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Abstract. Transactional Memory (TM) is a recent alternative to tradi-
tional lock based synchronization mechanisms for parallel programming.
This report analyses the state of the art in the area of performance
modelling for transactional memory systems, as well as for concurrency
control mechanisms for database management systems.
My analysis of existing literature in these areas highlights the existence
of a relevant gap, which I aim to fill with my thesis work: the lack of
performance models for hardware-based implementations of TM, also
known as Hardware Transactional Memory (HTM).
More in detail, my dissertation will be aimed at building simulative and
analytical models capable of capturing the performance dynamics of In-
tel’s implementation of HTM.
In addition to defining the goals of my dissertation, this document also
discusses initial ideas and preliminary results achieved so far.
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1 Introduction

One of the main sources of complexity in parallel programming is related to
the need of properly synchronizing accesses to shared memory regions. In fact,
the traditional, lock-based approach to synchronize concurrent memory accesses
is well-known to be error prone even for experienced programmers: on the one
hand, using coarse-grained locking, e.g., synchronizing any concurrent access
via a single lock can severely limit parallelism; on the other hand, while the
usage of fine-grained locks can enable larger degrees of parallelism, it also opens
the possibility of deadlocks and hinders a key property at the basis of modern
software engineering, composability [1].

Recently, Transactional Memory (TM) has emerged as a simpler, and hence
more attractive, alternative to lock-based synchronization: unlike locking, TM
simply requires programmers to identify which code blocks should appear as
executed atomically and not how atomicity should be achieved.

Over the last 20 years, several implementations of TM have been proposed,
using either software, hardware, or a combination of both. Yet, at current date,
performance of TM remains a controversial issue.

Cascaval et al. [2], for instance, harshly criticized Software-based TM imple-
mentations, arguing that such a generic concurrency control mechanism imposes
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necessarily large overheads to track the memory regions accessed within transac-
tions. Their results revealed that, in most tests, Software Transactional Memory
(STM) behaves worse than sequential code (using 2-4 threads).

On the other hand, hardware implementations of TM (HTM) avoid the in-
strumentation costs incurred by STM, but their nature is inherently restricted
and best-effort. In fact, commercially available HTM implementations (such as
the ones provided by Intel Haswell or IBM P8 processors) rely on cache co-
herency protocols to keep track of the memory regions accessed by transactions.
As such, they suffer of spurious aborts whenever relevant transactional metadata
has to be evicted by the cache (e.g., due to cache capacity limitations).

These widely available HTMs, launched with recent processors, thus provide
performance that varies significantly with the workload. However, the internals
of their implementations are mostly undisclosed, for which reason it is hard to
predict a priori how an HTM will perform for a given new application.

This work aims to develop tools for predicting the performance of HTM-based
applications. This objective will be achieved in two steps:

1. First a discrete event based simulator will be developed. This simulator will
focus on modelling the performance dynamics of the cache coherency proto-
col used by Intel Haswell processors, which, as it will be discussed in more
detail in Section 2.3, represents the backbone used to implement the HTM
provided by Intel.

2. Next an analytical model of Haswell’s HTM will be developed. The analytical
model will rely on queuing theory and probabilistic techniques (extending
prior literature in the area of performance modelling of concurrency control
algorithms in STMs and Database Management Systems (DBMSs) literature
[3–7]) and will be validated by means of the event based simulator.

The remainder of this document is structured as follows. In Section 2 the
related work is discussed, with emphasis on the different implementations of TM
both in software and hardware, as well as on works that aim to model STMs
and DBMSs. In section 3, the proposed solution is discussed. Besides discussing
the architecture of the analytical and of the simulation model, this section also
presents the results of preliminary work aimed at characterizing the behaviour of
Haswell’s HTM. In Section 4 the evaluation methodology is presented to explain
how the obtained results will be corroborated for the hypotheses established in
this thesis proposal. In section 5, the calendarization of the proposed tasks is
presented. Finally, in section 6, conclusions of this mid term report are given.

2 Related Work

During the past decade there has been an intense research in the area of TM,
motivated by the current paradigm of multi-core hardware, which creates a great
need for concurrency control mechanisms that are simple to use and yet provide
scalable performance.
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This Section is structured as follows. First, in Section 2.1, an overview of TM
is presented. Section 2.2 discusses software-based TM implementations. Section
2.3 overviews hardware-based TM implementations, including both restricted
TM implementations (such as Intel’s one) and unbounded ones, which overcome
the limitations of best-effort HTMs at the cost of additional complexity at the
hardware level. Then, the combination of best-effort HTM and STM, also known
as Hybrid Transactional Memory (HyTM), is discussed in Section 2.4. Section 2.5
overviews some of the most popular for TM libraries. In Section 2.6, HTM, STM
and HyTM are compared with each other. The focus of the subsequent sections is
on the modelling of performance of transactional systems. In Section 2.7 black-
box and white-box techniques are surveyed. Approaches based on analytical
modelling are presented in Section 2.8. In Section 2.9, simulation techniques are
discussed and, finally, in Section 2.10 current research focused on increasing the
performance of TM systems is presented.

2.1 Transactional Memory

Firstly, the usage of TM will be motivated. When programming parallel appli-
cations, there are certain regions of code (i.e., critical sections) that must run
atomically in order to guarantee the application state consistency. If two criti-
cal sections run concurrently without any synchronization, the application state
may become inconsistent (i.e., a conflict occurred).

An easy way of completely avoiding conflicts is by introducing a global lock,
allowing the critical section to only execute sequentially. As such approach de-
grades performance, there is the possibility of using fine-grained locking (read-
/write locks, and each memory region may have its own lock). But identifying
the optimal fine-grained locking scheme for each critical section is well known to
be time consuming and error prone [8].

On the other hand, with the usage of TM, the programmer only has to
annotate the critical section (i.e., transactional code block) with the atomic

primitive.
The reference correctness criterion for TM is opacity [9]. Opacity is stronger

than Serializability, the strongest correctness criterion typically enforced in a
database management system. Serializability requires that the (concurrent) ex-
ecution of committed transactions lead to a state that could be obtained by
running these transactions in some sequential order. Roughly speaking, opac-
ity enforces two additional guarantees: i) the serialization order of committed
transactions has to preserve the real-time order of execution of transactions (as
in strict serializability [10]); ii) aborted transactions should observe a state pro-
ducible by executing transactions in some sequential order (possibly different
from the serialization order imposed to committed transactions).

As a matter of fact, in most real-life applications, conflicts are not very
common. Therefore, avoiding them is not the most efficient approach. TM will
run each critical section speculatively and, then, if no conflict is detected, the
modifications are committed. Nevertheless, if a conflict in fact occurs, one of the
conflicting transactions may have to abort and restart later.
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Ideally, the TM library would take care of each memory access without calling
any read/write routines (i.e., implicit instrumentation), support arbitrarily large
transactions (i.e., unbounded) and not need a priori awareness of which memory
region are going to be accessed within the transaction (i.e., dynamic).

However, for research purposes and optimization (where the flexibility of
changing the implementation in prototypes matters), the library may allow the
usage of transactional read/write routines within the critical section (i.e., explicit
instrumentation), and for simplification purposes, transactions that accesses too
many memory regions (large footprint) may not be allowed (i.e., bounded), as
well as, only a certain part of the memory may be accessible within the trans-
action (i.e., static).

For example, in program 1.1, variable a will never be less than 0, and
the only change, regarding the non synchronized version, was the usage of
transaction atomic to identify the critical section. The advantage in com-

parison with a global lock is that transactional code blocks can run truly in
parallel and the locked critical section must be executed sequentially.

To compile a program using TM in GCC, the following command can be
used: gcc -Wall -fgnu-tm -O3 -o a.out test program.c. Nevertheless, the
programmer can change the TM library to other than the included in GCC by
default. The accesses to memory regions within transaction atomic will be
translated by the compiler with respect to the provided library, which can be
STM, HTM or a hybrid solution.

Program 1.1: TM example in C language.

1 int a = 2, b = 0;

2
3 void T1() {

4 __transaction_atomic { if(a >= 2) { a -= 2; b += 2 } }

5 }

6
7 void T2() {

8 __transaction_atomic { if(a >= 2) { a -= 2; } }

9 }

10
11 int main() {

12 // launch two threads to execute T1 and T2 in parallel

13 }

2.2 Software Transactional Memory

STMs were deeply investigated because they allow to build very flexible proto-
types, as the full concurrency control is implemented in software, allowing to
quickly prototype many different design choices.

Under the hood, STM implementations may use different memory regions
access granularities (i.e., could be each memory address, chunk of memory or
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object). Most implementations have structures that identify which memory re-
gions are being accessed by each transactions (i.e., ownership records) [11, 6, 2].
Nevertheless, in Dalessandro et al. [12], NoREC is proposed as an alternative to
ownership records.

Regarding the conflict detection, STM implementations may be eager, i.e.,
they perform synchronization immediately during the speculative execution upon
each access to shared memory, or lazy, i.e., at commit time. Eager conflict de-
tection may provide better performance, since transactions immediately abort
upon detecting a conflict. This approach can be implemented by detecting if
one transaction is writing some memory region that is also being accessed by
other transaction. On the other hand, eagerly aborting a transaction may lead
to aborting more transactions that strictly necessary, e.g., T conflicts with T’,
eager approaches would immediately abort T; then T’ aborts, lazy approaches
would let T continue.

Correctness, i.e., opacity [9], is generally, achieved by creating versions of the
accessed memory regions and running the transaction speculatively. Versions
may be maintained using timestamps and storing the modified values locally
(in a redo log) before committing them to the shared memory. Alternatively,
versions may be written in place, storing the old values in an undo log that is
used to restore a consistent state in case the transaction has to be aborted. Other
lock-based implementations will use fine-grained locking to protect the memory
regions and some deadlock detection mechanism to restart blocked transactions.
As expected, whatever the chosen implementation, overheads will be introduced
regarding the sequential execution of the same application.

Transactional Locking II (TL2) [13], TinySTM [14, 15] and SwissTM [16,
17] use similar approaches to the ones described above. They have a metadata
structure where the current timestamp of each memory region is stored, the
timestamp is usually fetched from a global counter. At commit-time, the trans-
action is validated by checking whether the timestamps of the resources read
is never greater than the transaction timestamp (i.e., other transaction con-
currently changed the resource during the first transaction execution) and the
actual changes to memory are made at commit-time. A locking strategy is then
followed to ensure that the changes to memory are atomically made.

As seen before, accessing memory in transactional blocks has a greater over-
head than accessing memory in non-transactional blocks. Quantifying how large
the introduced overhead was a matter of study [2, 17], and there are contradic-
tory results. While in Cascaval et al. [2] TM is harshly criticised; in Dragojevic et
al. [17], it is shown that STM can scale very well in the presence of increasingly
more physical processing units, suggesting that, with further improvements, TM
will be able to outperform other, more error prone, synchronization techniques.

Presently, high level programming languages are introducing new ways of
simplifying parallel programming based on transactional memory. For instance,
in Java, by identifying transactional blocks with an @Atomic annotation, inex-
perienced programmers can write simple, yet correct, parallel applications [18].



7

Other high level programming languages let the programmer use built-in key-
words to identify transactional blocks, e.g., Clojure has the dosync keyword.

2.3 Hardware Transactional Memory

Implementing TM at the hardware, i.e., at the cache coherence protocol, level
reduces the overhead of synchronizing memory accesses, regarding software im-
plementations, thus achieving better performance.

Although proposes for unbounded HTM already exist [19–21], changing the
processor to support HTM is very complex, so Intel and others have opted for
making minimalistic changes to the cache coherence protocols of CPUs that
result in limited best-effort HTMs.

Besides Intel, also IBM has commercially available multiprocessors that sup-
port best-effort HTM. Both Intel’s and IBM’s implementation of HTM are based
on relatively simple and non-intrusive extensions of the cache coherence proto-
cols [22]. Therefore, they have limitations due to cache capacity, non transac-
tional code also using the cache and how memory addresses are mapped into
cache lines (i.e., if some addresses map to the same cache line it will overflow
even if the transaction does not use much memory).

Unbounded Hardware Transactional Memory. As best-effort HTM main-
tains data accessed within transactions (and the corresponding metadata) in
cache, it cannot handle transactions with large footprints (i.e., accessing many
more memory lines than the lines that can be cached in the private cache), there
are some works that address this issue [19–21], but its efficient implementation
introduces further complexity in hardware.

A first approach of Unbounded Transactional Memory (UTM), was the Large
Transactional Memory (LTM) [19], that supports nearly unbounded transaction,
which is enough for real life application. Its implementations is similar to best-
effort HTM, but it modifies the cache, so that cache lines that hold transactional
values and overflow go into uncached DRAM in virtual address space. Never-
theless, when a context switch occurs, all uncommitted transactions must abort,
because those cache lines that hold transactional values could be used by other
threads and using uncached DRAM as a cache is extremely slow.

Virtual Transactional Memory (VTM) [21] follows a similar approach to
LTM, as it uses the virtual address space to store the overflowed cache lines
into memory. Each processor has a VTM system, and, whenever the processor
requests an address within a transaction, it is responsible of updating a special
structure (held in virtual memory) with the needed metadata to handle conflicts.
Therefore, every memory address that the transaction uses does not need to be
in cache at the same time. Also, as this structure is in memory, transactions can
survive context switches and can be debugged.

Another UTM solution is logTM [20], which adopts a log based approach
to track the accessed memory regions, similar to what is used in DBMS. To
implement it, some new registers must be added to the processor to handle
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where the transaction started and where the log currently is. As in VTM, a
special structure must be held in memory with the transaction log. It was shown
to have better performance than VTM, but at the time of publication it still
lacked support for paging and context switching.

Best-effort HTM. Differently from UTM, best-effort HTM can only execute
transaction with a footprint smaller than the cache size, and do not survive
context switches (i.e., transactions that take more time than a time slice are
aborted). Apart of the time limitation, the number of addresses than a transac-
tion can use depends on the workload. Assuming that the addresses are mapped
into cache using the least significant bits, if a transaction uses contiguous mem-
ory, theoretically, it can use more memory than a transaction that accesses dis-
tant addresses. This is due to cache associativity, due to which each cache line
can hold n words (e.g., a 4-way associative cache line can hold 4 words).

As the full specification of HTM implementations is not completely known,
several works aimed at reverse-engineering commercial HTM systems to shed
lights on their internal mechanisms and on their actual limitations. This line
of research is important to allow the development of models that predict its
performance (e.g., maximum degree of parallelism, data contention, abort rate
and throughput), which is also the main focus of this report.

The following results and conclusions were drawn from recent studies that
compared Intel and IBM HTM solutions [22, 23], although this report focuses
mostly on Intel’s implementation. The multiprocessor tested (Intel Core i7-4770)
has 32KB, 8-way L1 data cache (512 cache lines), 256KB, 8-way L2 data cache
(4 096 cache lines) and 8MB, 8-way L3 data cache (131 072 cache lines).

According to the experiments reported by Hasenplaugh et al. [23], it was
possible to conclude that load (reads) and store (writes) maximum capacities
are 4MB and 22KB, using read-only and write-only transactions respectively.
Note that the reads capacity vastly surpass L1 and L2 cache capacities, which
suggests that it uses L3 shared cache (or some space efficient encoding, e.g.,
based on bloom-filter [24]) to keep track of the read values. More in detail:

– A transaction can read around 75 000 contiguous lines with 58% success rate
(after 32 500 lines the success rate starts dropping from 98%);

– A transaction can write around 400 contiguous lines with 100% success rate
(after that it drops to 0%);

According to these results, apparently all transactional writes must fit en-
tirely inside L1 cache (400lines × 64B = 25600B). Although memory accesses
are made contiguously, the total L1 cache size of 32KB is not reached. There
is also a good correlation between the maximum cache lines and the inverse
of the logarithm of the accessed contiguous lines, which suggests that memory
addresses are hashed using the least significant bits.

Molka et al. [25] discuss how the Modified, Exclusive, Shared, Invalid, For-
ward (MESIF) protocol was used to support Transactional Synchronization Ex-
tensions (TSX). In MESIF, each cache line may be in one of the following states:
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Modified: the cache line is being used only in the current cache, and the value
does not match the main memory (was updated);

Exclusive: the cache line is being used only in the current cache, and the value
matches the main memory;

Shared: other private caches may be using the cache line, and the value matches
the main memory;

Invalid: other processor updated the cache line locally and an invalidation sig-
nal was received, or the cache line is not being used (free);

Forward: when a memory region is accessed, the current private cache requests
the value to other private caches, setting the state to forward if some other
cache has the value in shared mode (does not ensure that the closest resource
is the one that is gathered).

When using HTM approaches, one has always to specify a fall-back synchro-
nization mechanism that is activated when a transaction cannot be successfully
committed using hardware-aided transactions. This fallback-path is typically a
global lock. Firstly, because it is an easy solution and aborts should not ap-
pear very often. Therefore, most of the time transactions should be using HTM
and not the global lock (although this clearly depends on the actual workload
characteristics). Secondly, falling back to STM is not simple because neither the
software layer has access to best-effort HTM internals, nor HTM is aware of
the STM. Therefore, if one transaction is using HTM and another uses STM
undetectable conflicts would occur (as if no synchronization was used at all).

2.4 Hybrid Transactional Memory

As both best-effort HTM and STM have drawbacks, one may try to combine both
in order to get the best of the two. As a matter of fact, currently, most multi-core
processors available in the market (also for the foreseeable future) support only
best-effort HTMs, which, as already discussed, can suffer of severe limitations
when faced with workloads including long transactions. Yet, any programmer
relying on TM expects a complete solution that works all the time with all kinds
of transactions.

Hybrid Transactional Memory (HyTM) [26] was proposed to fill this gap in
current HTM libraries. Preference is given to the best-effort HTM, but the imple-
mentation is not completely HTM dependent, overcoming some of its limitations
by using a STM library as fall-back path. Therefore, if the HTM library is not
capable of handling the transaction, there is a STM routine that will handle it
in the future.

Nevertheless, falling back to STM is not trivial. If a STM transaction is run-
ning, HTM transactions will not be aware of which addresses are being accessed
by STM transactions.

The experiments in Dameron et al. [26] showed that this approach achieves
better results than using only a STM library. Also, using many cores, the solution
scaled as well as logTM (tested in a simulator), which is an unbounded HTM
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solution, therefore, being an accessible solution that makes use of the currently
available best-effort HTM.

Other more recent studies [8], though, revealed that existing HyTM solutions,
when employed in commercial HTM-enabled processors, such as Intel’s Haswell,
can suffer of strong overheads and deliver, in many realistic workloads, lower
performances than approaches based on pure STM or HTM.

2.5 Benchmarks for Transactional Memory

Since various TM implementations exist, the programmer must be able to com-
pare them in order to pick the one that best suits the programmer needs.

Currently, there are lots of parallel applications that make use of locks for
concurrency control. With their adaptation to use transactional memory, it is
possible to compare different locking systems and how well different versions of
TM behaves.

The benchmarks, therefore, are either real world or synthetic applications
that use TM to synchronize concurrent access. In most cases, one must imple-
ment a wrapper to his/her library, then the benchmark, using explicit instru-
mentation, will use the given TM library.

Some of the most popular benchmarks for TM systems are the following:

Lee-TM: A circuit routing algorithm. Due to the large number of routings
that a typical circuit needs, large degrees of parallelism must be achieved.
Hence, it is an application that needs alternatives to traditional lock-based
synchronization techniques [27];

STMBench7: An implementation of a cooperative Computer Aided Design
(CAD) editing environment. This benchmark represents the porting to TM
environments of the OO7 benchmark, originally proposed for object-oriented
DBMSs [28];

Memcached: An object caching system used in many web services. Mainly, af-
ter database or API calls, this application stores its results to avoid new calls,
hence improving the system’s overall responsiveness. The usage of TM should
improve the storage capabilities, by allowing the results of asynchronous calls
to be stored in memory concurrently [29];

STAMP: A suit of eight different applications, each provided with different
inputs and configurations, therefore, generating different workloads to stress
various aspects within the given TM library, namely, transaction length,
contention and scalability [30].

2.6 Comparison between STM, HTM and HyTM

As discussed in the previous sections, STM, HTM and HyTM have limitations,
which I summarize in the following:

STM: Large overhead due to the use of software structures that handle resource
ownership and versioning are needed. It is suitable for large transactions (i.e.,
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unbounded), e.g., in C programming language often memory allocation rou-
tines (i.e., malloc, calloc, realloc and free) have to be replaced. Also, the
programmer may have to explicitly call read/write routines to access mem-
ory regions inside transactional blocks (though some exceptions exist [13]);

best-effort HTM: Small overhead thanks to the hardware support and to
their best-effort nature. However, it is not suitable for large transactions
and aborts frequently due to non transactional events (e.g., context switch-
ing). Also, a fall-back path must be defined. e.g., One advantage is that there
is no need to explicitly call read/write routines to access memory;

HyTM: Tries to handle transactions, firstly, using HTM and then, if hardware
cannot handle it, STM is used. While appealing in theory, the coupling of
HTM and STM can introduce non-negligible overheads, which can strongly
hamper performance in practice.

To finalize the TM related work, Intel’s HTM will be the primary focus of this
thesis due to its novelty and availability in commodity end-user machines (un-
like IBM’s processors). Also, its underline mechanics have not being completely
undisclosed yet, which makes it an interesting object study.

2.7 Basic methodologies for performance modelling

As seen before, TM performance is highly dependent on the application work-
load. Therefore, models are needed to predict whether a TM solution is suitable
to some new application or not.

Performance models mainly divided in the following three techniques: white-
box, in which the model exploit detailed knowledge about the internals of the
target application; black box, in which the performance model is inferred by
means of collecting a training dataset and using a learning algorithm; gray box,
which combines the previous two approaches.

As a goal for this thesis is to develop an Analytical Model (AM) to predict
best-effort HTM performance, this section surveys similar work on the develop-
ment of models for various systems.

White-box models. White-box models, like analytical and simulative models,
assume and exploit the knowledge of internals of the target system to predict its
performance dynamics. In the case of AM, the system is represented by means
of equations, which may be hard to devise and generalize.

However, white-box models have the advantage over the black-box approaches
of not having to be fed with large learning datasets. Also, by looking into the
equation, it is possible to understand why the predictions are being made.

Often queueing theory and discrete-time Markov chains are useful tools in
describing the entire system, or subsystems (then aggregated in a more global
model). From there, the fundamental equations are derived. [31, 7]

Usually, the more input parameters the model has the more accurate and
versatile the model is. For instance, using as input parameters the time it takes
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to read, write, begin the transaction, commit it, the mean number of transactions
and the mean number of reads and writes per transaction, the model could
predict the expected execution time for a specific workload.

Also, AMs can model specific implementations of systems by taking as input,
for example, the characteristics of some in-memory structures to predict, for
example, conflicts.

Simulation can be combined with AM in order to infer more information
from the system (e.g. abort rate distribution), which can be incorporated in the
AM.

A wide body of literature has been published on the development of AMs
aimed to capture the performance of alternative concurrency control mecha-
nisms [3–5, 31, 32, 7]. Given the reliance on the common abstraction of atomic
transactions, the literature on AM of concurrency control for DBMS will be
reviewed in Section 2.8.

Actually, AMs applied in the context of databases is important in order to
choose the right concurrency control mechanism. Due to some similarities with
TM systems it will also be included in this report in further sections.

Black-box models. Black-box modelling approaches are based on the idea of
learning statistical relations between a set of input variables (called features) and
one or more output variables. As the name suggests, the target system is treated
as a black-box, in the sense that no information on its internals is assumed. The
dataset provided as input to build a black-box model is typically called training
set. Some of the most important requirements to build good training sets are:

– good coverage of the input domain;
– not over-training certain areas of the input domain;
– low incidence of outliers in the training dataset.

Black-box models are mainly Machine-Learning (ML) approaches, like, e.g.,
neural networks [33] and support vector machines [34].

However, predictions from ML approaches are not easily explained, as the
output model is not, in general, interpretable by humans. On the other hand,
one can find out why some prediction was given by an AM by looking into the
equations.

Nevertheless, if the system internals change, ML approaches will be more
resilient than AM approaches due to be possible to re-train them with a new
dataset. If provided with sufficient training data reflecting the system’s change,
in fact, ML approaches can automatically derive an updated model. When using
AM techniques, however, a new set of equations will have to be manually derived
(and validated).

However, if a system characterization changes, and the AM captures it, by
updating this new value, the predictions shall continue accurate, not needing
additional effort as in ML.

Performance predictors using ML techniques exist associated with STM sys-
tems, e.g., [35, 36].
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With these approaches, first, some ML technique is used to learn an initial
training set. Next, a profiling module extracts runtime information from the
workload to feed the ML-based model and possibly optimize the system accord-
ing to the model’s predictions.

Gray-box models. Both analytical and machine-learning models have draw-
backs, i.e., equations for the AM may be difficult to derive and ML, though more
generic, requires gathering a large training set. Thus, one may try to combine
both to achieve better predictions.

In gray-box techniques, both white-box and black-box models are combined
in order to reduce the drawbacks of each other, improve performance and/or
accuracy. To do the combination of the models one of the following approaches
is usually taken:

– subdivide a complex system into simpler subsystems; then, identify the sub-
systems that are tractable for analytical modelling, and apply some ML
technique to those remaining; finally devise a formula to combine the out-
puts of each modelling of each subsystem [37, 38];

– bootstrap the ML model with the AM, in order to alleviate the need for
gathering a large initial training set. Initially, the ML should be as good as
the AM; then, the ML is improved with workload information gathered from
the running application, thus, improving its predictions [39, 40];

– combine AM and ML using other Machine Learning techniques to learn when
one model outperforms the other [41].

2.8 Performance modelling of transactional systems

This section is devoted to overviewing existing literature in the area of analytical
modelling of performance of TM and Database Management System (DBMS).

Database Management System models. Relational databases are a robust
and well studied technology, and a large body of literature has been devoted
to model the performance of the various concurrency control mechanisms pro-
posed for relational DBMSs [3–5]. While Tay et al. [3] and Yu et al. [5] propose
analytical models, in Agrawal et al. [4], already existing analytical models are
compared by means of simulation models.

DBMS are closely related with TM, given that they share the abstraction
of atomic transaction. Nevertheless, there are also some differences, DBMSs are
complex systems, they may support distributed databases, accesses from remote
users, crash recovery, durability, etc, which TM is not supposed to support. TM
will run in the same machine, each transaction will use volatile memory. Hence,
several mechanisms that are required by DBMSs, are not relevant in a TM
environment. Also, TM transactions execute in a non-sandboxed environment,
unlike DBMSs. This motivates the adoption of more conservative consistency
criterion in TM, e.g., opacity vs serializability [9].
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Also, in DBMS, sockets are often used to connect to the database, with
commands being written in Structured Query Language (SQL), thus introducing
communication and parsing overheads, which does not exist TM systems.

In the DBMS literature, a large number of alternative concurrency control
schemes have been proposed. Existing approaches to concurrency control can be
coarsely clustered in two main classes: optimistic and pessimistic concurrency
control [5].

An optimistic concurrency control approach will deal better with low data
contention scenarios. A pessimistic concurrency control approach, on the other
hand, behaves better in the presence of high data contention (as it does not have
to rollback to previous states).

Most AMs of DBMS focus on predicting the probability of a transaction
aborting (PA). For instance, inputs for this model could be the mean number
of accessed resources (NL), the transaction arrival rate (λ), the total number of
available resources (L), in average how much time a resource is held (TH) and
the mean value of the commit time (TCommit).

For Strict Two Phase Locking, one of the most popular pessimistic concur-
rency control mechanisms, the following analytical formula has been derived to
predict the transaction abort probability [5]:

PA ≈ 1− exp(−λN
2
LTH

L )
And for optimistic concurrency control mechanisms:

PA ≈ 1− exp(
−λN2

LTH

L )(1− λNLTCommit

L )NL

In this model, the optimistic concurrency control mechanism is expected to
abort more often than the pessimistic approach. On the other hand, the opti-
mistic version is more responsive, thus having smaller TH . This model assumes
that each resource have equal probability of being accessed, which is not the case
in most applications workloads.

Also, the predictions are mostly approximations due to the complexity the
system would introduce in the model. But, the obtained results for the previous
model [5], accurately predict the real system performance, and the obtained
deviation scaled linearly with the input domain.

TM models. Given that the TM area is much more recent and unexplored
than conventional DBMSs, as expectable, there is a smaller number of works
devoted to the performance modelling of TM systems.

In particular, the only works that we are aware of that target performance
modelling of TM have considered exclusively Software-based TM implementa-
tions. To the best of our knowledge, in fact, there are no works in the literature
that tackled the problem of modelling the performance of Hardware, or Hybrid,
TM systems. One of the goals of this dissertation consists precisely in mov-
ing a step towards filling this gap by deriving analytical models capturing the
performance of best-effort HTM systems.

Among the work that targeted the performance modelling of STM, Zilles et
al. [6] have shown that there is a close resemblance between the probability of
conflicts between transaction and the birthday paradox.
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According to this model, given the amount of accessed memory regions (foot-
print) and the size of the ownership table (table size, most STMs have a in mem-
ory structure to handle which memory regions are owned by each transaction),
it is possible to predict the conflict likelihood (conflict) as follows:

conflict ∝ footprint2

table size conflict ∝ concurrency2

This means that, the larger this table is, the smaller is the probability that
two memory regions maps to the same entry, which, intuitively, makes sense.

Also, response time, commit probability, abort probability, throughput, etc,
was taken in account in various works [31, 32, 7]. Most approaches use discrete-
time Markov chains and queueing theory to represent the transaction or thread
behaviour.

Some works try to relax assumptions in order to devise simpler models, e.g.,
assuming that the transaction restarts right after it aborted [31]. These assump-
tions, generally, are made in a way that do not compromise the results much,
thus, achieving predictions close to what is observed in the real system.

As TM systems are complex, other lines of work resort to using ML tech-
niques. These approaches typically construct an initial model using training data
gathered using a mix of predefined applications. Then, via a profile, performance
traces acquired from the target application’s workload are acquired in order to
fine-tune the model and enhance its accuracy.

There are also works that tackle the cold start problem of ML approaches by
combining an AM, resulting in better performance and better initial predictions.
For instance, In Rughetti and Di Sanzo [43] use an analytical estimator (fA),
alongside with some initial profiled data, estimates the initial virtual training
set for the analytical ML estimator (fAML) which creates a virtual-real mixed
trained set. The last training set is updated with profiled data from the running
application and feeds a neural network estimator (fML), which predicts the
application performance.

Finally. Didona and Romano [39] introduce a technique called bootstrapping.
This technique relies on an AM to generate an initial training set that is used
to build an initial black-box model.

This approach reduces the initial profiling stage and generates an accurate
non overfitting training set.

The machine learning model will initially behave exactly like the analytic
model, and then with more samples from the actual application the machine
learning model will achieve increasingly better results.

2.9 Simulation models for transactional systems

In contrast with AM, simulations produce statistical results gathered from the
an actual representation of the system. Within a simulation environment, non-
deterministic events can be controlled as well as the complexity of the system.
Simulation is usually used during the development of an AM, in order to verify
to what extend the introduction of assumptions aimed to simplify the model can
impact its ultimate accuracy.
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Some experimental transactional systems may do not have any support in
physical systems (as in UTM, see Section 2.3). Hence, modelling the performance
of these systems depends on how accurate the simulator is.

Simulators for DBMS. Simulators have been long used in the DBMS litera-
ture and developed with two main purposes:

1. validating some AM of specific components of a DBMS. This is the case for
instance for the work by Tay et al. [3] and Yu et al. [5], which used simulation
to validate AM of the performance of various concurrency control schemes.

2. predict the performance trends of a database as a whole [44], or shedding
light on the performance dynamics of specific modules of a DBMS (e.g.,
real-time transactional scheduling [45] or buffer management [46]).

TM simulators. As seen before, simulators are important when the piece of
hardware that is needed still does not exist or is unavailable (as in Section 2.3).

AMD has an experimental HTM instruction set, called Advanced Synchro-
nization Facility (ASF) [47], which should compete with Intel TSX, but was not
released (yet). As it was a prototype for AMD multiprocessors, this instruction
was implemented in a cycle-accurate simulator. Then, by extending a C/C++
compiler to generate ASF, it was run the STAMP benchmark.

Cycle-accurate simulators are able to simulate real systems, and run complex
software (e.g., operating systems) on top of them. One important feature is that
they are able to capture the time each event would take in the real system by
simulating low level machine execution. For instance, PTLsim [48] is a x86-64
simulator that explicitly simulates the program counter and other resources.
The number of cycles that each operation takes is then made available for the
subsequent statistical analysis.

2.10 Tuning of TM

As shown in Section 2.3, best-effort HTM are not capable of handling certain
types of transactions. Therefore, a fall-back path must use other synchronization
methodology to execute the transaction. As best-effort HTM do abort for a lot
of reasons, falling back right away is not the smartest approach.

In Diegues et al. [49], lightweight reinforcement learning techniques (i.e., hill
climbing [50], an on-line black-box modelling technique) was exploited to identify
the optimal number of retries that should be attempted when using Intel TSX.
The approach works fully on line and does not require any a priori workload
characterization.

After a transaction starts, depending of the current application behaviour,
the tuner may want to optimize the current configuration, and if so, it starts
profiling cycles, fetches the previous configuration and then starts the trans-
action. After the transactions ends, according to the profiled information, the
optimal configuration is predicted for the next transaction. Using this approach,



17

it was shown a significant performance increase over other approaches. It was
also shown that the proposed solution behaves only 5% worse than using opti-
mal static configurations, with the advantage of being dynamic and capable of
adapting to any workload.

3 Solution Architecture

This section discusses how I intend to pursue the goals of my dissertation, which
I recall, consist in developing an analytical and a simulation model of best-effort
HTM systems.

More in detail, Section 2.3 presents a set of information regarding the internal
architecture of Intel processors that is most relevant for the HTM subsystem.
This information has been gathered by studying three main sources in the public
literature [51, 22, 23].

Next, Section 2.3 reports the results of a preliminary experimental study
that has been aimed to reverse engineer the concurrency control algorithm im-
plemented by Intel’s TSX. This information, which is unfortunately undisclosed
by Intel, represents a fundamental preliminary step to purse the goal of building
both analytical and simulation models of Intel’s TSX.

3.1 Preliminary investigation on the inner design of Intel TSX

Intel TSX capacity limits rely on the cache size [51, 22, 23]. In Table 1, the
specifications for a Haswell processor. Similar specifications are found in Xeon
and Broadwell processors. In most recent processors from Skylake family, this
specifications also apply.

Level Capacity
(KB)

Associativity Line size
(Bytes)

Fastest
Latency

Peak Bandwidth
(Bytes/Cycle)

Update
policy

L1 32 8-way 64 4 cycles 64 (Load), 32 (Store) Writeback

L2 256 8-way 64 11 cycles 64 Writeback

L3 varies varies 64 34 cycles varies Writeback

Table 1: Intel’s Haswell specification regarding its cache system.

In a multi-core environment, there are several cache levels. For the sake of
simplicity, let us abstract the system using the following levels, as in Figure 1a:

– private cache, different for each core;
– shared cache, accessible to all cores.

In Intel’s case, most processors have three levels of cache (L1 and L2 are
private, L3 is shared). For now, the system is abstracted as only having the
previous two types of cache: private (one per core) and shared. Also, taking
in account the conclusions from Hasenplaugh et al. [23] in Section 2.3, we will
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assume that TSX handles writes at private cache level and reads at shared cache
level.

When a processor updates a value, the cache manager is responsible for
updating higher level caches and ensuring the consistency of the private caches
of other processors, invalidating any changed private value.

(a) Cache hierarchy abstraction.

(b) N associative cache abstraction.

Fig. 1: Cache components.

In current processors each cache has a fixed number of lines, and each line
has a fixed number of words. Each word stores a value from the main memory.
Intel uses the MESIF protocol, so each word can be in one of its five states
(modified, exclusive, shared, invalid or forward, see Section 2.3). Whenever a
transaction accesses a memory word, the cached memory word is established
as owned by that transaction: if some owned word gets an invalidation signal,
then a transaction that is running in that processor core is immediately aborted;
furthermore, if the cache is full and a word that is owned by a transaction has
to be evicted, the corresponding transaction is aborted.

Reverse engineering TSX’s concurrency control. Intel did not disclose any
detail regarding the concurrency control employed by TSX to ensure consistency.
Yet this information is of paramount in order to build detailed white-box models
of TSX of either simulative or analytical nature. This has led us to design a set
of 6 test cases based on the usage of two concurrent transactions, which execute
different patterns of read/write accesses to the same shared data item. The
experiment has the ultimate objective of inferring how conflicts are managed in
Intel’s implementation of HTM.

Figure 2 reports the 6 tested transactional schedules. In order to enforce the
desired access order to memory by the concurrent threads, empty loop cycles
were added to the transaction code (i.e., spinning times). To avoid GCC to
eliminate them through its optimizer, no optimization level was used (i.e., -O0).

Assuming that most of the time both threads are running in parallel, the
schedules in Figure 2 were achieved by adjusting the spinning times. Neverthe-
less, as the current process may switch (i.e., our application was not the only
one running in the machine), some noise was observed, to reduce its impact, the
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Fig. 2: Tested schedules in Intel TSX.

R W

RW1 C A

RW2 A C

RW3 C A

RW4 A C

R1 R2

RR C C

W1 W2

WW A C

Table 2: Conflict results,
A means aborted and C
means committed.

experiment was repeated over 50 000 times for each schedule and the results that
were observed more often are the ones recorded in the Table 2.

According to Table 2, if a transaction T accesses a memory word, and later
a second transaction T’ conflicts on the same word with T, then T is aborted
eagerly, i.e., as soon as T’ causes the conflict.

A more interesting, and definitely necessary, set of experiments will be aimed
to profile the costs, in terms of processor cycles, of operations like begin, commit
(in successful or unsuccessful cases), and abort.

3.2 Best-effort HTM simulation

Fig. 3: ROOT-SIM behaviour.
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To simulate the best-effort HTM we will use a event-driven simulator. We
choose ROme OpTimistic Simulator (ROOT-SIM) [52] because it supports multi-
thread simulations which might be faster than sequential ones, and the API is
also very concise, relying only in four routines to schedule new events, process
scheduled events, set the global state of the simulation and check ending condi-
tions. In Figure 3, a simplification on how ROOT-SIM works is presented.

Early experimentation were made to check whether, from within this simu-
lator, a complex best-effort HTM simulation can be easily simulated or not. As
we do not want to drop it after several modules are already made.

Taking in account the previous information, we will create a simulator capa-
ble of extracting workloads from well known benchmarks (e.g., Lee-TM, STM-
Bench7 and Memcached) and run the simulation.

The simulation model to be developed in my dissertation will focus in partic-
ular on modelling the dynamics of the processor’s caches, given that this compo-
nent is expected to have the strongest impact on the performance of HTM-based
applications.

In particular, the simulation model will implement the MESIF cache co-
herence protocol, and extend it to implement the concurrency control scheme
implemented in TSX. Regarding the fall-back path, the simulator will aim first
to capture the dynamics of a scheme using a single global lock. Whether possible,
the simulator will be then be extended to include also other fall-back solutions
(e.g., NoREC [12]).

4 Evaluation Methodology

As for evaluation methodology, I will compare how accurately my AM will be-
have respectively with the results taken from the simulator. The simulator must
be able to take workload information from well known benchmarks, e.g., Lee-
TM, STMBench7 and Memcached, and then the simulation should output per-
formance measures, e.g., throughput, abort rate and response time. Then, the
measured results will be compared with what our model predicts for that same
measures.

The simulation model will validate the analytical model. As consequence, an
Intel’s TSX processor will validate the simulation model, hence, corroborating
the correctness of both models.

4.1 Error measurement

In order to compare the model results with the simulation results, various metrics
shall be used, including Mean Absolute Error (MAE) and Relative Absolute
Error (RAE).

Given a sample of n pairs of predicted/obtained values, the error is defined
as ei = fi − yi, where fi is the predicted value (model) and yi is obtained value
(simulation). MAE is defined as 1

n

∑n
i=1 |ei| and RAE is defined as 1

n

∑n
i=1 e

2
i .

Also, the obtained distribution shall be analysed, through the usage of sta-
tistical tests, such as Student’s t-test and other correlation tests.
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5 Calendarization

In this Section follows the calendarization of activities for my dissertation. As
presented in Section 3, an analytical and simulation model have to be developed.

I propose the following deadlines for each activity:

25/03/2016: completion of the simulation for the associative caches using the
MESIF protocol and the simulation of fall-back synchronization techniques
(starting with the global lock); the simulator must be easy to configure,
hence, simulating changes in the hardware configuration (e.g., cache size);

15/04/2016: completion of several wrappers to extract statistical information
from the benchmarks described in Section 2.5;

29/04/2016: completion of several wrappers to the benchmarks described in
Section 2.5 using Intel’s TSX and the different fall-back paths developed to
the simulator;

13/05/2016: validation of the simulation model with Intel’s TSX obtained be-
haviour and compare the results using the metrics presented in Section 4;

17/06/2016: completion of an initial analytical model;
22/07/2016: validation of the analytical model though the simulation model

and compare the results using the metrics presented in Section 4;
02/09/2016: completion of an article describing this dissertation results;
09/09/2016: completion of the dissertation.

In parallel with these activities, further tests with Intel’s TSX shall be pre-
formed; in the same line to what is proposed in Section 3.1.

6 Conclusion

This report surveyed the state of the art in Transactional Memory, by explaining
its abstraction and implementations in software, hardware, and combinations of
both. Given the recent release of best-effort hardware support in Intel processors,
some emphasis was given to this new technology, whose details are undisclosed
and of the utmost relevance to understand and tune its performance.

As such, the proposal presented here is to create a simulation and an ana-
lytical model aimed to capture the performance dynamics of Intel’s Restricted
Transactional Memory. For this, the main approaches for modelling concurrent
systems were presented, ranging from black-box to white-box models.

Though white-box approaches boosted by means of black-box approaches
were surveyed, as this work aims to develop a first analytical model for best-
effort HTM, hence, filling a gap in current literature. Black-box models will not
be an initial concern of this dissertation.

Furthermore, a simulation model will be developed as well, to capture the
behaviour of Intel’s processors. The reason for developing both models is that
the simulator has a twofold purpose: it can allow to assess the impact of future
changes in the processor architecture (e.g., larger caches), and it can serve to
validate the analytical model.

As a result of this proposal, the expectation is to obtain statistical results
similar to those of a real multi-core processor with HTM.
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