procedure considered to tune parameter λ is
based on the Kolmogorov-Smirnov test.

4.1.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov Test (KS-Test) is a
non-parametric test that tries to determine if two
data sets differ significantly from one another. We
will use KS-Test as a ”test of goodness of fit” which
is concerned with the agreement between the dis-
tribution of a set of sample values and a theoretical
distribution.

Suppose that a population is thought to have
some specified cumulative frequency distribution
function, say F0(x), i.e, for any specified value of
x, the value of F0(x) is the fraction of observations
in the population having measurements less than
or equal to x. If F0(x) is the population cumula-
tive distribution, and SN(x) the observed cumula-
tive step-function of a sample then the Kolmogorov-
Smirnov statistic is [18]:

Dn = max|F0(x)− SN(x)| (2)
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This statistic quantifies a distance between the
empirical distribution function of the sample and
the cumulative distribution function of the reference
distribution. If the sample SN(x), comes from a
distribution close to F0(x) then the value of Dn
will converge to 0.

We will use the Kolmogorov-Smirnov statistic in
order to chose which is the best alpha for a training
set in an automatic way.

4.1.2 Box-Cox and KS-Test

The algorithm that uses KS-Test to tune the pa-
rameter λ of Box-Cox will be presented in this sec-
tion. The main objective of the algorithm is to
find a value for λ that better normalizes a random
training set, which is the one that minimizes the
Kolmogorov-Smirnov statistic. We will use the one-
sample KS-Test which will compare the empirical
cumulative distribution of the matrix UM against
a Normal Distribution with the same average and
standard deviation.

Before explaining the algorithm it is relevant to
mention that, the Box-Cox algorithm standard val-
ues for λ are normally in between the interval [-2,2]
[13].

In order to use KS-Test together with Box-Cox
this was the developed algorithm:

Algorithm 3 Box-Cox function in ProteusTM

1: for λ ∈ [−2; 2]; with step 0.1 do
2: Normalize Matrix KPI using box-cox with λ

(equation 1).
3: Gather the new average (avg) and standard

deviation (stdev).
4: Transform the resulting matrix into a vec-

tor v organized in an ascending order of its ele-
ments.

5: Apply KS-Test:
6: Build the reference NormalDistribu-

tion(avg, stdev), F0.
7: Build the Empirical Cumulative Distribu-

tion (ECD) of v, SN = ECD(v)
8: Compute Dn for the current lambda(§ 4.1.1

equation 2)
9: end for

10: return the value λ∗ that achieved minimumDn

The first step to implement this algorithm is to
apply the Box-Cox normalization (Eq. 1) on the
UM, in an interval starting from -2 to 2, increas-
ing by a fixed step (which we set to 0.1) per it-
eration (line 1-2). In order to use the KS-Test
we need the reference Normal Distribution and the
Empirical Cumulative Distribution (ECD) of our
sample (UM). To build the reference Normal Dis-
tribution, we first calculate the average and the

standard deviation of the elements present in the
resulting matrix, and using the Apache Commons
Library 1 we create the reference NormalDistribu-
tion(average, standard deviation). Next, we trans-
form the normalized UM into a vector, of size n,
organized in ascending order and calculate its ECD.

With these two distributions we can calculate the
Dn (line 8), repeating these steps until we reach
the end of loop. Finally, the returned λ∗ is the
one that achieves the smallest Dn value (line 10)
amongst the several iterations. To further enhance
accuracy, once a λ∗ has been found we repeat the
procedure by zooming in in the neighbourhood of
λ∗: [λ∗ − 0.1, λ∗ + 0, 1]. Repeating the search at a
finer granularity (0.01).

4.2. Sparse Rating Distilation

RD assumes that rows in the training set can be
normalized using the value of any configuration.
With a sparse training set, however, it is possi-
ble that some workloads cannot be normalized by a
given configuration, because that configuration has
not been sampled. SRD modifies RD to cope with
sparse training data.

SRD is our modified version of the RD that works
very intuitively. In short, for each configuration Ci,
SRD builds a sub-matrix of the UM of size m×CK ,
where only the rows that store some KPI value for
column Ci are present, i.e, rows missing the rating
for column Ci are removed. Then, RD is performed
on each sub-matrix against Ci, and the Ci delivering
the lowest coefficient of variation is chosen.

In case of high sparsity, however, it can hap-
pen that a sub-matrix is extremely small, because
a given configuration has been sampled by a very
limited number of training workloads. When this
happens, the statistical meaning of any results ob-
tained with such a matrix is very limited, and can
even be misleading, leading to bad normalizations.

To cope with this issue we augment SRD with
a simple threshold-based predicate to evaluate
whether a sub-matrix has enough data to be con-
sidered statistically meaningful.

Let p the percentage of sparsity in the UM, m the
workloads selected to be part of the sub-matrix and
w the number of workloads in the original matrix.
The threshold is the following: |m| >= |w|∗(1.0−p),
i.e., the number of rows of the sub-matrix cannot
be less than (1.0− p) of the original matrix.

The new algorithm chooses the first configuration
C∗ that minimizes the index of dispersion Mw and
respects the threshold.In case the sparsity is so high
that no valid sub-matrix can be found we use the
return statement of the original algorithm.

1http://commons.apache.org/
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Figure 4: KNN - MAPE and MDFO for different
sparsity level of a 30% training set.

4.3. Evaluation

In this sections we compare both normalization
techniques for different sparsity levels, utilizing the
same data set and methodology as in the previous
study.

Figure 4 (a) and 4 (b) shows that BC performs
poorly in terms of prediction accuracy, which does
not improve when increasing the number of sam-
pled configurations per workloads. In contrast,
SRD attains a better MAPE. The quality of pre-
dictions in SRD increases when adding additional
sampled workloads and naturally decreases as the
sparsity increases. However even at 70% sparsity,
the MAPE is in average only 40% worse than the
MAPE achieved with a dense matrix.

Figure 4 (c) and 4 (d) report the MDFO for dif-
ferent sparsity levels. The results for 0% sparsity
SRD always beats BC, as we would expect looking
at the MAPE. The results changes when sparsity
is introduced. Although, the MAPE results for BC
are really poor, it predicts with good accuracy the
optimal configurations (Figure 4(c) and (d)). BC
with little knowledge about the workloads (2,3 ini-
tial configurations) obtains an MDFO around the
50%-70%, while SRD obtains values firmly around
the 80%. Regarding the best results, when we sam-
ple 20 initial configurations BC reaches an MDFO
around 10% while SRD considering only sparsity
> 0 oscillates between 20%-48%.

Although MAPE for BC is much worse than
SRD, BC is able to allow Proteus to identify a bet-
ter configuration. We argue this is because BC can
correctly rank the quality of the configurations, so
as to be able to pick the best. The absolute predic-
tion error is not very important, as long as the rank-

ing of the configurations correspond to the ground
truth. Instead, for example, the MAPE can be low
because the predictor is able to predict very well
the performance for very bad configurations.

This study indicates that, with sparsity, BC
might be a better choice for TM optimization. How-
ever, given its better MAPE, SRD would be better
for QoS-aware selftuning i.e., to adapt the TM to
match a specific performance requirement, rather
than just deployment the best configuration possi-
ble.

When looking at the MDFO metric, RD generally
outperforms BC in absence of sparsity. When spar-
sity is introduced, though, BC achieves significantly
higher accuracy levels than SRD.

5. ProteusTM Extension: Workload Charac-
teristics

A vast body of literature is devoted to enhance the
accuracy of RS by incorporating additional informa-
tion regarding the profile of the user (e.g., age and
sex), of the items (e.g., genre of a movie) and/or
context in which users interact (e.g., click or pur-
chase history) [26, 23, 22].

In this section we present a study on the im-
pact of adding additional information to the original
UM of ProteusTM. More precisely, this study assess
the idea of including in the UM, besides the KPIs
achieved by the various workloads across the vari-
ous configurations (which corresponds to the user’s
ratings for the various items) also different workload
characteristics, including average aborts, maximum
retries, writes duration.

The first step was to extend ProteusTM, in or-
der to support a new type of UM the Extended
UM (EUM). EUM is obtained by merging, on a
per-workload basis, ProteusTM’s original UM with
another data-set containing workload characteris-
tics.

A key conceptual problem at the basis of this ap-
proach is that it leads to blend in the same row
of the UM different types of information, which can
be expressed using completely heterogeneous scales.
In fact, while the values stored in the original UM
refer to the same KPI/metric (although expressed
workload-dependant scales), the EUM contains nu-
merical values associated with very diverse domains
(e.g., abort rate, transaction duration and through-
put). Hence, a relevant problem to address in order
to jointly use KPIs and workload characteristics is
how to ensure that the information encoded in the
EUM can be meaningfully interpreted by a RS.

We will consider two possible approaches to tack-
ling this problem:

(1) using different normalization schemes feed the
resulting matrix to the CF-based algorithms used
by ProteusTM, e.g. SVD or KNN.

(2) using LibFM [23], a RS software tool in-

8



tegrated with ProteusTM, based on Factorization
Machines (FMs) designed to support features com-
prising values belonging to different domains and
expressed using heterogeneous scales.

5.1. Evaluation

The objective of this section is to answer this ques-
tion: how is ProteusTM effectiveness impacted by
the addition of workload info, with sparse training
data?

This study was conducted using the same training
sets as in the previous sections, but do to space con-
straint we only present the results for 0% and 50%
sparsity. The workload features have been selected
taking into account previous studies [6, 28] and
further refined through a feature selection phase,
using Pearson product-moment correlation coeffi-
cient (PCC) and Information Gain (IG). IG was
utilized in order to output a feature ranking, in
which it suggested the most informative features for
our training set. This filtering outputted 11 work-
load characteristics, which we use to obtain the re-
sults that are now presented.
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Figure 5: KNN - Impact of using EUM for sparsity
levels 0% and 50%

This evaluation starts by studying the impact on
one of the CF techniques, namely KNN (Figure 5).
Next, we present the same study with LibFM (Fig-
ure 6). We note SRD-WI, BC-WI as the normal-
ization variant that also take into account workload
info.

The results lead to the following conclusion:
at least for the considered information fusion ap-
proaches and datasets, the use of additional work-
load information degrades, rather than enhancing,
the accuracy of typical RS algorithms, in particular
KNN and LibFM.
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Figure 6: LibFM - Baseline and workload informa-
tion for sparsity levels 0% and 50%

6. Conclusions

This dissertation builds on a recent self-tuning sys-
tem for TM, called ProteusTM, which has a unique
feature in the literature: it is the only self-tuning
solution for TM systems that supports dynamic op-
timization across a multi-dimensional configuration
space.

In particular, this dissertation investigates two
key research questions : i) how to extend Pro-
teusTM to support sparse training sets, and ii) to
what extent can the inclusion of workload char-
acteristics (e.g., abort rate) enhance the accuracy
achieved by ProteusTM’s. We answered the first
question by proposing and evaluating the use of two
alternative normalization techniques, based on the
Box-Cox data transformation and on a novel tech-
nique, which we called Sparse Rating Distillation
(SRD).

The results highlight that BC is the best tech-
nique for ProteusTM, when sparse training sets are
used. BC even in very sparse scenarios can achieve
results close to the optimum (around 10% from opti-
mal) with both learners. In comparison, with spar-
sity SRD does not perform as well as BC due to
the fact that it forces a drop in the percentage of
the training set equal, on average, to the percent of
sparsity of the whole data set.

As for the second question, in contrary to our
initial expectations, our results suggest that the in-
clusion of workload information clouds, in a remark-
ably consistent way, the predictor’s accuracy for all
the considered data fusion, normalization and learn-
ing techniques.
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