
A recommendation system approach to the tuning of
Transactional Memory

André Alves Rogério Santos

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Paolo Romano

Examination Committee

Chairperson: Prof. Daniel Jorge Viegas Gonçalves
Supervisor: Prof. Paolo Romano

Member of the Committee: Prof. Bruno Emanuel da Graça Martins

May 2017



ii



To my parents, thank you for everything.

iii



iv



Acknowledgments

First and foremost I would like to thank my supervisor, Prof. Paolo Romano, for all the support in

the realization of this dissertation. For all the hours spent discussing possible solutions and interpreting

results, for the patience and the time that allowed me to write this dissertation.

Another person who helped a lot in doing this thesis was Diego Didona. Without you the dissertation

would not have gone as smoothly, thank you very much. Thank you for all the time you spent explaining

and debugging the code with me and for all the feedback throughout this dissertation. Thanks to you I

got so familiar with ProteusTM code so fast and was able to do this dissertation.

To my parents, there is not enough words that can describe how thankful I am. Thank you for

supporting me in everything in life and helping me achieve my goals and dreams.

Also, I want to thank all my friends that supported me through this challenge and university. I want

to give a special thank you to Nuno Fangueiro, who has been with me through all of my academic ex-

periences, whom I shared amazing experiences and projects throughout this six years. Another special

thank you to Bernardo Rodrigues, Pedro Rosa and Miguel Costa, that stayed up with me all night in

order to finish the dissertation.

Last but not least, I want to thank Sara Meneses. You have been one of my biggest pillars during my

academic journey, believing in me every step of the way. Thank you for being part of my life, and being

there when I most needed.

v



vi



Abstract

Transactional Memory (TM) is a promising approach that simplifies parallel programming. However, in

the broad spectrum of available TM implementations, there exists no one size fits all solution that can

provide optimal performance across all possible workloads. This has motivated an intense research,

over the last years, on the design of self-tuning solutions aimed at transparently adapting the choice and

configuration of the TM run-time system.

This dissertation focuses on advancing a recent, state of the art solution in the area of TM self-tuning,

called ProteusTM. ProteusTM builds on recommendation system and Bayesian analysis techniques in

order to automate the tuning process of a TM system over a multi-dimensional configuration space — a

unique feature in the literature on TM self-tuning.

In particular, this dissertation investigates two key research questions: i) how to extend ProteusTM

to support sparse training sets, and ii) to what extent can the inclusion of workload characteristics (e.g.,

abort rate) enhance the accuracy achieved by ProteusTM’s.

Keywords: parallel programming, transactional memory, self-tuning, ProteusTM, Machine Learn-

ing, recommender systems
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Resumo

Memória Transacional (MT) é uma abordagem bastante promissora que simplifica drasticamente a

computação paralela. Contudo, mesmo considerando o vasto espectro de implementações de MT

disponı́veis, não existe uma solução que seja claramente superior a todas as outras em diferentes

cargas de trabalho. Ao longo dos últimos anos, este fato suscitou bastante interesse em investigar

soluções auto-ajustáveis destinadas a adaptar de uma forma transparente a escolha e a configuração

de um sistema de MT em execução.

O foco desta dissertação centra-se em melhorar uma solução recente, presente no estado da arte

na área de MT auto-ajustável, nomeadamente ProteusTM. ProteusTM é uma solução baseada em

sistemas de recomendação e em técnicas de análise bayesianas, com o objectivo de ajustar auto-

maticamente um sistema de MT tendo em conta um espaço de configurações multidimensional - uma

caracterı́stica única na literatura de soluções auto-ajustáveis aplicadas a MT.

Em particular, esta dissertação investiga duas questões-chave: i) como estender a solução Pro-

teusTM para suportar um conjunto de dados esparsos na fase de aprendizagem ii) até que ponto a

inclusão de novas caracterı́sticas referentes às cargas de trabalho (por exemplo, taxa de abortamento)

aumenta a precisão alcançada pelo ProteusTM.

Palavras-chave: computação paralela, memória transacional, auto-ajustamento , ProteusTM,

sistemas de recomendação
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Chapter 1

Introduction

Multi-core architectures are nowadays ubiquitous, bringing parallel programming to the forefront of soft-

ware development, with the objective of achieving better performance results. Hence, an important

problem is how to make the processing capabilities made available by parallel multicore architectures

easily accessible by the mass of programmer [1].

Parallel programming is very challenging. One of the most common problems is to synchronize mul-

tiple concurrent threads accessing shared resources. For many years lock-based systems were the

standard approach for synchronization in concurrent applications. However, this approach has many

known pitfalls. In fact, it is well known that coarse-grained locking is not scalable, whereas fine-grained

locking is scalable, but suffers of subtle issues that can endanger both the correctness and actual per-

formance of applications (e.g., deadlocks, live-locks).

Transactional Memory (TM) [1] is a promising approach to solve the problems of concurrent pro-

gramming. TM offers a powerful abstraction to programmers, reducing the complexity of building parallel

programming applications. With the TM abstraction programmers need only to specify which region

of code to run atomically without worrying about how concurrent accesses should be synchronized (in

contrast with locks) to guarantee correctness.

Over the years TM has gained a lot of attention [2, 3, 4], due to the maturing of the research and the

release of the commercial processors providing hardware support for TM (Intel and IBM). Consequently

numerous implementations were published, software-based, hardware-based and hybrid-approaches,

providing evidence that TM is a promising solution.

However, in order to pave the ground for the adoption of TM as a mainstream paradigm for parallel

programming, there is one crucial issue to address. Despite the numerous existing implementations,

either in software or hardware, there exists no single solution that can provide optimal performance

across all possible workloads [5, 6, 4]. Research has provided evidence that the choice of the best TM

implementation is affected, in complex ways, by a number of workload characteristics [5, 4, 7]. In addi-

tion, performance can be affected by several factors, for instance programs inputs, phases of program

execution, as well as the architectural aspects of the underlying hardware. Further, as heterogeneity of

hardware/software architecture keeps on increasing, it appears quite unlikely that an “universal” solution
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will be identified in the near future.

Due to the factors mentioned above, the programmer is left with the responsibility of determining

the optimal TM application, which is not only a daunting task due to the vast TM space, may also be

impossible to achieve using a single, static configuration (e.g., with time-varying workloads).

Self-Tuning reveals as an appealing solution to cope with heterogeneity in workloads and TM op-

timization, removing the burden of the programmer to identify the optimal configuration. Existing self-

tuning techniques for TM systems [4, 5, 6] rely on modelling and forecasting techniques to optimize

TM performance, , i.e., to identify the optimal configuration of one or more parameters controlling the

behaviour of a TM algorithm based on the workload generated by some target application. Some exam-

ple of black-box modelling techniques used in self-tuning systems for TM include Neural Networks [8],

Decision Trees [9] and Collaborative Filtering [10].

Most of existing works using self-tuning to optimize TM performance aims to adapt dynamically ei-

ther: (i) internal TM parameters, for instance number of retries when a transaction aborts [4]; (ii) the

concurrency level of a TM, adapting the number of active threads [11, 12]; (iii) the choice of the TM

algorithm to employ [6]. However, these solutions optimize the TM run-time along a single dimension,

which is clearly unsatisfactory given the multitude of configuration choices/alternative implementations

that exist.

To the best of my knowledge, the first and only multi-dimensional self-tuning solution for TM is Pro-

teusTM [5], and it will be the main focus of this dissertation.

ProteusTM leverages on Collaborative Filtering and Baeysian Optimization [13] to identify the con-

figuration that optimizes a given Key Performance Index (KPI) (e.g., throughput, execution time).

The goal of this dissertation is to investigate two research questions originated by ProteusTM:

1. One of the key techniques introduced by ProteusTM consists in an ad-hoc data normalization tech-

nique, called Rating Distillation. Rating Distillation addresses the problem of numerically manipu-

lating KPIs of different applications, expressed in scales that broadly vary across different applica-

tions (e.g., throughput or execution time), in order to be used as input ratings for recommendation

systems, based on, e.g., K Nearest Neighbours (KNN) [14] or Single-Value Decomposition (SVD)

[15]), which assume that ratings are expressed in a uniform scale (e.g., a 5 star rating system).

This normalization technique has been designed assuming the availability of full information re-

garding the performance of every application (included in the training set) across every possible of

the available TM configurations.

This is quite a relevant limitation, given that even in a small scale system the number of available

TM configurations are on the order of hundreds and that the configuration space grow exponentially

with its dimensionality (the well-known curse of dimensionality [16]).

The first research question addressed by this dissertation deals precisely with this limitation of

ProteusTM, proposing and systematically evaluating techniques aimed at supporting the use of

sparse training information.

2. ProteusTM’s training phase relies solely on the knowledge of the target KPI achieved by a work-
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load when deployed over different set of configurations. In other words, it does not exploit any

information regarding intrinsic workload characteristics (e.g., abort rate or transaction duration).

Hence, a natural question, which is addressed in this dissertation, is to what extent can the ac-

curacy of ProteusTM be improved by incorporating information on workload characteristics in its

knowledge base.

We provide an answer to this question by considering different learners and normalization tech-

niques.

This document is structured as follows. Chapter 2 provides a background on two main areas: TM

and self-tuning. Chapter 3 describes ProteusTM in detail, and highlights the research directions we

intend to study in this dissertation. Chapter 4 addresses the problem of how to support sparse training

sets in ProteusTM. Chapter 5 studies the problem of incorporating workload information in ProteusTM’s

knowledge base. Finally, Chapter 6 concludes the dissertation by summarizing the results obtained in

the previous chapters and discusses possible future work.

3
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Chapter 2

Related Work

This chapter focus mainly on two topics: TM and Self-Tuning. Section 2.1 provides background on TM,

by discussing the different trade-off’s when designing a TM system. It includes insights on different types

of TM systems, namely Software TM (STM), Hardware TM (HTM) and Hybrid TM (HyTM).

Section 2.2.2 reviews the state of the art on self-tuning of TM systems. Before presenting existing

solutions, though, it first motivates the need for self-tuning in TM systems and provides background

information on some key methodologies and Machine Learning (ML) algorithms that are often employed

by this type of systems.

Concludes by detailing some existing solutions of self-tuning for TM.

2.1 Transactional Memory

TM is a promising concurrency-control mechanism that reduces the complexity of building parallel pro-

gramming applications, relying on a powerful abstraction used for decades in the database community,

namely transactions [1]. A transaction is atomic, in the sense that either all the various data accesses

(read/write) of which it is composed are either executed as whole (commit), or none of them are (abort).

Besides being atomic, a transaction also runs in isolation, which means that it appears to be executed

as if it ran solo in the system, i.e., the effects of a transaction are not visible to the outside unless it

commits (there were no conflicts). In practice, a TM system runs several transactions in parallel, and is

up to the TM library to enforce isolation and atomicity via some concurrency-control algorithm.

TM reduces complexity by offering a powerful, yet intuitive, abstraction in which programmers need

only to specify which code block they want to execute atomically, without worrying on how to guarantee

atomicity [7, 1, 3]. In contrast, in other solutions like fine-grained locking, programmers have to specify

how to synchronize concurrent accesses to shared data/memory.

As stated above, a TM system allows transactions to run in parallel and the problem of regulating

concurrency is shifted from the programmers to the TM designers. The key mechanisms of TM design

are data versioning and conflict detection. As transactions run in parallel we need to manage multiple

versions of data, we can either use eager or lazy versioning. Eager versioning writes the new values
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to memory immediately and saves the old values in an undo log. In case the transaction commits, no

more actions are needed, if the transaction aborts we need to restore the old values from the undo log.

With lazy versioning we store the new values in a buffer, and in case the transaction commits we have

to write the new values to memory from the buffer. In contrast if it aborts no action is needed. This

takes us to next key mechanism, conflict detection. A conflict occurs when two or more transactions

access the same data and at least one issued a write operation. The conflict detection can be done

while the transaction is running (pessimistic conflict detection) or during the commit phase (optimistic

conflict detection).

The TM abstraction can be implemented in various ways, namely Software, Hardware and a combi-

nation thereof that is typically referred to as Hybrid TM. The following sections overview existing literature

in each of the three areas above.

2.1.1 Software Transactional Memory

STM implements the TM abstraction entirely in software and unlike HTM (Section 2.3) needs software

instrumentation of reads and writes memory accesses to trace conflicts between concurrent transac-

tions. This instrumentation is typically inserted by a compiler, which transparently injects calls to allow

the STM library to trace conflicts between concurrent transactions.

TM has attracted a lot of research activity and throughout the last decade STM systems have been

extremely researched as a solution to replace lock based approaches. More recent studies also focus on

STM as a fall-back path to HTM, when hardware resources are insufficient/incapable of successfully ex-

ecuting some transaction. Consequently these researches produced a variety of STM implementations

(see [3, 2]), that differ in the following aspects [2]:

1. Conflict detection: eager/lazy/mixed, invisible readers/visible readers.

2. Buffering mechanism: redo log/undo log/cloning.

3. Meta-data organization: the data granularity either object-based/word-based/ownership records.

4. Contention management strategy, e.g., if a conflict is detected early either stall one of the transac-

tions or abort one of them and retry later.

5. Validation Strategy: timestamps-based/lock-based.

6. Progress guarantees: non-blocking, livelock-free, starvation-free.

Most recent studies (e.g., [4, 7, 17]) affirm that there is no ”one-size-fits-all” solution that will out-

perform clearly all the other solutions, since TM performance is influenced by design decisions (e.g.,

examples above) and by the workloads they are executed on (e.g., read-intensive, write-intensive).

In the next subsections I will analyse and explain two different STM implementations, TinySTM [3],

and Norec [2]. TinySTM [3] a word-based and time-based high-performance implementation, and Norec

[2] optimizes STM performance at low thread counts.
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2.1.1.1 TinySTM

TinySTM [3] is a lightweight word-based STM implementation, with a time-based design and a lock

based implementation to protect shared memory locations. The authors of TinySTM opted to use an

encounter-time locking (eager) because, as stated in the paper:

• Empirical observations indicate that an early detection of conflicts increases the transaction through-

put, unlike in commit-time locking, that detects conflicts at commit time and cannot be resolved in

other way than aborting some transaction.

• Encounter-time locking allowed the authors to efficiently handle read-after-writes.

Additionally two strategies for accesses of memory were implemented: write-through access and

write-back access. With write-through access, transactions will write directly to memory and in case of

abort need to revert their actions using an undo log. Write-back access, transactions write into a buffer

and in case of commit write to memory.

TinySTM basic algorithm, like most word-based algorithms, relies on a shared array of locks, in

which each lock covers part of the address space, based on an hash function. The locks serves as an

ownership record, where the less significant bit of a lock marks if the lock is owned (0 or 1). Further, if

the lock is not owned the remaining bits are used for the version number, that corresponds to the commit

timestamps that last wrote to the memory location. In case the lock is owned, the algorithm varies

depending on the strategy for accesses of memory: for write-through the last remaining bits are the

address of the transaction that owns the lock; for write-back access the last remaining bits correspond

to an entry in the write-set of the owner transaction. The version number is a shared counter that

increments every time a transaction acquires the lock.

As mentioned it uses eager conflict detection, and to guarantee consistency uses the LSA [18] algo-

rithm. LSA provides extendable timestamps, that avoid false positives. Basically if a transaction reads a

value and it finds a more recent version, outside the validity range of its snapshot, it tries to construct a

consistent snapshot by extending its own to the most current version by verifying if its read set is valid

[18, 19].

To conclude TinySTM has proven to have good scalability and to have high performance on read

intensive workloads. The authors also provide a dynamic tuning strategy for the granularity of the internal

locks it uses, which further enhances the STM performance.

2.1.1.2 NOrec

NOrec is an ownership-record free STM known for the extremely low overhead at low thread counts,

clean semantics and satisfactory scalability. This STM focuses on three key ideas:

1. Single global sequence lock based on TML [20];

2. An indexed write-set, as in previous work done by the authors [21];

3. Value based conflict detection.
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NOrec uses a single commit writer protocol, where the single global lock is used to coordinate write

transactions and for validation purposes. A single global sequence lock allows invisible readers, which

means that read operations do not incur the overhead related with updating the lock. This type of

protocol (used by TML) can become a source of overhead for writer intensive transactions, so NOrec

unlike TML uses lazy conflict detection, in which transactions do not attempt to acquire the sequence

lock until commit time (less time holding the lock). This design choice increases the time speculative

writers/readers can run concurrently as well as the commit probability of read-only transactions. Using

a lazy strategy the STM needs a redo log to buffer writes before writing them to memory (indexed write-

set).

Another extension to avoid using a conservative implementation of reads and decreasing scalability

is value-based validation. With value-based validation a transaction logs the location and the value

of the read operation, to be used for later validation. Validation happens at lock acquisition or when

a transaction reads a value and finds the global lock to have increased. In this case, it re-reads the

addresses in the read-set and checks if the value is the same, or has a more recent value (invalid).

The lightweight design of NOrec makes it an appealing solution for low number of threads, as at

high threads count the global lock risks becoming a bottleneck if there is a non-negligible probability of

running update transactions. Also, due to its simplicity, it lends itself as a promising approach to be used

as the fall-back STM for Hybrid TMs.

2.1.2 Hardware Transactional Memory

HTM is a hardware support for TM-based programming. HTM was the first approach to TM and

lacked support at the time, actually the first proposed TM implementation [22] was back in early 90s,

although the first implementations in real processors started to appear only in recent years. Indeed after

the recent integration of HTM supports in processors by Intel and IBM and the maturing of TM, HTM

attracted a lot of research.

HTM is potentially a very efficient solution, since it avoids the overheads of STM instrumentation.

Currently available HTM implementations exploit the processor’s cache coherency mechanism: they

keep track of memory loads and stores in the cache or cache-like structures [23] for conflict detection.

While this choice simplifies their design, it also imposes some relevant restrictions: since HTM are limited

to their cache capacity, long running transactions can abort frequently, due to cache capacity exceeded.

Even with its current limitations, HTM has exceptional performance on workloads characterized by small

transactions, for example as a synchronization primitive for concurrent data structures.

One fundamental design in most of HTM implementations is its best-effort nature, which gives no

guarantees on whether transactions will ever commit, even in the absence of conflicts [4, 23]. Due to

this design choice, there is a need for a fall-back software solution mechanism, typically a lock or a STM

[4, 2].

Although current HTM implementations do share some implementation approaches, there are some

major differences in: cache detection granularity, cache geometry and abort reasons. Table 2.1 provides
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Processor type Blue Gene/Q zEC12 Intel Core i7-4770 Power8

Conflict-detection granularity 8 - 128 bytes 256 bytes 64 bytes 128 bytes

Transactional-load capacity 20 MB (1.25 MB per core) 1 MB 4 MB 8 KB

Transactional-store capacity 20 MB (1.25 MB per core) 8 KB 22 KB 8 KB

L1 data cache 16 KB, 8-way 96 KB, 6-way 32 KB, 8-way 64 KB

L2 data cache 32 MB, 16-way 1 MB, 8-way 256 KB 512 KB, 8-way

SMT level 4 None 2 8

Kinds of abort reasons - 14 6 11

Table 2.1: HTM implementations of Blue Gene/Q, zEC12, Intel Core i7-4770, and POWER8 [23]

examples of different HTM implementations. And, just like mentioned when discussing STM systems

in Section 2.1.1, most studies that analysed HTM’s performance (e.g., [6, 7]) reached a consensus

that there is no ”one-size-fits-all” implementation. Different implementations work better in different

workloads.

2.1.3 Hybrid Transactional Memory

HyTM uses both HTM and STM, in which normally, running with HTM is first attempted, falling back

to STM to handle situations where the HTM could not execute the transaction successfully. This type

of TM however, needs to be carefully implemented, so that both (HTM and STM) preserve correctness

and transactional semantics when integrated.

Hybrid models require hardware and software transactions to co-exist, and most implementations

monitor common memory location between transactions, to help in conflict detection. However, most

mechanisms that are currently adopted to support this co-existence induce high overhead on the TM,

which often leads to unsatisfactory performance [4, 24].

Some researchers believe that HyTM has the potential to overcome its current limitations [4, 24, 25]

and achieve better results.

As stated in STM section, NOrec [2] authors believed that this STM could be used as a fall-back STM

and they implemented the Hybrid NOrec that will be explained more in detail.

2.1.3.1 Hybrid NOrec

The goal of Hybrid NOrec [25] is to develop a novel HyTM algorithm that supports the execution of

hardware and software transactions without the per-access instrumentation overhead on HTMs.

Hybrid NORec is probably one of the first proposed HyTMs, as well as one of the most popular. It has

been designed to operate with different HTM implementations, including the ones provided by AMD’s

ASF [26], Sun’s Rock [27], as well as IBM’s P8 and Intel’s TSX. Hybrid NOrec uses the NOrec STM

as the fall-back path for HTM, appropriately adapted to ensure correct coupling with the HTM-based

execution path. To extend NOrec’s single-writer commit protocol, it was necessary to produce a design

where HTM needs only to monitor one location.

NOrec original global lock is retained and used for synchronization between hardware transactions
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and software transactions. In Hybrid NOrec the HTM reads the global lock right after the start of the

HTM transaction, before any memory access is performed allowing the HTM to subscribe to STM — a

technique also called eager lock subscription [28]. In addition they added a second lock, so that a HTM

transaction can signal its commit to STM triggering validation on the last.

Software Transactions executes as normal (in NOrec), but at commit time tries to acquire both locks

(2-Location algorithm [25]) and after write-back restores the locks. A hardware transaction starts by

reading the global lock, and if it is not available it spins, guaranteeing that no HTM can commit when

a software transactions write-back is being executed. Before commit, a hardware transaction reads

and increments the second lock. The value-based validation of NOrec, enables short-running HTM to

commit without forcing non-conflicting software transactions to abort.

Hybrid NOrec is a HyTM with low overhead on hardware transactions, that shows significant potential

for Hybrid TM’s and point out several challenges to faster reach that potential: HTM performance and

STM scalability.

2.2 Self-Tuning for TM

Transactional Memory has several appealing characteristics, and, as mentioned, has attracted in-

creasing attention in the literature, leading to the publication of a large number of works (e.g., [3, 2, 19,

23]). One of the key results from all the existing research is that, independently of the synchronization

scheme adopted by different TMs, performance is strongly workload dependent and affected by complex

factors, such as duration of transactions, level of data contention, ratio of reads/writes.

Existing literature in the area seems to have reached consensus on the fact that there is no ”one-

size-fit-all” solution that can provide optimal performance across all possible workloads. In fact the best

TM for a given workload can become the worst for another one.

Figure 2.1: Performance heterogeneity in TM applications[5]

Figure 2.1 provides experimental evidence of this fact. The study uses different architectures and

metrics. The left graph reports the energy efficiency (Throughpust/Joule) of 3 different TM systems,

using different TM implementations and internal configurations, when running 3 different applications.

The right graph focuses instead on the throughput achievable by the same set of TM configurations

when deployed on a different architecture and considering a different set of benchmarks. By the data
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in the plots, we clearly see that, in different workloads, different TM implementations achieve the best

performance results.

Self tuning represents a very appealing solution to tackle this issue. Generally speaking, self-tuning

uses performance modelling and forecasting techniques to optimize, depending on the workload and

TM, different parameters. There are two key design choices at the bases of a self-tuning system [29]:

1. When to trigger adaptation?

2. How to decide which adaptation should be triggered?

There are two main approaches on when to trigger the adaptation, react to workload changes (reac-

tive) or anticipate them (proactive) [29]. Following this, to accurately apply one of this approaches, self

tuning systems have to able to robustly distinguish workload changes from transient fluctuations that are

not statistically meaningful, e.g., due to measurement noise in throughput.

Reactive schemes evaluate the needs for reconfiguration based on the current workload, unlike

proactive schemes where the strategies attempt to anticipate the need for reconfiguration using predic-

tive techniques. A reactive approach tracks the variation of the current workloads, allowing a promptly

reaction to abrupt workload changes, but can have sub-optimal performance in transitory stages. In

contrast, proactive schemes by predicting the workload needs of reconfiguration, it can adapt before

the workload change reducing the time a sub-optimal configuration is used. The two schemes have

complementary pros and cons, which has also motivated the design of hybrid schemes that use both

approaches in combination.

When workload changes are detected or predicted, self tuning needs to decide which adaptation to

trigger. Following the taxonomy presented by Didona et al. [29], the identification of optimal configuration

can be performed by the mean of models, which can be classified into: white box, black box and grey

box (hybrid of black and white) techniques.

• White Box Modelling [30], leverages on available knowledge of the internal dynamics of a system

and/or application, and with it builds an analytical model to capture how the system’s configurations

and workloads parameters can affect performance. Analytical models do not normally need a

training phase, in contrast with black box models. This approach normally relies on approximations

and assumptions to derive a treatable model of system’s performance, and thus achieving good

accuracy can be challenging in certain scenarios. The main reason is the fact that inaccuracies

are not amendable in analytical methods, since the system is characterised by means of equations

and these are immutable.

• Black Box Modelling [11, 31], in contrast with white box modelling, does not require any knowl-

edge about the system/application internal dynamics. This model relies on a training phase, during

which, based on the observation of the system’s actual behaviour under different configurations

and subject to different workloads, infers a statistical performance model via different Machine

Learning (ML) techniques. Normally using this approach one achieves great accuracy for scenar-

ios close to the ones observed in the training set. Instead, accuracy of ML is typically poor in
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regions of the parameters not sufficiently sampled during the training phase. The main drawback

of this approach is that the number of configurations can grow exponentially with the number of

input parameters of the model.

• Grey Box Modelling [12], employs both white and black box methodologies, creating an hybrid

model that inherits the best features from both approaches: on the one hand, good accuracy for

unseen configurations/workloads and minimal training time (white box), and, on the other hand,

the robust and increasingly great accuracy by periodic training (black box).

One can yet sub-categorize these models: black and grey box models have training phases that can

be performed, either off-line or on-line. Off-line learning is normally built by using Supervised Learning

(SL) [8, 32], where the ML algorithm is trained over a training set. The off-line training set is assumed to

be available to the learning algorithm, and it is up to this algorithm to output a model based on it. When

confronted with a new value, not present in the training set, the model constructed during the training

phase can be queried to predict which adaptation to use (e.g., using classification techniques [33, 34]).

On-line learning can use SL algorithms, updating a model by incrementally considering every new

available data. This approach normally requires less computational power compared to off-line tech-

niques, but can have a lower accuracy. Another way to approach on-line learning is by using Reinforcement

Learning (RL) [35, 36] that uses concepts like exploration of untested actions for a new workload and ex-

ploitation of available and incomplete knowledge, to achieve the optimal configurations. RL techniques

strive to maximize some notion of cumulative reward (e.g., throughput) when presented with a new state

(e.g., workload) based on the data already gathered [29].

In the remainder of this section we will address in more detail some of the machine learning al-

gorithms presented. Firstly, a brief overview about: SL and RL. Next, we explain with some detail

Collaborative Filtering (CF) and different approaches to tackle this problem as well as present different

self-tuning solution for TM.

2.2.1 Main Machine Learning Techniques for self-tuning of TM

We overview the main ML techniques that are relevant for this thesis, either because they have already

been used in the literature on TM self-tuning or because we plan to exploit it in this dissertation.

2.2.1.1 Supervised Learning

SL [8, 32] is very commonly used in black-box methodologies, where the algorithm is used to update

a model incrementally with arrival of new data. In more detail, the training algorithm objective is to infer

a function, also called model (φ), over a training set where X is the input space and Y the output space:

φ : X → Y (2.1)

Note that to build this model, the training algorithm is provided with training examples which are

normally constituted by pairs {(x1, y1), ..., (xN , yN )} of labelled features, where for any input xi ∈ X the
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output yi = f(xi) : yi ∈ Y is known.

Finally the model φ, which is an approximation of the function f(x), optimally when it receives a new

feature xi possibly not present in the training set, determines correctly the output ŷ ∈ Y .

Regarding SL we can distinguish between two type of problems, classification and regression, dif-

fering in the way they map the input and output. For classification the co-domain Y is a discrete set

normally called classes or continuous space, while in regression the co-domain Y is a continuous set.

2.2.1.2 Reinforcement Learning

RL takes a different approach: unlike in SL, where all the available knowledge is assumed to be made

available to the learner upfront, RL techniques aim at achieving some target goal by learning through

several iterations of trial-and-error in the system environment. There are three fundamental parts of a

RL problem: the environment, the reinforcement function, and the value function [35].

Figure 2.2: Example of RL interactions [9]

Figure 2.2 describes a general approach and set of interactions that the RL algorithm uses to build

its model. In standard RL the agent is connected to its environment. The environment has to be at least

partially observable by the RL systems, so that the agent can observe the states of the environment,

either with sensors or symbolic descriptions [35]. An agent interacts with its environment through actions,

causing an alteration in some state of the environment.

The ”goal” of RL is defined through a reinforcement function/reward function that normally assigns

a numerical value - immediate payoff - to each distinct action the agent may take from each distinct

state. In other words, it maps states and actions to reinforcements (normally called reward in the form

of a scalar value). Summarizing, the agent learns to perform actions that will maximize the sum of the

reinforcement received since the initial state to the last.

Until this point we described the interaction of an agent with its environment as a sequence of actions,

receiving a reward of realizing that action in a determined state. The value function tackles the problem

of distinguishing between ”good” actions. Associated with the value function comes two terms: policy

and value. A policy is what determines what choices to take in different states in order to maximize the

reward function. The value of a state is determined by the sum of the reinforcements received in the

current state to a terminal state. In summary, the value function is a mapping from state to state.

One of the major problems in RL is that certain actions cannot be represented as good actions or

bad actions. One of the most-used techniques to solve this problem is dynamic programming [37].
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To finalize this topic, which only overviews how a standard model of RL is built, it is important to men-

tion that several algorithms have to make a trade-off between exploration and exploitation. Exploration

refers to the act of performing new actions in a state in order to learn its reward, while exploitation focus

on the knowledge already gathered with high reward to make a decision [9].

2.2.1.3 Collaborative Filtering

Everyday we are inundated with choices and decisions such as: ”Where will I lunch today?”, ”What

movies/series should I watch?”, ”What countries to visit?”. The size of the available options nowadays

is enormous, so people normally rely on recommendations of other people or known web sites to make

simple choices that we are confronted with daily.

There has been increasingly more investigation on how to automatically give recommendations to

people, one of the most popular examples is Amazon which has been giving automatic recommenda-

tions to its users since the late 1990s [14] or the Netflix Prize [38]. This type of systems are called

Recommendation Systems (RS), systems that seek to predict the rating a user would give to an item,

and exploit these recommendations to recommend items of interest to users [5].

One of the most popular techniques in the recommendation systems literature is CF algorithms (e.g.,

[34, 33, 14]).

One of the fundamental assumptions of CF is that if user X and Y rate the same items similarly, they

will rate or recommend other items similarly [15]. CF systems uses a database of preferences, i.e., the

information domain consists of a list of users that have expressed their preferences for various items.

This preferences are normally called ratings and the interactions can be represented in the form of a

triple (User, Item, Rating). Ratings can take a lot of forms, one very recent example of explicit information

is Netflix which used integer-valued rating scaled (0 - 5 stars), but have recently updated to a system

of like and dislikes similar to the one used by Facebook in photos. Another form is implicit information

which are inferred by the systems such as purchases performed online by users or clicks.

The set of all the triples constitutes an Utility Matrix (UM), the most usual representation of a data set

in CF, where normally we represent the user in the rows of the matrix, the various items in the columns

and each cell is the rating of each user for the respective item. To better visualize the problem, bellow

we present Table 2.2 a small example of an UM in a movie recommendation scenario:

Lord of the Rings Batman begins Titanic The Hobbit
Alice 4 ? 3 5
Bob ? 5 4 ?
Jeff 5 4 2 ?

Table 2.2: Small sample of an utility matrix, using a 0 to 5 star scale.

This small example is constituted by 3 users and 4 movies, where the symbol ? represents unknown

values, i.e., the user has not yet made a recommendation for that movie. When using CF techniques

the main focus is to predict the ratings a user would give to an item, take the sample matrix in Table 2.2
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again as an example, the task would be to fill the missing values in the matrix. After the prediction, we

recommend the best n-items based on a list of predictions for the user.

CF systems have many challenges and need to possess certain characteristics, since they are ap-

plied in challenging scenarios. This type of systems must be able to [15]:

• Deal with highly sparse data.

• Scale with respects to the increasing number of users and items.

• Give satisfactory recommendations in a short time.

There are several collaborative filtering methods that try to tackle this challenges [15, 33, 14], we

will address some approaches which are used by the main focus of this thesis, ProteusTM [5]. In the

following we will overview some of these approaches, as they are closely related with the work carried

out in this dissertation.

K Nearest Neighbours

KNN is considered one of the most intuitive among the several CF algorithms, it tries to predict the

user preferences based on users that share similar interests. One of the most critical steps of this type

of algorithm is the similitarity function, sim(u, v), that identifies similarities between users or items [14].

The input variables of a similarity function are two vectors, u and v, both with n elements. In order to

compute sim(u, v), only the shared elements, S = {i ∈ u ∩ v}, by both vectors are considered. In Table

2.2 if vector u and v correspond to the rows of the users Alice and Jeff respectively, the values of i would

be Lord of the Rings and Titanic.

Some of the most popular similarity functions are: Pearson Correlation and Cosine. The Pearson

Correlation function measures the extent to which two variables relate with each other:

sim(u, v) =

∑
i∈S (ru,i−ru)(rv,i−rv)√∑

i∈S (ru,i−ru)2
√∑

i∈S (vu,i−vu)2
, (2.2)

where i refers to the identifier of an element present in both vectors, ru is the average rating of the

co-rated items in vector u and ru,i a known rating for user u and item i.

The Cosine based similarity can be measured by computing the cosine distance of the two vectors,

obtained by computing the scalar product of the two vectors and normalize by the product of the their

norm:

sim(u, v) =

∑
i∈S (ru,i rv,i )√∑

i∈S (ru,i )2
√∑

i∈S (vu,i )2
, (2.3)

As mentioned to compute the similarity function KNN can either search based on the user (user-

based KNN) or on items (item-based KNN). Denote a domain of a set of U users and a set of I items.

User-based KNN first computes the neighbourhood N ⊂ U composed of K elements which are the

most similar users to user u (active user). After identifying the set of neighbours N , all that is left is

to generate the rating predictions for user u and item i, which are normally obtained by computing the
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weighted average of the neighbouring user’s ratings i using similarity as the weights. Denote pu,i as the

value of the prediction:

pu,i = ru,i +

∑
u′∈N sim(u, u′)(r′u,i−r′u,i)∑

u′∈N sim(u, u′)
, (2.4)

Item-based KNN contrary to the user-based approach instead of using the users rating for the predic-

tion it uses the similarities between rating patterns of items. Similar to the user-based KNN this approach

also starts by finding a set of K neighbours, but now it searches for the K rating vectors C ⊂ I which

are similar to the target item of the prediction. After gathering subset C, the prediction is computed:

pu,i =

∑
j∈C sim(i, j)(ru,j )∑

j∈C sim(i, j)
, (2.5)

Matrix Factorization

Matrix Factorization (MF) is another method that can be used to tackle the CF challenges. Matrix

Factorization techniques characterize both users and items by vectors of factors inferred from rating

patterns, that are hidden in the UM. The formalization of this technique is done by mapping both users

and items to a joint latent vector space of dimensionality f [10], where the user-item interactions are

modelled as inner products in that space. Intuitively matrix factorization tries to find a latent factor that

determines how a user rates an item, e.g., in a movie scenario the possible discovered factors might

measure if the movie is a drama, comedy, horror or even how much a user likes comedy movies or

certain actors/actresses.

Matrix factorization associates each item i with a vector qi ∈ Rf and the each user u with a vector

pu ∈ Rf . The elements vector qi represents how much item i possesses those factors and pu measures

the interests of a user in items on the corresponding factor. Given this formalization the approxima-

tion/prediction, r̂u,i is given by:

r̂u,i = qTi pu (2.6)

Computing the latent factors that map qi and pu, is one of the biggest challenges in MF.

Single-Value Decompostion (SVD) is one of the most renowned methods to identify and extract latent

factors. MF tries to computes an approximation R similar to the original UM Mm×n, with number of rows

(users) m = |U | and n = |I| columns (items):

R = QTP ≈M (2.7)

Note that we would like to discover f latent features, so matrix P is a m× f matrix and Q is a n× f

matrix. In this way, the rows of matrix P represents the users interest in each of the f features. Similarly,

each row of matrix Q would represent the items relevance for each feature.

In practice factoring the UM only using SVD raises difficulties since this technique is undefined when

the matrix is sparse or incomplete, which is often the case of matrix M . So in order to compute matrix
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R based only on the known ratings, we need to use an auxiliary method that fills in the missing values

of the matrix.

One of the most popular methods is the Stochastic Gradient Descent (SGD) [39], which reaches R

by iteratively adjusting the values of elements in P and Q so as to minimize the square fitting error of R

in respect to M . With the computation of R we can estimate the ratings using Equation 2.6.

2.2.1.4 LibFM: Factorization Machine

LibFM [40] is a software implementation for Factorization Machines (FMs) that features different learn-

ing algorithms such as SGD, Alternating least-Squares (ALS) and Markov Chain Monte Carlo (MCMC).

FMs is a generic approach since it is capable of mimicking most of the existing factorization models (e.g.

SVD) by feature engineering. This new approach is capable of supporting any real-value based feature

vector, while able to give accurate prediction in sparse scenarios, since it models all variable interactions

with factorized parametrization.

As mentioned, LibFM uses a different representation - with respect to the ones presented until now -

of the data set by means of features vectors, also know as feature engineering. Feature Engineering is

a well known pre-processing step in ML literature [41] that provides the ability to support any real-value

based data set, i.e., FMs are not limited to use uniform ratings, as for the case of SVD. In order to

illustrate how FMs work, let us start by illustrating how one can encode the information in a conventional

UM using a FM-based approach. Denote a matrix M ∈ Ru×p, whose i-th row, noted xi, encodes a

feature vector compose by p real-valued variables, and is associated with a target prediction, note yi.

Briefly, a data set would be described as a set of tuples(x, y), as we can see in Figure 2.3.

Figure 2.3: Example for representing a recommender problem with real valued feature vectors x. Every
row represents a feature vector xi with its corresponding target yi . For easier interpretation, the features
are grouped into indicators for the active user (blue), active item (red), other movies rated by the same
user (orange), the time in months (green), and the last movie rated (brown) [41, 40].

Converting a typical UM into a feature vector space we could consider only the information included

in the User, Movie subsets (blue and red) of Fig. 2.3, as well as the target y. Denote U as the set of

users, and I the items. The blue set (User) encodes a total of |U | different users, each encoded via a

unique binary identifier. Similarly the red set (Movie), encodes |I| different items, each associated with

a unique identifier. The target y corresponds to the rating given by user u ∈ U to item i ∈ I. Assume
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as well the triple notation referenced in Section 2.2.1.3., an example of translation based on Figure 2.3,

focusing only in the blue and red indicator , would be: x1 = (UserA, TI, 5); x2 = (UserA, NH, 3); x2 =

(UserA, SW, 1); x4 = (UserB, SW , 4); (...).

One of the reasons that make libFM relevant for this thesis is the fact that it supports implicit indicators

in different scales such as other movies rating (yellow indicator), or even the time passed since the rating

of the item (green indicator).

The application of FMs for prediction tasks starts by building a model that captures all the nested

interactions up to order d between the p input variables in x. The factorization model for d = 2 (value

used in the software tool) is:

ŷ(x) = w0 +

p∑
j=1

wjxj +

p∑
j=1

p∑
j′=j+1

xjxj′
k∑

f=1

vj ,f vj′ ,f (2.8)

where k is an hyper-parameter that defines the dimensionality of the factorization and the model

parameters to be estimated are:

w0 ∈ R, wj ∈ Rp, V = {v1,1 , ..., vp,k } ∈ Rp×k (2.9)

Considering equation 2.8 [40]:

• w0 is the global bias

• wj represents the strength of the j-th variable

• the two nested sums represent all the pairwise interactions of the input variables, xjxj′ .

•
∑k

f=1 vj ,f vj′ ,f is the factorized parametrization that allows this approach to estimate reliable

model parameters even with sparse data, by attributing a low rank to the pairwise interactions.

To compute the model and learn the model parameters libFM uses the three learning algorithms

mentioned above: SGD, ALS and MCMC. Concluding FMs most appealing characteristics are:

• Allow a reliable estimation of the model parameters under sparse data, with parametric factoriza-

tion.

• Linear complexity, by factorizing the pairwise interactions.

• FMs is a general predictor that works with any real-valued feature vector, that supports multiple

input variables.

2.2.2 Review of existing solutions for self-tuning of TM systems

In the next sub-sections I will present some insights on some Self-Tuning solutions for TM systems,

based on different methodologies. Recent work using self-tuning to optimize TM performance has fo-

cused on the problem of dynamically adapting: (i) internal TM parameters, for instance number of re-

tries when a transaction aborts [4]; (ii) optimize the concurrency of a TM, adapting the number of active

threads [11]; (iii) switch the concurrency control algorithm used by the TM [6].

18



In the following I will overview some recent works in this area.

2.2.2.1 Tuner

Tuner [4] is a self-tuning solution for Intel TSX (HTM), which automatically tunes TSX software fall-

back path. Tuner optimizes Intel TSX performance in presence of heterogeneous workloads, by using

RL techniques to dynamically configure a relevant TM parameter without any a-priori knowledge of the

application. Specifically, the HTM parameter optimized by Tuner is the maximum number of attempts for

a transaction to be executed in hardware.

Some papers [42, 43] report that setting the number of attempts to 5 gives an all round solution,

but this is a sub-optimal solution since it does not consider workload heterogeneity. Tuner focus on two

problems:

• How many times should a transaction retry/attempt in hardware?

• How to optimize retries that the hardware provides information on the nature (capacity vs conflict

induced) of a transaction abort error code?

Tuner adopts an on-line approach since it fits better with irregular applications, unlike off-line ap-

proaches, which spare from the cost of gathering an initial training set representative of the target ar-

chitecture and application to be used. Tuner uses a combination of algorithms borrowed from the RL

literature, namely Upper Confidence Bounds (UCB) [44] for adapting the capacity abort management

and Gradient Descendent Exploration (GRAD) for adapting the number of attempts for a transaction.

The UCB algorithm is an efficient solution for the bandit problem, a well-known problem in the RL

literature, in which an agent is faced with a bandit (slot machine) with k arms each one with a unknown

reward distribution. The agent iteratively plays one arm, gets the associated reward and tries to max-

imize the average reward. UCB creates an over-estimation of each possible decision and lowers this

estimation for each sample drawn.

UCB was integrated with TSX, by encapsulating each atomic block with an UCB instance containing

a slot machine, this way UCB will try to maximize the reward for each arm, where an arm represents ac-

tions when faced with a capacity abort (give up, half the attempts, decrease only one attempt). Gradient

Descent Exploration is similar to hill climbing techniques, and since it scales better than UCB for large

search spaces it was chosen - as the technique to optimize the overall number of attempts.

The final algorithm, uses both techniques at the same time and consequently there are scenarios

when both techniques will not converge to the same result, resulting in a ”ping-pong” effect, so the

authors decided to implement a hierarchy between the techniques, where UCB can force GRAD to

explore in the direction predicted by UCB to be more promising.

Tuner was integrated in GCC compilers, achieving total transparency for the programmer. The au-

thor’s evaluation shows that Tuner shows consistent gains to static solutions, using RL techniques.
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2.2.2.2 SAC-STM

Self-Adjusting Concurrency STM (SAC-STM) [11] as the name suggests tunes the concurrency level

for an application, i.e., controls and optimizes the level of parallelism. The problem with tuning con-

currency level is the trade-off between more parallelism and data conflict, since increasing the number

of threads can possibly increase the conflict ratio of transactions (more aborts/retries), harming perfor-

mance.

SAC-STM is a black box approach, that relies on TinySTM [3] (Section 2.1.1.1) for the STM layer

without the dynamic adaptation already included, and uses Neural Networks [9] (NN) to predict the

optimum level of parallelism. It is composed by:

• A Statistics Collector(SC);

• A Neural Network (NN);

• A Control algorithm (CA);

In a periodic sampling interval the Statistics Collector estimates statistical parameters: read/write-set

sizes (rssize/wssize), the average execution time for commited transactions (ttime) and the average time

of non-transactional code blocks (ntctime). In addition, it estimates the probability of an object read by a

transaction is also written by other concurrent transaction (rwaff ), and the probability of a object written

by a transaction being written by a concurrent one(wwaff ) [11].

The Controller receives the statistical sampling and exploits Neural Networks to predict, the wasted

time that will characterize the application execution in a near future (wtime) using n threads.

Neural Network is a ML technique, composed by processing elements that compute a function

through approximations and exploitation of a training set. In this case, it calculates the same statis-

tics of the SC based on a training set, so that it can infer a function between all the statistical data, the

number of threads and the wtime.

After NN predicts the values of wtime for all possible number of threads, the Controller chooses

the number of threads m that should be active, where m is equal to the value of i that maximizes the

function:

i

wtime,i + ttime,i + ntctime
(2.10)

Note that i represents the active number of threads, and the denominator of the equation represents

the predicted average execution time between the commit operations of two consecutive transactions

along a given thread with i active threads [11]. Lastly the CA configures the application to use m number

of threads.

SAC-STM shows that using self-tuning the concurrency level in the context of TM can accomplish

promising results. Using a learning-based solution to address the problem of adapting the number of

concurrent threads running in a TM can achieve almost optimal results. Actually, the effectiveness of

the methodology at the basis of SAC-STM has also been confirmed, more recently, in the context of

HTM [45].
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2.2.2.3 Automatic Performance Tuning

The work by Qingping, et al. [6] highlights the fact that there are numerous different STM implementa-

tions, with none being able to clearly outperform another, which poses as an obstacle to the acceptance

of transactional memory. The different implementations provide good performance for certain workloads

and architectures, so this paper introduces methods that dynamically select the best STM algorithm

based on static analysis and dynamic profiling.

The proposed solution is a framework that allows to dynamically pick the best STM algorithm, using

an off-line training phase and a dynamic (run-time) profiling with the help of a custom STM implementa-

tion, ProfileTM.

The off-line training phase, firstly executes a set of micro-benchmarks, and it then uses an ad-hoc

built STM, called ProfileTM, to gather some dynamic characteristics and perform static analysis. All the

data is then given to the ML training policy which produces the adaptivity policy.

This work uses four triggers to activate the adaptivity framework:

1. Number of consecutive aborts exceeds a defined threshold;

2. Long delays when attempting to begin a transaction;

3. Thread creation and destruction;

4. Totals commits below the threshold.

On every trigger, the system blocks the start of new transactions and waits for the active transactions

to either abort or commit. Afterwards switches to ProfileTM and runs N transactions, one at the time,

updating the dynamic profile. The system then outputs the new algorithm based on the adaptivity policies

and the profile.

One interesting feature of this frameworks - is how the authors handle repeated recommendations

when the abort ratio is high. Basically, there are some workloads that behave the best in algorithms

that admits frequent aborts (multiple consecutive aborts, trigger 1), and changing the algorithm blindly

can hinder performance. To cope with this problem, the framework saves the total number of commits

and aborts, and upon the next trigger if the same recommendation/algorithm is given, the protocol only

accepts the recommendation if there was forward progress [6] (e.g., more commits), and doubles the

abort threshold.

It is important to refer that the adaptivity policies can have three approaches: (i) expert policies, (ii)

completely automate ML system or (iii) collaborations between programmers and ML. Expert Policies

are written by the programmer to satisfy arbitrary requirements, while ML-based policies create a policy

based on ML techniques, such as NN.

To conclude the insight of this paper, it is important to refer that this was the first ML-based adaptivity

system for synchronizing parallel programs. The best performance was reached by using expert knowl-

edge and machine learning. It shows that the combination of performance, maintainability and flexibility

in ML-systems make them an appealing approach [6].
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This review highlights the fact that Self-Tuning over the years has emerged as an attractive technique

to improve performance in Transactional Memory systems. Instead of producing more and more TM im-

plementations, self-tuning solutions achieve performance close to the optimal configuration, and gain

when compared to static implementations. Among the presented solutions, none provides a compre-

hensive solution capable of optimizing a TM system across the multiple configuration dimensions that

such systems support.

Most of the existing solutions, e.g., [6, 4, 11], only work in one-dimension, which is summarized in

Table 2.3. This suggests that self-tuning should follow a holistic approach, seeking a global optimization

of the various TM parameters.

System Model Learning TM parameters Concurrency TM Back-End
TinySTM white-box off-line

√

Tuner black-box on-line
√

SAC-STM black-box off-line
√

Qingping, et al. [6] black-box hybrid
√

Table 2.3: Summary of the presented self-tuning systems

This relevant limitation is tacked and overcome by a recent solution, called ProteusTM [5], which

we are going to describe in detail in the next chapter and whose extension will focus the work of this

dissertation.
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Chapter 3

Study on ProteusTM

In this chapter, we present an in depth review of ProteusTM, a self-tuning system for TM, which, already

mentioned in Chapter 1, represents the main focus of this dissertation. Firstly we present an overview

of ProteusTM as well as its architecture and main components. At the end, we present some of its key

limitations, that will be addressed later in the dissertation.

3.1 ProteusTM

ProteusTM [5] is the only self tuning solution for TM systems that supports a multi-dimensional opti-

mization scheme, in contrast to all the solutions until this point, which were unidimensional. ProteusTM

is a state of the art solution that keeps the abstraction and simplicity of TM, while also tuning the TM

implementation according to workloads.

At its core ProteusTM has two main components PolyTM and RecTM (see Figure 3.1). PolyTM

consists of a Polymorphic TM library, with several TM implementations (HTM, STM, HyTM) and allows

the reconfiguration of TM along the following dimensions:

1. Switch between different TM implementations (TinySTM to NOrec for example);

2. Reconfigure internal parameters of a TM;

3. Adapt the number of threads concurrently generating transactions.

RecTM is responsible for identifying the best configuration of PolyTM for the current workload. It

tackles this challenge by using techniques developed in the recommendation system’s literature.

Briefly, ProteusTM applies CF to the problem of identifying the best TM configuration that maximizes

the KPI for some workload. We now present the architecture of ProteusTM in Figure 3.1 and overview

its internal components which enables the self tuning capabilities of this solution.

As explained above PolyTM is a polymorphic TM library that contains several TM implementations,

allowing the reconfiguration on a multi-dimensional level on TM internal parameters.

In Figure 3.1 note that RecTM, the component responsible for predicting the best TM configuration,

is composed by 3 sub-modules [5]:
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Figure 3.1: Architecture of ProteusTM system[5]

1. Recommender the recommendation system that acts as the predictor and supports different CF

algorithms.

2. Controller selects the configuration to be used and triggers the adaptation in PolyTM, by querying

the Recommender with the values obtained from the Monitor.

3. Monitor is responsible for gathering the target KPI to give feedback to the Controller about the

quality of the current configuration. Also, it detects changes in the workloads with the objective of

triggering a new optimization phase on the Controller.

The focus of this thesis is on one of the main components: RecTM which will be explained more in

detail next.

3.1.1 RecTM

RecTM is the component responsible of finding the best TM configuration in order to optimize PolyTM,

developed in Java. As mentioned it casts this challenge to a recommendation problem, and uses CF

techniques to maximize a certain KPI.

In Section 2.2.1.3 we explained some challenges when using CF techniques and some advantages

of relying on this type of algorithms. A brief reminder, CF receives as input a sparse matrix (UM), and

tries to estimate the missing values of the matrix to give accurate recommendations.

In ProteusTM the UM associates each row to a different workload, and each column to a different

TM configuration. Exploiting CF-based recommendation systems for the self-tuning of TM raises a non-

trivial problem, which is discussed next.

3.1.1.1 The Rating Heterogeneity Problem

CF algorithms assume the use of homogeneous rating scales, e.g., from 0 to 5 stars. Conversely,

typical metrics used to guide the optimization process of a TM (such as throughput, execution time,

abort rate) can span across very heterogeneous scales, depending on the applications characteristics
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(e.g., long vs short transactions) and hardware characteristics (e.g., CPU clock speed). So, an optimal

configuration for a given TM workload may yield, for instance, a throughput of 1e6 txs/sec, whereas, for

a different workload, the corresponding optimal configuration may yield a throughput of 1e3 txs/sec (e.g.,

if transactions have a much longer duration in this second workload). In contrast, typical CF algorithms

assume that the optimal ¡¡ for different “users” will have very close ratings (e.g., 0-5 stars).

A solution to the problem of heterogeneity is to normalize the whole UM. Normalization in this

scenarios is not trivial since the maximum or minimum for KPI value of specific configurations for an

unknown workload is clearly unknown — else the optimization problem would be trivial. Ideally, an

efficient normalization should be able to transform the entries so that similarities can be mined and

enable the use of CF techniques.

To further motivate the use of normalization we present a study on the performance of ProteusTM

predictor capabilities, using different methods of normalization (depicted in Figure 3.3). The different

types of normalization used were:

• NONE: No normalization, the CF algorithm is applied in the raw UM;

• MAX: normalization with respect to the max in the training set;

• WRT-BEST/IDEAL: an ideal normalization technique that assumes to know a priori the absolute

value of the KPI in the optimal configuration for each workload (also the one being queried). The

KPI achieved in the optimal configuration is then used as normalization factor, which ensures that

the ratings are expressed using a single, uniform scale between [0,1] where 1 corresponds to the

rating of the optimal configuration (assuming a maximization problem).

• Rating Distillation: a normalization procedure proposed in the ProteusTM work [5] and described

more in detail in the following subsection.

The performance of ProteusTM will be evaluated using two accuracy metrics:

• Mean Average Percentage Error (MAPE) defined as:
∑
〈u,i〉∈S |ru,i − ˆru,i|/ru,i. Where ru,i rep-

resents the real value of the target KPI for workload u when running i as configuration, ˆru,i the

corresponding prediction of the Recommender, and S the set of testing 〈u, i〉.

• Mean Distance From Optimum (MDFO) defined as:
∑
〈u,i〉∈S |ru,i∗u − ru,î∗u |/ru,i∗u . Where i∗u is the

optimal configuration for workload u, and î∗u the best configuration found be the Recommender.

The MAPE reflects how well the CF learner predicts performance for an application, while MDFO

captures the quality of the final recommendations.

In order to build the experimental test-bed used in all the experiments of this dissertation, ProteusTM

was deployed in two machines with different characteristics with a wide variety of TM applications, and

tuning parameters depicted in Figure 3.2. In these two machines, over 300 workloads were deployed

which are representative of heterogeneous applications such as (summarized in table 3.1): STAMP [46],

Data Structures, STMBench7 [47], TPC-C and Memcached [48]. The experience data set was built by

25



Figure 3.2: Parameters tuned by ProteusTM. STMs are TinySTM [3], SwissTM , NORec [2] and TL2

Benchmarks Description
STAMP [46] Suite of 8 heterogeneous benchmarks with a variety of workloads (ge-

nomics,graphs,databases).
Data Structures Concurrent Red-Black Tree, Skip-List, Linked-List and Hash-Map with work-

loads varying contention and update ratio.
STMBench7 [47] Based on OO7 [49] with many heterogeneous transactions over a large and

complex graph of objects.
TPC-C OLTP workload with in-memory storage adapted to use one atomic block en-

compassing each transaction.
Memcached [48] Caching service with many short transactions that are used to read and update

the cache coherently.

Table 3.1: TM applications. These 15 benchmarks span a wide variety of workloads and characteris-
tics [5].

collecting over 5 runs, the KPI (e.g., throughput and execution time) in a real-time trace driven evaluation

of over 300 workloads and 160 TM configurations.

The KPI used for this study was the execution time. A brief reminder the training set - also called UM

- will have as rows the workloads and as columns the TM configurations.

The evaluation’s learner was KNN with cosine similarity, trained with a random sub-set of the original

data set split into 30% of training set and the remaining 70% the corresponding test set. The results

presented are an average of 10 runs, for 10 different sub-sets of the original data set and for a different

number of configurations with known performance for a given workload (chosen at random). The training

set is used to instantiate the predictive model and where the normalization techniques are applied. The

test-set has no intersection with the training set and provides each workload to ProteusTM, so that this

can predict the values not present in the sampling. To simulate sampling for the performance of an

workload for a given configuration, we use the corresponding value from the test-set and add this value

to the UM of the Recommender.

To ensure fairness, the study was conducted with the same training sets and the same initial configu-

rations were provided for the different normalizations. Figure 3.3a represents how far in average are the

predictions from the actual rating, while Figure 3.3b quantifies the quality of the final recommendation,

i.e., how far is the recommended configuration from the actual optimum.

Considering different normalizations and Figure 3.3 we reinforce the statement that the predictive

accuracy of CF algorithms is strongly affected by the choice of the normalization procedure. We can

verify that applying no normalization or using the normalization with respect to the max, the predictor

performs very poorly in terms of overall predictions (Fig. 3.3a) and when finding the optimal configuration

(Fig. 3.3b). While using an ideal solution or Rating Distilation (RD) the recommendations are really close
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Figure 3.3: KNN Cosine with 2 neighbours. The graphs were obtained by running ProteusTM with
different training sets, in which we provided different initial configurations for the sampling of a new
workload

to the optimum configuration and to the overall absolute values of the predictions.

3.1.1.2 Normalization in the Recommender

An ideal normalization cannot be used in ProteusTM since it would require knowing a priori the KPI of

the optimal configuration for an unknown workload — where the optimization problem being targeted

consists in fact in identifying which is the best performing configuration. Also, as we have seen in the

above study, the use of a static normalization solution (e.g., based on normalizing by the maximum KPI

measured across all possible workloads) provides strongly suboptimal results, since the absolute KPI

values achieved by different workloads are distributed over very heterogeneous scales whose min/max

values can span several orders of magnitude.

RD, the normalization techniques proposed in the ProteusTM’s work [5], aims at approximating the

ideal solution described in the previous sub section by ensuring that for any workload w:

(i) of two configurations ci and cj , namely kpiw, ci and kpiw, cj, the ratio is preserved in the rating

space, i.e., kpiw,ci

kpiw,cj
=

rw,ci

rw,cj
where rw, ci and rc, cj represent the ratings attributed, respectively, to

configurations ci and cj for workload w.

(ii) the ratings of the various configurations of a workload w are distributed in the range [0, Mw] so as

to minimize the the index of dispersion of Mw : D(Mw) =
var(Mw)

mean(Mw)

Property (i) ensures the distance between two configurations is correctly encoded when the ratings

are normalized, while property (ii) by minimizing the index of dispersion of the vector Mw attempts to

align the scales used to express the ratings for the various workloads to a similar upper bound, which is

as homogeneous as possible across different workloads.

Rating Distillation (RD) algorithm used by the Recommender is depicted in Algorithm 1. RD is a

normalization technique that assumes the availability, for each workload included in the training set,

of the KPI achieved by using all the available TM configuration Ci ∈ C1, . . . , CK . In other words, RD

assumes a dense UM in the training set, except of course, for the workload being queried for which
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Algorithm 1 Rating Distillation algorithm [5].
1: for Ci ∈ C1 . . . CK do
2: Normalize Matrix KPI w.r.t. Ci

3: Collect the vector Mw with the max values per row
4: Compute meani(Mw) and vari(Mw)
5: end for
6: Return C∗ = argmini∈1...M vari(Mw)/meani(Mw)

only a small subset of configurations is assumed to have been sampled. It starts by normalizing the

dense UM with regards to a configuration Ci (line 2), and collects the maximum performance of each

workload , building the vector Mw that contains the maximum values on a per workload basis (line 3).

Bellow we have an graphical example of the first iteration of this algorithm (Figure 3.4), for C1 where

rw,i = kpiw,i/kpiw,1:

C1 C2 C3 C4

W1 100 80 50 200

W2 5 6 5 8

W3 120 30 60 240

W4 50 120 25 100

Original UM

C1 C2 C3 C4

W1 1.0 0.8 0.5 2.0

W2 1.0 1.2 1.0 1.6

W3 1.0 0.25 0.5 2.0

W4 1.0 2.4 0.5 2.0

 UM after RD

Mw

2.0

1.6

2.0

2.4

RD

Figure 3.4: First iteration on a matrix 4× 4 of the algorithm RD, i.e., normalize the matrix with respect to
configuration C1 [5]

Repeating this method for all the configuration space C, one can obtain, for each configuration in C,

a different Mw vector. Rating distillation selects as pivot column C∗ for the normalization, the one whose

corresponding Mw has the smallest index of dispersion. Once C∗ has been identified, the UM matrix,

including the sparse row containing the workload being predicted is normalized by dividing the KPIs in

each workload (i.e., row) by the KPI achieved by that same workload in configuration (i.e., column) C∗. In

other words, the UM matrix, after normalizing with RD, expresses as rating the normalized performance

achieved by the TM system with respect to the the pivot configuration C∗.

3.1.1.3 RecTM Workflow

After addressing how the recommender tackles heterogeneity, the next step is to understand how does

RecTM optimize PolyTM (see Algorithm 2).

RecTM employs a black-box approach that relies on on-line and off-line training. Firstly it does off-line

performance profiling of an initial training set, in which it explores a mix of workloads on the full spectrum

of the available TM configurations. Next, it applies the rating distillation to obtain homogeneous ratings

for each workload, resulting in the initial/training dense UM. Based on the training UM, the sub-module

Recommender, selects and configures the CF algorithm (choosing between KNN and SVD) to use at

run-time. Now that the off-line configurations ended, the system is ready to receive new workloads.
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Algorithm 2 RecTM work-flow [5]
1: Off-line performance profiling of an initial training set of applications
2: Rating distillation and construction of the Utility Matrix.
3: Selection of CF algorithm and setting of its hyper-parameters.
4: Upon the arrival of a new workload:
5: Sample the workload on a small set of initial configurations.
6: Recommend the optimal configuration).

At the arrival of a new workload, the Controller drives the on-line profiling using Sequential Model-

based Bayesian Optimization (SMBO). This technique samples the new workload in a small number of

initial configurations, and tries to fit a probabilistic model. Then, it identifies the next point (TM con-

figuration) to be sampled based on the expected gain computed on the basis of the CF-based recom-

mendations (Expected Improvement [50]). This process of exploration stops when the values for Expect

Improvement (EI) either:

• Decreases twice in a row;

• for the k-th exploration was marginal, i.e., below a certain range with respect to the current best

KPI;

• the achieved improvement did not exceed some threshold related to the current best KPI;

Based on the selected CF algorithm, it recommends the optimal configuration for the new work-

load. The implementation of CF algorithms in ProteusTM is accomplished by using Mahout [51], a ML

framework containing several CF algorithms including the ones used by RecTM, namely KNN and SVD.

The Monitor is responsible for collecting the target KPI at the arrival of new workloads and feed it to

the Controller, so that the later can realize the on-line profiling. The Monitor is also responsible for the

detection of workload changes and for triggering the optimization process.

3.2 ProteusTM Limitations

ProteusTM is the first solution to tackle the problem of optimizing TM in a multi-dimensional scheme,

unlike existing solutions in the literature on self-tuning of TM (See Section 2.2.2). However, it is not a

solution exempt of limitations, which we will analyse in the remainder of this section.

As stated, Collaborative Filtering techniques in ProteusTM, bases its estimations assuming the ex-

istence of a fully populated UM. This is only feasible if the configuration space is small, e.g., hundreds

configurations and workloads. However, considering the many parameters that can affect TM perfor-

mance (including not only the internal TM parameters, but also the choice of the TM algorithm and the

architectural characteristics of the underlying hardware platform), there exist a great variety of possi-

ble configurations (columns of the UM). In the light of these considerations, if one wanted to include

additional dimensions/parameters (e.g., thread mapping, different hardware architectures, etc.) to the

available search space, it would make the use of ProteusTM’s RD technique impractical or even pro-

hibitively onerous/time consuming.
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Since it is only feasible to use an initial dense matrix if the configuration space is small, ProteusTM

suffers from a scalability problem. To improve the scalability of ProteusTM, one possible solution is to

redesign it in order to use an initial sparse UM. In fact, CF techniques are known to achieve good results

using sparse UM [34, 33], provided that they are fed with ratings expressed in uniform scales. A tightly

intertwined problem is to identify normalization techniques alternative to rating distillation that do not

assume the availability of a dense UM.

The first part of this thesis will target precisely this problem.

A common technique adopted in the CF literature to cope with sparse UM matrix is to incorporate in

the knowledge base not solely the explicit users ratings of the various items, but also a characterization

of the user’s profile [10].

This class of approaches motivates the research direction that this dissertation investigates: to what

extent can the availability of information on the workload characteristics (e.g., transaction duration or

abort rate) enhance the accuracy of RecTM, which, we recall, relies solely on KPI information. The key

idea here is to extend the UM used in ProteusTM to incorporate workload information, i.e., extending

the UM to include columns containing workload characteristics, information traceable at run-time. Figure

3.5 exemplifies this approach, where we extended the original UM represent by the columns C1..6 with

additional workload information WI. Let us assume one wants to predict the value for kpi1,4, if we only

consider the original UM (ignore WI) identifying the best similarity is not trivial since it shares one rating

with two other workloads (w3, w4) for column C4. However, if we consider the new additional workload

information it becomes clearer to which of the workloads is the most similar, with respect to w1 . The

workload w3 if we consider this new information is likely to share the same trend as w1 for configuration

C4.

C1 C2 C3 C4 C5 C6

W1 100 50

W2 5 8

W3 100 50 10

W4 120 200

W5 6 8

W6 50 200 25

WI1 WI2

0.5 127

0.3 346

0.5 127

0.78 48

0.3 210

0.78 58

UM with workload information

Figure 3.5: User-Item UM (straight line) and the UM with additional information (crossed line)

In summary with this thesis we intend to answer the following research questions:

1. How can ProteusTM be extended to exploit a sparse training set/UM?

2. Would incorporating workload information improve ProteusTM accuracy?
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Chapter 4

ProteusTM Extension: Sparsity

The previous chapter presented in some detail ProteusTM, a self-tuning solution for TM. Despite being

the only solution that uses self-tuning in multiple dimensions, it is not exempt of faults or limitations.

As highlighted the reliance on an initial dense matrix is a relevant drawback that can severely hinder

the scalability of ProteusTM. This chapter will address this limitation of ProteusTM by investigating the

problem of how to support sparse UM matrices in the ProteusTM framework.

As already mentioned, the base CF algorithms (SVD and KNN) employed by ProteusTM are already

equipped to cope with sparse UM matrices. The key problem to address, though, is how to adapt

the normalization procedure that generates the UM that is then fed to the CF algorithms. As already

discussed in Section 3.1.1, on the one hand, the RD algorithm achieves very good results, but assumes

a dense KPI matrix; on the other hand, simple normalization approaches (e.g., dividing by the max value

in the training set), which would be straightforwardly usable with sparse UM lead to very unsatisfactory

accuracy of the CF-based learners.

The key problem with using RD in presence of sparse matrices is that it requires to normalize each

row with regards to the corresponding KPI value of each column. With a sparse matrix, we cannot

normalize any row according to any column, as that row/workload may not store a KPI value for some

specific column/configuration. Figure 4.1 describes a scenario of this problem, using the first iteration of

RD.

In Figure 4.1, for the row w1 since the rating for column C1, kpi1,1 = 100 is present, the algorithm

is successful: the formula for normalization rw,i = kpiw,i/kpiw,1 works. In contrary, for w2 the rating

kpi2,1 =? is missing and the denominator of formula is invalid, which also invalidates the use of this

algorithm in sparse scenarios.

In the following we propose and evaluate the use of two normalization schemes designed to cope

with sparse matrices:

• the Box-Cox transformation, a well known data transformation technique [52] that has been already

successfully used in other (non-TM related) optimization problems [53] and that aims to generate

data that follows normal distributions (See Section 4.1).
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C1 C2 C3 C4

W1 100 80 200

W2 6 8

W3 120 30 60

W4 50 100

Sparse UM

C1 C2 C3 C4

W1 1.0 0.8 2.0

W2

W3

W4

 Sparse UM after RD

Mw

2.0

RD

Figure 4.1: Example of RD first iteration with sparsity, where the algorithm fails since the KPI for column
C1 is not present in all rows.

• Sparse Rating Distilation (SRD), namely a variant of the RD procedure, that uses a normalization

technique similar in spirit to RD but adapted to cope with sparse matrices. (See Section 4.2)

4.1 Box-Cox

Box-Cox is a parametric power data transformation, proposed in 1964, used in order to reduce anoma-

lies such as non-normality in data [52].

The work in [53] used this transformation in order to stabilize data variance and make the data more

normal distribution-like to fit their matrix factorization technique. Similarly in our own context, Box-Cox

will be used to normalize the original UM.

Box-Cox is defined as follows, when the original data set S ∈ R+:

boxcox(y) =


(yλ−1)
λ

, if λ 6= 0

log(y), if λ = 0
(4.1)

where the parameter λ controls the extent of the transformation. The estimation of the parameter λ

is one of the challenges for the application of this technique and it does not exist a standard approach

to the problem of finding the best value for the parameter λ [52]. Next we present a different solution to

the problem of tuning parameter λ based on the Kolmogorov-Smirnov test.

4.1.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov Test (KS-Test) is a non-parametric test that tries to determine if two data sets

differ significantly from one another. If the test is concerned with the agreement between the distribution

of a set of sample values and a theoretical distribution we call it a ”test of goodness of fit” (One sample

KS-Test). Otherwise, it can be used to compare two different samples (Two sample KS-Test).

Suppose that a population is thought to have some specified cumulative frequency distribution func-

tion, say F0(x), i.e, for any specified value of x, the value of F0(x) is the fraction of observations in
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the population having measurements less than or equal to x. If F0(x) is the population cumulative dis-

tribution, and SN(x) the observed cumulative step-function of a sample then the Kolmogorov-Smirnov

statistic is [54]:

Dn = max|F0(x)− SN(x)| (4.2)

This statistic quantifies a distance between the empirical distribution function of the sample and

the cumulative distribution function of the reference distribution. If the sample SN(x), comes from a

distribution close to F0(x) then the value of Dn will converge to 0.

We will use the Kolmogorov-Smirnov statistic in order to chose which is the best alpha for a training

set in an automatic way.

4.1.2 Box-Cox and KS-Test

The algorithm that uses KS-Test to tune the parameter λ of Box-Cox will be presented in this section.

The main objective of the algorithm is to find a value for λ that better normalizes a random training set,

which is the one that minimizes the Kolmogorov-Smirnov statistic. We will use the one-sample KS-Test

which will compare the empirical cumulative distribution of the matrix UM against a Normal Distribution

with the same average and standard deviation. The closer the Dn is to zero, the better is the value for

λ, i.e., the transformation makes the original training set closer to a normal distribution.

Before explaining the algorithm it is relevant to mention that, the Box-Cox algorithm standard values

for λ are normally in between the interval [-2,2] [55].

In order to use KS-Test together with Box-Cox this was the developed algorithm:

Algorithm 3 Box-Cox function in ProteusTM
1: for λ ∈ [−2; 2]; with step 0.1 do
2: Normalize Matrix KPI using box-cox with λ (equation 4.1).
3: Gather the new average (avg) and standard deviation (stdev).
4: Transform the resulting matrix into a vector v organized in an ascending order of its elements.
5: Apply KS-Test:
6: Build the reference NormalDistribution(avg, stdev), F0.
7: Build the Empirical Cumulative Distribution (ECD) of v, SN = ECD(v)
8: Compute Dn for the current λ(§ 4.1.1 equation 4.2)
9: end for

10: return the value λ∗ that achieved minimum Dn

The first step to implement this algorithm is to apply the Box-Cox normalization (Equation 4.1) on

the UM, in an interval starting from -2 to 2, increasing by a fixed step (which we set to 0.1) per iteration

(line 1-2). In order to use the KS-Test we need the reference Normal Distribution and the Empirical

Cumulative Distribution (ECD) of our sample (UM). To build the reference Normal Distribution, we first

calculate the average and the standard deviation of the elements present in the resulting matrix, and

using the Apache Commons Library 1 we create the reference NormalDistribution(average, standard

1http://commons.apache.org/
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deviation). Next, we transform the normalized UM into a vector, of size n, organized in ascending order

and calculate its ECD, defined as follows for n observations Xi:

SN(x) =
1

n

n∑
i=1

I[−∞,x](Xi) (4.3)

where I[−∞,x](Xi) is the indicator function, equal to 1 if Xi ≤ x and equal to 0 otherwise.

With these two distributions we can calculate the Dn (line 8), repeating these steps until we reach the

end of loop. Finally, the returned λ∗ is the one that achieves the smallest Dn value (line 10) amongst the

several iterations. From some examples of this method [54, 52], the values for λ had deeper granularity,

normally numbers in the thousandth.

We created a new function that modifies the interval (used in line 1) at run-time, ”zooming in” the

chosen lambda, i.e., creates a new interval around the chosen λ∗, [λ∗ − 0.1, λ∗ + 0, 1], to verify deeper

granularities and invokes Algorithm 3 once again with this new interval: for λ ∈ [λ∗ − 0.1, λ∗ + 0, 1]; with

step 0,001 do.

To demonstrate the capabilities of the developed algorithm, we submit this technique to the most

heterogeneous data set available (UM), obtained using the same methodology presented in the previous

study in which the KPI is the throughout (number of committed transactions per second). The data-set

is very heterogeneous as it can be seen by the plot below and definitely not normally distributed before

applying the box-cox transformation.

Figure 4.2: Heterogeneous data set with throughput values in the interval [0,01; 53909,906]
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We use Weka [56], a workbench with several machine learning algorithms and data pre-processing

tools, to automatically build an histogram to verify if the algorithm transforms the original data into a

normal shape. Figure 4.2 is the training set with no transformation whatsoever, where the x-axis repre-

sents the different throughput values and the y-axis the frequency with which a given KPI (on the x-axis)

appears in the original data-set. The buckets are automatically chosen by Weka, to better fit all the data

in the histogram, choosing very high buckets size, proportional to the interval in which the data set is

distributed.

We will now apply Algorithm 3 with the zoom-in function to this data set, generating Figure 4.3.

Figure 4.3: Algorithm 3 and zoom-in function applied in the data set depicted in Figure 4.2

Even though there are some bumps in the transformed data presented in Figure 4.3, we can easily

conclude that using this normalization technique, successfully transformed the original data set into a

data set that approximates much better a normal distribution. The mean for the normalized data is

13,675, which is rather close to the ”belly” shape of the figure, strengthening the claim that the data is

closer to a normal distribution. Although the data looks close to a normal distribution, we cannot take

any conclusions regarding the impact in the accuracy of CF algorithms, a study that will be presented

later in this chapter.
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4.2 Sparse Rating Distilation

RD obtained results really close and sometimes better than the ”ideal normalization”, motivating the

redesign of this algorithm to work in sparse scenarios. Briefly summarizing the problem of RD is the per

column normalization for each row, where in a sparse scenario not every row of the matrix is obliged to

have the chosen column invalidating the use of this algorithm. In the remaining of this section we will

use the terminology presented in Algorithm 1 (Section 3.1.2).

Algorithm 4 Sparse Rating Distillation algorithm.
1: p = sparsity percentage
2: for Ci ∈ C1 . . . CK do
3: Build Sub-Matrix m× CK , with rows where kpiw,i 6= null
4: Normalize Sub-Matrix KPI w.r.t. Ci

5: Collect the vector Mw with the max values per row
6: Compute meani(Mw) and vari(Mw)
7: end for
8: C∗ = ( argmini∈1...M∧|mi|>|w|×(1−p) vari(Mw)/meani(Mw))
9: if C∗ = null then

10: C∗ = ( argmini∈1...M vari(Mw)/meani(Mw))
11: end if
12: Return C∗

SRD is our modified version of the RD that works very intuitively, and adds a few steps to the original

RD approach (See Algorithm 4). The first modification starts by building a sub-matrix of the UM of size

m × CK , where only the rows that store some KPI value for column Ci are present, i.e, rows missing

the rating for column Ci are removed. Intuitively, the formula rw,i = kpiw,i/kpiw,i will never fail since we

guarantee that only workloads with Ci are present. If we recall Figure 4.1, the application of this new

algorithm would build a new sub-matrix, excluding w2 since it is missing the rating for the column being

tested, C1.

The first modification did not account for the fact that by building a new sub-matrix with respect to

a configuration Ci, we could be reducing significantly the size of the original matrix. This may lead

to computing the index of dispersion on an excessively small array Mw, leading to misleading results

with no statistical significance. To mitigate this problem, we extended the condition which chooses

configuration C∗ that minimizes the index of dispersion of Mw (first condition of line 8) to also consider

a new threshold.

This threshold imposes a new condition on how to chose the best configuration of RD. Consider p

the percentage of sparsity in the UM, m the workloads selected to be part of the sub-matrix and w the

number of workloads in the original matrix. The threshold is the following: |m| >= |w| ∗ (1.0− p), i.e., the

number of rows of the sub-matrix cannot be less than (1.0− p) of the original matrix.

The new algorithm chooses the first configuration C∗ that minimizes the index of dispersion Mw and

respects the threshold (line 8); for extremes cases if there is no configuration Ci that respects both

conditions we use the return statement of the original algorithm (line 9-12).
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4.3 Evaluation

This section is devoted to presenting a study of the quantification of the accuracy of ProteusTM with

the introduction of sparsity, as well as compare the two normalization techniques: Box-Cox (BC) and

SRD.

The evaluation metrics and the experimental test bed are the same as the ones detailed in section

3.1.1, with execution time as the KPI. The study will conducted using two different learners: KNN and

SVD. With this evaluation we tackle the first research question presented.

4.3.1 KNN

To ensure fairness when comparing the different normalization techniques, we used the same training

sets and the same initial configurations. The results presented in this section are the average of 8

different randomly generated 30% training and 70% test sets derived from the original data-set. For

each training set we ran 10 iterations of randomly chosen initial configurations.

We chose a fixed configuration for KNN in order to obtain comparable results without any additional

nuances. The initial configuration for KNN was: User-based cosine similarity with 2 neighbours.

The remainder of this section will focus on the comparison of the two normalization techniques and

the behaviour of ProteusTM with sparsity.
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Figure 4.4: KNN - MAPE for different sparsity level of a 30% training set.

Figure 4.4 (a) and 4.4 (b) shows that BC performs rather poorly in terms of overall predictions, since it

has an almost constant MAPE for any number of initial configurations. In contrast, SRD attains a better

MAPE. The quality of predictions in SRD increases when adding additional sampled workloads and

naturally decreases as the sparsity increases. However even at 70% sparsity, the MAPE is in average

only 40% worse than the MAPE achieved with a dense matrix.

One interesting result of this plots, is the correlation between the MAPE and MDFO. Figure 4.5

(a) and (b) is the study using the metric MDFO for different sparsity levels. An overview of this plots

is: increasing sparsity, in general decreases the accuracy of the predictor with any of the presented

normalization techniques.
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Figure 4.5: KNN - MDFO for different sparsity level of a 30% training set.

Note that for 0% sparsity SRD always beats BC, as we would expect looking at the MAPE. The

results changes when sparsity is introduced. Although, the MAPE results for BC are really poor, it

predicts with good accuracy the optimal configurations (Figure 4.5). BC with little knowledge about the

workloads (2,3 initial configurations) obtains an MDFO around the 50%-70%, while SRD obtains values

firmly around the 80%. Regarding the best results, when we sample 20 initial configurations BC reaches

an MDFO around 10% while SRD considering only sparsity > 0 oscillates between 20%-48%.

In general, if the target problem consists in identifying the optimal configuration (and not predicting its

corresponding KPI value), BC outperforms significantly SRD in presence of sparse training sets. Relative

to the MAPE, although BC is clearly worse then SRD, none of the of the two considered approaches

obtains as good results as for when the matrix has no sparsity.

Due to the discrepancy of the results between the MAPE and MDFO for BC, we conducted another

study for the values of the KPI when using this normalization technique, which aims at shed lights on

why BC is good when finding the optimum, but bad in the overall predictions. To this end, in Fig. 4.6, we

show the real (red columns) vs predicted (blue columns) KPI values using BC for a given configuration,

after having sorted the configurations on the x-axis from best (smallest execution time) to worse (largest

execution time) for 0% sparsity .

Notice that in the left most part of the graph the predicted values with the best rankings/predictions

are not really that far away from the real in terms of absolute value. Although, only the predictions are

organized in ascending order, the real values with some exceptions seem to follow the same trend. Now,

if we compare the right part of the graph the difference between the predicted and the real values be-

comes really accentuated. Provided Figure 4.5 and 4.6 we can conclude that using BC to normalize the

original data it sets a scale that allows the identification with good accuracy of the optimal configurations,

but is not so good in terms of absolute values of the predictions.

We provide another study with a 70% training set and 30% test set (Figure 4.7 and 4.8), to further

back our claims. The same trend is noticeable from analysing this plots, for 0% sparsity SRD seems to

achieve better results overall in terms of average prediction and finding the optimal configuration. How-

ever, introducing sparsity once again BC achieves better results when finding the optimal configuration.
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Figure 4.6: Predicted Ratings vs Real Rating, organized from the best predicted (lowest rating) to the
worst, and the corresponding real ratings. The x-axis does not represent the id of a configuration but its
ranking.
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Figure 4.7: KNN - MAPE for different sparsity level of a 70% training set.

A relevant observation to make is that with 70% training set the predictor improve its accuracy in

comparison with a 30% training set. Considering the 0% sparsity scenario, SRD now achieves and

MDFO of 3% from the optimum comparing to 6% in the 30% training set. This trend seems to follow

for all the different sparsity levels. This is not unusual when we provide a bigger training set the more

accurate becomes the model since it becomes richer in the parameters space [29].

Following these statements, we present a intuitive reason for why SRD achieves worse accuracy

performance. Figure 4.9 depicts a study on how many rows from the original training set were dropped,

for different training sets percentages (lines) and for different sparsity levels. One can easily conclude

that the percentage of rows dropped is highly correlated with the sparsity level, and this can explain why
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Figure 4.8: KNN - MDFO for different sparsity level of a 70% training set.

Figure 4.9: The graph represents how much % of the training set was dropped for different sparsity
levels and training sets

SRD starts under performing when sparsity is introduced. While BC which is a black model approach

uses the total number of rows/workloads, SRD drops a percentage p close to the sparsity present in the

matrix.

This is in fact rather intuitive, given that setting the sparsity level to v ∈ [0, 1] coincides with setting to

v the probability to include any cell in the UM. This probability coincides with the probability for SRD to

drop a row of the original training set, since this happens whenever the cell associated with the target

column consider by SRD is absent. Such probability clearly coincides with v.

4.3.2 SVD

SVD is the second learner we will use to evaluate the performance of ProteusTM and further validate

the conclusions. SVD is significantly slower when compared to KNN (6× slower), so we had to reduce

the set of considered test scenarios. Maintaining the number and the percentage of the (30%) training

and (70%) test sets, we alter the number of iterations to two for the randomly chosen configurations
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instead of using ten as in KNN.

We will now present in the same fashion as in the previous section plots for the MAPE and the MDFO.
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Figure 4.10: SVD - MAPE for different sparsity level of a 30% training set (logarithmic scale).
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Figure 4.11: SVD - MDFO for different sparsity level of a 30% training set.

Regarding the MAPE (see Figure 4.10) for BC the results and conclusions are similar to the ones

seen with KNN, i.e., constant and high values. SRD even with sparsity obtain good results in terms of

MAPE, i.e., even in the worst case the predictions are in average 40% far from the actual ratings.

In the presence of sparsity and using SVD the MDFO results look promising, especially for SRD

which is now competitive regarding BC MDFO results. SRD in small sparsity percentages ( 0% sparsity

and 30% ), for a small number of sampled configurations (initial configurations < 5) achieves very good

results that are 30% from the optimal configuration. In contrast BC seems to have a cold star problem,

i.e., poor results for a small number of sample configurations. If we increase the number of sampled

configurations BC improves significantly, in average 40% if we consider the best scenario (20 initial

configurations).

BC achieves better performance overall, i.e., for more than five sampled configuration for all levels of

sparsity obtains better MDFO results, but SRD is only 5% - 10% from BC MDFO results.
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4.3.3 KNN vs SVD

We also present a study comparing KNN and SVD (Figures 4.12 and 4.13). We display the plots in a

different manner to have a better perception when comparing both learners. The same data is utilized to

build this plots. In addition, we divided the plots for each different sparsity level where we compare both

the normalization techniques with the different learners, i.e., KNN-SRD-0% refers to KNN using SRD for

0% sparsity, whereas SVD-BC-0% uses SVD with BC for 0% sparsity.
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Figure 4.12: Impact of adding workload information to the original UM

An easily noticeable trait, is that BC results in terms of MAPE seems to follow the same trend for

both learns and different sparsity levels: high and constant. In contrast, SRD in terms of MAPE is

better when we use SVD even when we add sparsity to the training set. With SVD in terms of MAPE

increasing sparsity does not significantly worsens the overall predictions performance. However, this

trait is not shared with KNN, which is highly affected by the introduction of sparsity.

KNN achieves its best results when there is no sparsity, with both normalization techniques. It actually

achieves better performance in terms of MDFO for no sparsity, compared to SVD. However, if we

compare SRD for both learners when we introduce sparsity in the worst case scenario SRD reaches a

MDFO of 38%, less than half of the one seen in KNN (80%).

BC achieves good MDFO results for either the learners. Nevertheless, if we compare the results

for for 0% and 30% of sparsity the difference is almost negligible for both learners. When we reach
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Figure 4.13: Impact of adding workload information to the original UM

higher level sparsity levels the difference becomes clearer, in which SVD achieves better results for both

normalization techniques.

4.3.4 Results Overview

In conclusion, BC is a very effective technique if the problem is finding the optimum values, as we have

shown using two different CF techniques. In contrast, if the problem is predicting the absolute values for

a certain workload BC has a very poor performance. When looking at the MDFO metric, RD generally

outperforms BC in absence of sparsity (especially with KNN). When sparsity is introduced, though, BC

achieves significantly higher accuracy levels than SRD. This is due to the fact that SRD suffers of a key

drawback: it forces to discard full rows (which may convey valuable information for the learner) if they

lack information on a candidate “pivot” configuration.

Regarding the different learners KNN achieves better results with no sparsity, but is outperformed by

SVD in terms of MAPE and MDFO when sparsity is introduced.
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Chapter 5

ProteusTM Extension: Workload

Characteristics

Recommendation Systems (RS) have attracted a lot of research in the past two decades and conse-

quently several algorithms that generate recommendations were developed. In general, the research

consolidated the importance of the regular UM (User-Item mapping) used by several algorithms, mainly

CF techniques. Although, using UM alone obtains accurate recommendations [14, 57], most recent

research propose new recommendation scenarios that go beyond the current UM, by incorporating ad-

ditional information regarding the profile of the user (e.g., age and sex), of the items (e.g., genre of a

movie) and/or context in which users interact (e.g., click or purchase history) [57, 40, 41].

In this chapter we present a study on the impact of adding additional information to the original UM of

ProteusTM. More precisely, this study assess the idea of including in the UM, besides the KPIs achieved

by the various workloads across the various configurations (which corresponds to the user’s ratings for

the various items) also different workload characteristics, including average aborts, maximum retries,

writes duration.

5.1 Integrating workload characteristics in the UM

ProteusTM UM was designed considering only the CF User-Item matrix, so in order to produce this

study we extend the the code to be able to handle the new UM. It is relevant to mention that the

additional information will be side user-contributed information, since it will describe the workloads in

different workload characteristics.

In order to extend ProteusTM we modify the current implementation that builds the UM. ProteusTM

was redesigned to support the introduction of additional information, depicted in Figure 5.1. Starts from

from two different data sets one containing the normal User-Item UM (Figure 5.1 Original UM) and

another data set of characteristics for the corresponding workload (Figure 5.1 Workload Information).

The objective is to merge this two data sets per rows creating the Extended UM (EUM), and give the

ability to ProteusTM to know which are the indexes containing the TM configurations and the workload
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characteristics.

C1 C2 ... Cn

W1 kpi1,1 null ... kpi1,n

W2 null kpi2,2 ... kpi2,n

... ... ... ... ...

Wn kpin,1 null ... kpin,n

WI1 WI2 ... WIn

W1 wc1,1 wc1,2 ... wc1,n

W2 wc2,1 wc2,2 ... wc2,n

... ... ... .... ...

Wn wcn,1 wcn,2 ... wcn,n

Original UM Workload Information

C1 C2 ... Cn WI1 WI2 ... WIn

W1 kpi1,1 null ... kpi1,n wc1,1 wc1,2 ... wc1,n

W2 null kpi2,2 ... kpi2,n wc2,1 wc2,2 ... wc2,n

... ... ... ... ... ... ... .... ...

Wn kpin,1 null ... kpin,n wcn,1 wcn,2 ... wcn,n

Extended UM

Figure 5.1: Graphical example of the merge of original UM with a user-based matrix with workload
information/characteristics

A key conceptual problem at the basis of this approach is that it leads to blend in the same row of

the UM different types of information, which can be expressed using completely heterogeneous scales.

In fact, while the values stored in the original UM refer to the same KPI/metric (although expressed

workload-dependant scales), the EUM contains numerical values associated with very diverse domains

(e.g., abort rate, transaction duration and throughput).

Hence, a relevant problem to address in order to jointly use KPIs and workload characteristics is how

to ensure that the information encoded in the EUM can be meaningfully interpreted by a RS.

We will consider two possible approaches to tackling this problem:

• using different normalization schemes, including i) using the same normalization technique for the

whole EUM matrix and ii) normalizing the original UM and the workload info matrix using different

normalization techniques. Then, feed the resulting matrix to the CF-based algorithms used by

ProteusTM, e.g. SVD or KNN.

• using LibFM, a RS software tool based on FMs designed to support features comprising values

belonging to different domains and expressed using heterogeneous scales.
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5.2 Integration of LibFM

Following the extension of the UM, ProteusTM can now consider new learners designed to support

data beyond the User-Item UM. As mentioned, several algorithms were designed to consider an UM with

additional information, so we integrate a new leaner to the Recommender a FMs software tool, namely

LibFM [40].

The integration of LibFM software tool 1 with ProteusTM was not direct, first some problems had to

be addressed. The first problem was the language compatibility, because LibFM was developed in C++

while RecTM as mentioned was developed in Java. In a similar way to Mahout [51], LibFM is integrated

as an external library used by the Recommender to compute the recommendations. The other challenge

in the integration, is the data model used by both solutions. LibFM does not use the typical UM instead

uses feature vectors (explained Section 2.2.1.4).

Due to good architecture of ProteusTM we create a Java wrapper for LibFM, which is transparently

added to the recommender as another choice besides the CF techniques. Further, the Java wrapper

addresses the two problems mentioned above, when it receives the UM created by ProteusTM it trans-

lates it to a feature vector space. And through the Java Runtime 2 we invoke the libFM library with the

corresponding hyper-parameters and the new data model described through means of feature vectors.

The hyper-parameters have to be decided a-priori in a configuration file which is used by to set the

respective values in the wrapper.

5.3 Evaluation

The objective of this section is to answer this question: how would this additional information affect

the predictive capabilities of ProteusTM in a sparse matrix?

This evaluation will use the same metrics and experimental test-bed presented in Section 3.1.1.

Further the different workload characteristics were gathered in the same way as the previous data sets,

considering the same workloads. Table 5.1 contains the different features, derived from the features of

the ProfileTM [6] (mentioned in Section 2.2.2.3) and a brief description.

This evaluation starts by studying the impact on one of the CF techniques, namely KNN. The study

on SVD was not conducted due to time constraints since some of the tests using this technique take a

lot of time. Afterwards, we present the baseline for the new learner introduced in ProteusTM, libFM and

the study with the different features.

As explained and motivated throughout this dissertation CF algorithms have better performance if

the KPI is in a homogeneous scale otherwise it clouds the predictor capabilities. The intuitive belief is

that adding workload characteristics blindly in a dense matrix it should worsen the predictions since we

are adding new columns to the matrix in a completely different scale. But in the presence of sparsity will

this new additional information help find better similarity’s between workloads?

1https://github.com/srendle/libfm
2https://docs.oracle.com/javase/7/docs/api/java/lang/Runtime.html
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Features Description
average aborts average number of times a transaction of aborts
max retries maximum number of times a TM retried a transaction.
writeXactWriteset items distinct items written by a transaction
writeXactReadset items distinct items read by a write transaction
ROXactReadset items distinct item read by a read only transaction
read duration average duration of a read-only transaction
write duration average duration of a write transaction
rbfw number of read operations performed before the first write
tot wr total number of writes
tot rd total number of reads
wr per xact number of writes per transaction
avg reads per write average number of reads reads per write
avg reads per ro average number of reads done by a write/read-only xacts

Table 5.1: Workload Characteristics/Features gathered [5].

5.3.1 KNN with extended UM

In the same fashion as in the previous evaluation, we guarantee fairness by using the same training set

and initial configurations, when performing this study on the accuracy of ProteusTM using KNN and the

extended UM. We will use the same 30% training sets and 70% test sets.
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Figure 5.2: Impact of adding workload information to the original UM for sparsity levels 0% and 30%

The experimented was conducted utilizing the two implementations variants, mentioned in Section
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5.1.1. We first analysed the impact of the more direct approach, applying the normalization techniques

in the UM and then merge the workload information data set. Secondly, we apply the BC normalization

on the full EUM to verify the results. The keys SRD or BC correspond to the the typical UM and the keys

SRD-WI or BC-WI are used with regards to the extended UM.

This first approach, Figure 5.2 and 5.3, behaves as expected for 0% sparsity: adding workload

information in a dense matrix does not improve the performance of KNN. Focusing on Figure 5.2 if we

look closely at the results, we verify that for SRD there seems to be a significant increase on the MAPE

and respectively on the MDFO as well, a behaviour that is consistent with the other sparsity levels.

The only exception is with 70% sparsity, where both accuracy are very similar and sometimes adding

workload information was beneficial (5 and 10 initial configurations).
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Figure 5.3: Impact of adding workload information to the original UM for sparsity levels of 50% and 70%.

Regarding BC the MAPE values decrease with additional information, because with the addition of

sparsity the scale of the workload information starts to be more imposing, the same as in SRD. This de-

crease on the MAPE negatively impacts the MDFO, the prediction for the optimal worsens when adding

workload information. BC which normally achieves good performance when predicting the optimal con-

figuration for a workload (MDFO), with new information deteriorates in more than 100 times.

In this first experiment the accuracy’s decay is more accentuated with BC than with SRD, but in

general KNN accuracy did not improve when adding workload information. Analogous conclusions are

attained if one considers an alternative normalization approach, which simply applies BC to the EUM,
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avoiding to first normalize the original UM. The corresponding results are shown in Figure 5.4. As we

can see, the inclusion of WI, also in this case leads to a significant degradation of the learner’s accuracy,

both in terms of MAPE and MDFO.
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Figure 5.4: Impact of normalizing the extended UM with BC.

Concluding the study with KNN, the results suggest that overall using the additional information is

not improving the predictor performance for either normalization technique.

5.3.2 LibFM

LibFM is the new leaner introduced in ProteusTM, with the ability to handle additional information in the

UM. Since this is the first evaluation using LibFM we first provide the baseline,i.e., typical UM with no

features and using a 30% training set:

Figure 5.5 shows something different when compared to the other results. While for 0% and 30%

sparsity the MAPE values are similar to the ones seen, surprisingly for 50% and 70% sparsity they

become constant, an unusual behaviour comparing to the previous learners. And this anomaly, seems

to be reflected in the MDFO, for percentages 50% and 70% the normalization is confusing the predictor.

Even when the predictor has more knowledge about the workload the accuracy decreases (e.g., Figure

5.6(b) 5 to 10 initial configurations).

Regarding BC the MAPE shows the same trends as seen before, and this is true for the MDFO as
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Figure 5.5: LibFM - MAPE for different sparsity level of a 30% training set.
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Figure 5.6: LibFM - MDFO for different sparsity level of a 30% training set.

well. In addition, it obtains better MDFO then SRD for all sparsity levels.

To conclude the baseline analysis, this results only strengthens the conclusions attained from the

previous evaluation: BC obtains very good accuracy when the problem is identifying the optimal config-

uration, but in average the predictions are really far from its real absolute value. SRD with regards to

LibFM seems to confuse the predictor when the sparsity level is high.

Proceeding with the study, we will now evaluate the impact of using the EUM and this learner. The

extended UM is composed by the same 30% training set and the respective thirteen features in Table 5.1.

LibFM suffered some problems with the new features, since they were in an extremely heterogeneous

scale, it predicted the same value over and over again independent of the test workload. To mitigate

the heterogeneous scale in which the characteristics were gathered the first step was the normalization

of all the columns between [0, 1], which was achieved by taking a per column normalization. Firstly we

find the maximum value max(Ci), and for column i divide each element of the column by the found max

value. Thus, introducing a sense of scale on per column basis.

The plots presentation will change compared to the ones presented until now. For each plot we will

have a comparison of the baseline of LibFM (Figures 5.5 and 5.6), which only considers the typical UM

with either normalization technique (BC or SRD), against the results obtained with the EUM for the same
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sparsity level. Once again, the keys SRD or BC correspond to the the typical UM and the keys SRD-WI

or BC-WI are used with regards to the extended UM.
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Figure 5.7: Comparison in the predictors accuracy using the UM and the extended UM (WI) for 0% and
30% sparsity

Figure 5.6 reports the MAPE and MDFO values achieved when considering sparsity values equal to

0% and 30%. For these sparsity levels, the use of workload information does not help; on the contrary,

using this additional information even when using libFM is actually confusing the predictor. MAPE for

SRD becomes around 100× worse for both sparsity levels, and BC obtains even worse results. Also con-

sidering the MDFO, we observe that better results are achieved, on average, when workload information

is not used.

Increasing the sparsity level (See Figure 5.8), does not show improvement regarding the accuracy

of LibFM. Overall, SRD normalization seems to be confusing the predictor, which, we argue, may be

due to the loss of information imposed by this normalization technique (see Section 4.3.1) when the

sparsity level grows. While BC using the typical UM in average always achieves better results then with

the extended UM.

Overall, the results presented so far suggest a negative answer to the question: does the joint use

of workload information help in increasing the prediction accuracy? Clearly, however, such a negative

answer hold only for the data set available for this study, and for the considered approaches to data

fusion and normalization.
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Figure 5.8: Comparison in the predictors accuracy using the UM and the extended UM (WI) for 50% and
70% sparsity

This observation led us to consider an additional data pre-processing step: applying a preliminary

feature selection phase on the workload information, in order to filter out redundant or non-informative

metrics. Next we briefly explain what is feature selection and how we utilize the technique to chose the

best sub-set of additional information/features.

5.3.3 Feature Selection

Feature Selection (FS) is the process of choosing a subset of features of an initial data-set in order

to the ML method performance [58]. FS is in fact one of the most frequently used techniques in data

preprocessing, known for reducing the number of features, removing irrelevant, redundant or noisy data

[59].

FS can be divided in three models: filter models, wrapper models and hybrid models [59]. Filter

models rely on general characteristics of the data and are independent of the learning algorithm. In

contrast, wrapper models optimize the subset of features based on a predetermined learning algorithm

and uses its performance as the evaluation criteria. The hybrid model exploits the evaluation criteria of

both approaches in different search stages.

We will focus on the filter models in order to identify the best sub-set of features for our data-set.

We carefully analyse the features data set and calculate the coefficient of correlation between each
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pair of features. Based on the coefficient of correlation, we identify the pairs that are highly correlated

and eliminate one of them. We calculate the coefficient correlation, using the Pearson product-moment

correlation coefficient (PCC) (also denoted by r) between every pair of features X and Y:

rX,Y =
cov(X,Y )

σXσY
(5.1)

where cov is the covariance and σ the standard deviation. PCC can give results between [-1,1] where

the interval values mean that there is a high correlation, and 0 that there is no linear correlation. With this

first preprocessing step, we identified two pairs of features that were highly correlated (r = 1) choosing

only one feature of each pair, reducing the number of features to eleven (Appendix A).

Following this small reduction, we utilize a well known machine learning workbench already men-

tioned in this dissertation, Weka [56] to apply a filter model to the features, namely Information Gain (IG).

IG will be utilized in order to output a feature ranking, in which will be suggesting the most informative

features for our training set. Table 5.2 shows the ranking of the features organized from best ranking to

worst, with only eleven features:

Features IG
write duration 8,0779
average aborts 7,783
max retries 6,9948
writeXactWriteset items 6,5959
read duration 6,5434
avg reads per write 6,3687
writeXactReadset items 6,3687
rbfw 6,3687
wr per xact 6,3398
ROXactReadset items 5,3658
avg reads per row 5,3658

Table 5.2: Features ranking using IG.

In the following we report the MDFO and MAPE achieved when using 11 (Figures 5.9 and 5.10) and

5 (Figures 5.11, 5.12 and 5.13 ) best ranked features according to the FS process. Results related to

the use of the 2 best ranked configurations show analogous trends and can be found in Appendix b.

Unfortunately, also after applying the FS process, the results continue to lead to the same conclusion:

at least for the considered information fusion approaches and datasets, the use of additional workload

information degrades, rather than enhancing, the accuracy of typical RS algorithms, in particular KNN

and LibFM.
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Figure 5.9: Comparison in the predictors accuracy using the UM and the extended UM with eleven
features (WI) for 0% and 30% sparsity
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Figure 5.10: Comparison in the predictors accuracy using the UM and the extended UM with eleven
features (WI) for 50% and 70% sparsity
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Figure 5.11: Comparison in the predictors accuracy using the UM and the extended UM with five features
(WI) for 0% sparsity
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Chapter 6

Conclusions

TM is an emerging approach for parallel programming. Unfortunately, the performance of existing TM

implementations is known to be very sensitive to the characteristics of application’s workloads. Given the

large number of existing TM implementations and of their configuration space, several self-tuning tech-

niques have been proposed in the literature for automating the identification of the optimal configuration

of a TM run-time system.

This dissertation builds on a recent self-tuning system for TM, called ProteusTM, which has a unique

feature in the literature: it is the only self-tuning solution for TM systems that supports dynamic optimiza-

tion across a multi-dimensional configuration space.

In particular, this dissertation investigates two key research questions : i) how to extend ProteusTM

to support sparse training sets, and ii) to what extent can the inclusion of workload characteristics (e.g.,

abort rate) enhance the accuracy achieved by ProteusTM’s. We answered the first question by proposing

and evaluating the use of two alternative normalization techniques, based on the Box-Cox data trans-

formation and on a novel technique, which we called Sparse Rating Distillation (SRD). We extensively

study the predictive capabilities of ProteusTM using both normalization algorithms in various sparsity

levels, over a data set with over 300 workloads and 160 TM configurations.

The results highlight that BC is the best technique for ProteusTM, when sparse training sets are

used. BC even in very sparse scenarios can achieve results close to the optimum (around 10% from

optimal) with both learners. In comparison, with sparsity SRD does not perform as well as BC due to the

fact that it forces a drop in the percentage of the training set equal, on average, to the percent of sparsity

of the whole data set.

As for the second question, in contrary to our initial expectations, our results suggest that the inclu-

sion of workload information clouds, in a remarkably consistent way, the predictor’s accuracy for all the

considered data fusion, normalization and learning techniques. Although sometimes adding new fea-

tures to the UM achieves the same performance as with the typical UM, most of the times the learners

under performs.
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6.1 Future Work

In this section we present possible future work, in order to extend and improve ProteusTM.

A first direction would be to apply a different approach to integrate the workload information. Instead

of extending the UM, the idea would be to leverage on two different learners to predict,i.e., one learner

would use the UM and the other learner the workload information. Next, the uncertainty in the prediction

of the two learners could be estimated using, e.g., techniques based on bagging [60]. The learner’s

uncertainty could then be used as decision criterion of a voting scheme aimed at reconciling the outputs

produced by the two learners.

Another possible future direction as to do with improving ProteusTM applicability, facing a more

business related problem. ProteusTM online sampling does not consider the cost of exploring different

configurations. Thus, the challenge here is to consider the trade-off between exploring the proposed

configuration because it has high chances of being the better choice, or choosing another configuration

with lower EI taking in consideration time and economical cost required to explore a configuration during

the on-line learning phase. Hence, the solution should schedule which configurations to explore keeping

into account: the past previous exploration (i.e., the currently available hardware platforms) as well as

looking ahead to the most likely future explorations, so to plan which would be the most cost effective

exploration strategy.
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Appendix B

LibFM with two workload

characteristics
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Figure B.1: Comparison in the predictors accuracy using the UM and the extended UM (WI) with 2 WI
for 0% and 30% sparsity
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Figure B.2: Comparison in the predictors accuracy using the UM and the extended UM (WI) with 2 WI
for 50% and 70% sparsity
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