
UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Gray Box Performance Modeling of

In-Memory Distributed Transactional Platforms

Diego Didona

Supervisor: Doctor Paolo Romano

Thesis approved in public session to obtain the PhD degree in

Information Systems and Computer Engineering

Jury final classification: Pass with distinction

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor Guillaume Pierre
Doctor Paolo Romano
Doctor João Manuel dos Santos Lourenço
Doctor Francisco António Chaves Saraiva de Melo

2015

UNIVERSIDADE DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

Gray Box Performance Modeling of

In-Memory Distributed Transactional Platforms

Diego Didona

Supervisor: Doctor Paolo Romano

Thesis approved in public session to obtain the PhD degree in

Information Systems and Computer Engineering

Jury final classification: Pass with distinction

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor Guillaume Pierre, Full Professor, Université de Rennes 1, France
Doctor Paolo Romano, Professor Associado, Instituto Superior Técnico, Universidade de Lisboa
Doctor João Manuel dos Santos Lourenço, Professor Auxiliar, Faculdade de Ciências e
Tecnologia, Universidade Nova de Lisboa
Doctor Francisco António Chaves Saraiva de Melo, Professor Auxiliar, Instituto Superior
Técnico, Universidade de Lisboa

Funding Institutions

Fundação para a Ciência e a Tecnologia
European Commission

COST (European Cooperation in Science and Technology)

2015

Acknowledgements

I cannot but begin this document by expressing my deepest gratitude to my advisor, Professor

Paolo Romano. Yet, I cannot thank him for his guidance and his teaching, as I know he would

reply just like he has humbly been doing since the very first day: “it is my job and duty”.

Hence, I am going to thank him for his true friendship outside the office and for his constant

presence and support in the hardest moments: for every all-nighter pulled off up to the dawn

and beyond, he has always been at the other side of the desk or of the Skype window, never

giving up first. This kind of commitment hardly falls within the job specifications or among the

duties of an ordinary advisor. Finally, I want to sincerely thank him for all the opportunities he

gave me throughout the years, and all the doors that he has opened (or at least knocked on) to

me: they have determined my path up to now, and they are shaping my future. I am happy and,

undeservedly, a little bit proud of being his first full PhD student to graduate.

I also want to warmly thank my grand-advisor, Professor Francesco Quaglia, who guided

my first steps in the slippery field of research. His teachings and inspirational words have taken

root in my mind, and I hope to have honored them so far, and to continue to do so in the future.

To conclude with my academic ancestors, I want to thank my grand-grand-advisor,

Professor Bruno Ciciani, for his support in my last (sad) days in Rome and for showing me that

a good spirit is sometimes the key to approach research (and life in general).

I also want to dedicate a few words to people who have been instrumental, in several ways,

to the completion of my PhD. First and foremost, I want to express my gratitude to Sebastiano

Peluso, with whom I shared the first, and probably most exciting, part of this adventure. With

him, I faced my first deadline and wrote my first paper, celebrated the first accept and dealt

with the first reject; I shared with him my first lab (in Rome) and my first flat (in Lisbon). And,

most importantly, the creaky and ice-cold room of Residencial Marisela: this is a bond that lasts

forever. Much like the echoes of the whistle of Trinity’s song rising in the morning: they still

give me goosebumps, reminding me of those glorious days. I want especially to thank him for

his friendship, and for the enthusiasm and rigor he approaches research with, which have been

truly an inspiration for me.

I would also like to thank all the people I have met during my stay at INESC-ID —from

the custodians to the professors— and occasionally abroad, my several co-authors, grad and

undergrad students with whom I have worked; but they are so many that I cannot possibly

mention all of them. However, I want to especially thank Professor Luı́s Rodrigues and

Professor João Barreto for providing me support and means to start and develop my research,

and Professor Pascal Felber and Professor Rachid Guerraoui for having hosted me in their

labs during my two brief Swiss missions. As for the peons, ehm, junior researchers, I want

to especially thank Maria Couceiro, Nuno Machado, João Paiva, Liliana Rosa and Xavier

Villaça for their companionship in and out the walls of INESC-ID. I cannot help but dedicate a

special thought to Pedro “Pedrito” Ruivo, with whom I saw Benfica (lose), spent many of my

coffee-breaks and faced some of the toughest all-nighters; and to Nuno “the pruner” Diegues,

whom I had the pleasure to work with during my last Portuguese project, for sharing with me

his uncommon knowledge and research wisdom.

To conclude this section, I would like to express my deepest gratitude to people, or entities,

who had nothing to do with or to gain from my PhD journey, and yet stood by my side providing

me with invaluable support.

To my whole family, for their unconditional love and care. In particular, to my parents, for

their teaching and education and for being, through their very lives, the model I always turn to;

for letting me do my mistakes, yet helping me to recover in the aftermath; for minimizing and

forgetting delusions and disappointments, while pretending every small accomplishment to be

a major success to be celebrated. Specifically, to my mother, who gave up everything for her

family: I wish I had her strength. And to my father, who is the most dedicated researcher I

know, yet he cannot compute his h-index. I wish I were as genuine as he is.

To my best friends, Matteo, Giacomo and Matteo, whose long-distance presence and hilar-

ious messages have kept my mental sanity during these years. . . Or have they?

To Annamaria, for her constant moral support, friendship and true kindness; and for the

countless dinners and cakes she prepared me, always pleasantly taking into account my dietary

habits and quirks.

To matish, for having originally generated in me the desire of pursuing my PhD, even if

he does not know that.

To Portugal, and in particular the city of Lisbon: I have not even taken care of learning its

language, yet it hosted me like one of its very children. Obrigado.

To my little okapi, whose smiles, sweetness and beauty just kept me hanging on in some

imperfect days.

And to music, that mysterious form of time.

The work presented in the thesis was supported by the following funding agencies:

• INESC-ID through PEst-OE/EEI/LA0021/2011, PEst-OE/EEI/LA0021/2013 and Incen-

tivo/EEI/LA0021/2014

• European Commission through project CloudTM (FP7/257784) and the EuroTM COST

Action (IC1001)

• Fundação para a Ciência e Tecnologia (FCT) through projects Aristos (PTDC/EIA-

EIA/102496/2008), SpecSTM (PTDC/EIA- EIA/122785/2010) and GreenTM

(EXPL/EEI-ESS/0361/2013)

Thesis Publications List

Most of the material presented in this work can also be found in the following publications:

Journals

1. D. Didona, P. Felber, D. Harmanci, P. Romano, J. Schenker. Identifying the Optimal Level of Par-

allelism in Transactional Memory Applications. Springer Computing Journal , December 2013.

2. D. Didona, P. Romano, S. Peluso, F. Quaglia. Transactional Auto Scaler: Elastic Scaling of Repli-

cated In-Memory Transactional Data Grids. ACM Transactions on Autonomous and Adaptive

Systems (TAAS), Vol. 9, Issue 2, Article 11, July 2014.

3. P. Di Sanzo, F. Quaglia, B. Ciciani, A. Pellegrini, D. Didona, P. Romano, R. Palmieri, S. Peluso.

A Flexible Framework for Accurate Simulation of Cloud In-Memory Data Stores. Elsevier Simu-

lation Modelling Practice and Theory Journal (SIMPAT), to appear.

Conferences and Workshops with proceedings

1. R. Palmieri, P. Di Sanzo, F. Quaglia, P. Romano, S. Peluso, D. Didona. Integrated Monitoring of

Infrastructures and Applications in Cloud Environments. Workshop on Cloud Computing Projects

and Initiatives (CCPI, collocated with Euro-Par), 2011.

2. D. Didona, P. Romano, S. Peluso, F. Quaglia. Transactional Auto Scaler: Elastic Scaling of In-

memory Transactional Data Grids. In Proceedings of the ACM 9th International Conference on

Autonomic Computing (ICAC), 2012.

3. B. Ciciani, D. Didona, P. Di Sanzo, R. Palmieri, S. Peluso, F. Quaglia, P. Romano. Automated

Workload Characterization in Cloud-based Transactional Data Grids. In Proceedings of the IEEE

17th Workshop on Dependable Parallel, Distributed and Network-Centric Systems (DPDNS, col-

located with IPDPS), 2012.

4. D. Didona, D. Harmanci, P. Felber, P. Romano, J. Schenker. Identifying the Optimal Level of

Parallelism in Transactional Memory Applications. In Proceedings of the 1st International Con-

ference on Networked Systems (NETYS), 2013 (Best paper award).

5. D. Didona, P. Romano. Self-Tuning Transactional Data Grids: the Cloud-TM Approach. In Pro-

ceedings of the IEEE 3rd Symposium on Network Cloud Computing and Applications (NCCA),

2014.

6. D. Didona, P. Romano. Performance Modelling of Partially Replicated In-Memory Transactional

Stores. In Proceedings of the IEEE 22nd International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems (MASCOTS), 2014.

7. D. Didona, F. Quaglia, P. Romano, E. Torre. Enhancing Performance Prediction Robustness by

Combining Analytical Modeling and Machine Learning. In Proceedings of the ACM/SPEC 6th

International Conference on Performance Engineering (ICPE) , 2015.

8. D. Didona, P. Romano. Hybrid Machine Learning/Analytical Models for Performance Predic-

tion: a Tutorial. In Proceedings of the ACM/SPEC 6th International Conference on Performance

Engineering (ICPE) , 2015.

9. D. Didona, P. Romano. Using Analytical Models to Bootstrap Machine Learning Performance

Predictors. In Proceedings of the IEEE International Conference on Parallel and Distributed Sys-

tems (ICPADS), 2015.

Book chapters

1. M. Couceiro, D. Didona, L. Rodrigues, P. Romano. Self-tuning in Distributed Transactional Mem-

ory. In Transactional Memory: Foundations, Algorithms, Tools and Applications. Springer, Lec-

ture Notes in Computing Sciences, 2015

To my parents.

Abstract

Cloud Computing has drastically changed the way modern applications are provisioned: in the Cloud, resources

are acquired elastically, i.e., on-the-fly, depending on actual applications’ demands, thus allowing for significantly

reducing both upfront capital investments and operational costs.

Distributed Transactional Platforms (DTPs) have emerged as an important class of computing platforms for

the Cloud: by building upon the familiar construct of transaction, programmers can delegate to a distributed

middleware the burden of regulating concurrent accesses to critical sections, and be spared from the complexity

associated with enforcing data consistency in large scale distributed platforms.

Modeling the performance of DTPs is a fundamental requirement to implement automatic resource provi-

sioning and self-tuning schemes aimed to take advantage of the elastic provisioning capabilities of the Cloud.

Performance models, in fact, represent valuable means to estimate the resources demanded by applications to meet

their service level objectives, as well as to predict the impact on performance of several DTP design choices and

configuration parameters.

Classical approaches to performance prediction of computer systems rely on two techniques: white box and

black box modeling. White box modeling, e.g., Analytical Modeling, exploits a priori knowledge of the internal

dynamics of the target application/system in order to predict performance. Once built, white box models can

typically be promptly instantiated, i.e., they require minimum (or null) training times. On the downside, they

usually rely on assumptions or introduce simplifications to ensure tractability. As a result, their accuracy can be

impaired in scenarios in which the employed assumptions do not hold or the introduced approximations prove to

be too coarse.

Black box modeling, on the other hand, assumes no knowledge on the internal dynamics of the target system;

instead, it leverages Machine Learning algorithms to infer, by means of a dedicated training phase, statistical

relationships between a set of input variables, corresponding to the system’s configuration and its workload’s

characteristics, and some key performance indicator(s). Black box models typically deliver good accuracy when

working in interpolation, i.e., in regions of the input space that have been sufficiently explored; conversely, their

accuracy is typically poor when working in extrapolation, i.e., in regions of the input space not explored enough

during the training phase.

To cope with the limitations of the two aforementioned performance modeling paradigms, recent years have

witnessed an increasing interest in gray box modeling approaches, which aim at combining the white box and

black box performance modeling methodologies.

This dissertation advances the state of the art in performance modeling of complex systems by introducing

several innovative gray box performance modeling methodologies and by applying them to accurately predict

the performance of different types of in-memory DTPs, employing diverse concurrency control and replication

mechanisms. The resulting hybrid models take the best of the white box and black box performance modeling

approaches: reduced training time, increased robustness in extrapolation, and ability to correct initial inaccuracies

by incorporating new factual knowledge over time.

In particular, this dissertation make the following contributions:

• it proposes a taxonomy of existing gray box modeling methodologies to predict performance of computer

systems, identifying two main branches: Parameter Estimation, in which black box techniques are used to

infer input parameters for a white box model, and Hybrid Ensemble, in which the output of white box and

black box models are combined to minimize predictive error;

• it introduces a novel modeling methodology, named Divide et impera, which allows for the joint usage of

white and black modeling techniques targeting the performance prediction of distinct, but possibly inter-

related, modules of the system being modeled;

• it advances the state of the art in the field of the Hybrid Ensemble methodology, by introducing three novel

techniques, namely Hybrid KNN, Hybrid Boosting and Probing; in addition, it proposes new algorithmic

implementations of the Bootstrapping technique, a Hybrid Ensemble approach recently proposed in litera-

ture;

• it proposes innovative analytical DTPs performance models, which target combinations of concurrency

control schemes and replication policies that have never been analyzed in the literature.

The DTP employed to implement and validate the effectiveness of the proposed models and performance

modeling techniques is Infinispan by JBoss/RedHat, an industrial-quality, open source distributed transactional key

value store: the experimental validation is performed using standard benchmarks and using large scale Infinispan

deployments (up to 140 instances), over both private and public Cloud infrastructures.

By means of extensive experimental evaluations, this dissertation shows that performance models based on

the proposed hybrid techniques are able to outperform the single black and white box models they are based on,

resulting in both higher accuracy and reduced training time.

Keywords: In-Memory Distributed Transactional Platforms, Performance Modeling, White Box Perfor-

mance Modeling, Black Box Performance Modeling, Gray Box Performance Modeling, Analytical Modeling,

Machine Learning

Resumo

A Computação na Nuvem tem vindo a mudar drasticamente a forma como as aplicações modernas são provi-

sionadas: na Nuvem, os recursos são adquiridos elasticamente, ou seja, dependem da carga da aplicação em

cada momento, permitindo portanto uma redução significativa do investimento financeiro inicial e dos custos de

operação.

As Plataformas Distribuı́das Transacionais (PDTs) congregam um conjunto importante de plataformas para

a Nuvem: ao usarem o conceito familiar de transacção, os programadores podem delegar, para a plataforma dis-

tribuı́da, a responsabilidade de gerir os acessos concorrentes a secções crı́ticas do código, e são portanto evitadas

as complexidades associadas à garantia de consistência dos dados na presença de mudanças da escala da infra-

estrutura distribuı́da de forma elástica assim como falhas e fontes de assincronismo.

A modelação do desempenho de PDTs é um requisito fundamental para implementar o provisionamento au-

tomático de recursos e esquemas de ajuste automático que tiram partido das vantagens da elasticidade da Nuvem.

Os modelos de desempenho, na verdade, representam um meio valioso para estimar os recursos necessários por

uma aplicação para que esta cumpra os nı́veis objectivos de serviço, assim como para prever o impacto no desem-

penho de diversas escolhas de desenho em PDTs e os seus parâmetros de configuração.

As estratégias clássicas de previsão de desempenho de sistemas computacionais dependem em duas técnicas:

modelação por caixa branca e por caixa preta. A modelação por caixa branca, como por exemplo Modelação

Analı́tica, explora conhecimento adquirido a priori sobre as dinâmicas internas da aplicação/sistema cujo desem-

penho está a ser estimado. Uma vez construı́dos, os modelos de caixa branca podem ser imediatamente instanci-

ados, ou seja, requerem tempo de treino mı́nimo (ou mesmo nulo). Por contraste, as estratégias por caixa branca

dependem usualmente de pressupostos ou introduzem simplificações para garantir a tratabilidade do problema.

Como resultado, a sua exactidão pode ser diminuı́da em cenários cujos pressupostos não se verifiquem ou nos

quais as simplificações introduzidas sejam pouco realistas.

A modelação por caixa preta, por outro lado, não assume qualquer conhecimento sobre as dinâmicas internas

do sistema; a sua estratégia passa por explorar algoritmos de Aprendizagem Automática para inferir, por via de uma

fase de aprendizagem dedicada, relações estatı́sticas entre um conjunto de variáveis de entrada, correspondendo às

configurações do sistema e às caracterı́sticas da carga, e possı́veis elementos indicadores de desempenho. Modelos

de caixa preta têm tipicamente boa exactidão quando funcionam por interpolação, ou seja, em regiões do espaço de

valores de entrada que tenham sido suficientemente explorados; em contraste, a sua exactidão é tipicamente fraca

quando funcionam em extrapolação, ou seja, em regiões do espaço de valores de entrada que tenham sido pouco

exploradas durante a fase de treino.

Para lidar com as limitações de ambas as abordagens de previsão de desempenho acima mencionadas, temos

vindo a observar nos anos mais recentes um aumento de interesse nas abordagens de caixa cinzenta, que procuram

combinar as metodologias de modelação de desempenho de caixa branca e caixa preta.

Esta dissertação avança o estado da arte em modelação de desempenho de sistemas complexos ao introduzir

várias metodologias de modelação de desempenho por caixa cinzenta, e ao aplicá-las para prever com exactidão

o desempenho de diferentes tipos de PDTs com dados em memória, usando diversos mecanismos de controlo

de concorrência e de replicação de dados. Os modelos resultantes, de natureza hı́brida, exploram o melhor das

abordagens de modelação de desempenho por caixa branca e caixa preta: tempo de aprendizagem reduzido, ro-

bustez adicional em extrapolação, e a habilidade de corrigir inexactidões iniciais ao incorporar novos factos de

conhecimento ao longo do tempo.

Em particular, esta dissertação tem as seguintes contribuições:

• propõe uma taxonomia para as metodologias de modelação de desempenho de sistemas de computação

por caixa cinzenta, identificando dois ramos principais: Estimação por Parâmetros, nos quais as técnicas

de caixa preta são usadas para inferir os parâmetros de entrada para o modelo de caixa branca, e Conjunto

Hı́brido, no qual as saı́das da caixa branca e caixa preta são combinadas para minimizar o erro de estimação;

• propõe uma metodologia de modelação nova, de nome Divide et impera, que permite o uso em conjunto

de técnicas de modelação branca e preta para a estimação de desempenho de módulos, possivelmente inter-

relacionados, de um sistema.

• avança o estado da arte na área da metodologia Conjunto Hı́brido, ao introduzir três novas técnicas,

chamadas Hybrid KNN, Hybrid Boosting e Probing; para mais, propõe novas implementações algorı́tmicas

da técnica de Bootstrapping, que é uma abordagem de Conjunto Hı́brido recentemente proposta na liter-

atura;

• propõe modelos analı́ticos de desempenho inovadores para PDTs, que visam a combinação de esquemas de

controlo de concorrência e polı́ticas de replicação que nunca haviam sido analisados na literatura.

A PDT usada para implementar e validar a eficácia dos modelos propostos e o desempenho das técnicas

de modelação é o Infinispan da JBoss/RedHat, um alojador distribuı́do e transacional de dados por chave valor,

de código aberto e qualidade industrial: a validação experimental foi elaborada com aplicações tı́picas e usando

conjuntos de máquinas com Infinispan de larga escala (até 140 instâncias), tanto em infra-estruturas de Nuvem

privadas como públicas.

Por via de avaliações exaustivas experimentais, esta dissertação mostra que o desempenho de modelos, basea-

dos nas técnicas hı́bridas propostas, consegue ultrapassar o desempenho individual dos modelos de caixa branca e

preta em que se baseiam, resultando tanto em exactidão mais alta como em tempo de aprendizagem mais baixo.

Palavras chave: Plataformas Transacionais em Memória Distribuı́das, Modelação de Desempenho, Modelação

por Caixa Branca, Modelação por Caixa Preta, Modelação por Caixa Cinzenta, Modelação Analı́tica, Aprendiza-

gem Automátiqua

Index

1 Introduction 1

1.1 Context . 1

1.2 The evolution of Performance Modeling . 2

1.3 Thesis statement and Outline of the Contributions 7

2 Background on Distributed Transactional Platforms 15

2.1 Overview on Distributed Transactional Platforms 15

2.1.1 Consistency, Atomicity and isolation in DTPs 16

2.1.2 Durability in DTPs . 19

2.1.3 Data models in DTPs . 20

2.2 The Infinispan case study . 21

2.2.1 Complexity of the Infinispan Case Study 22

3 Related Work 25

3.1 Performance Modeling Methodologies . 25

3.1.1 White Box Performance Modeling . 25

3.1.2 Black Box Performance Modeling . 28

3.1.2.1 Supervised Learning . 28

3.1.2.2 Unsupervised Learning . 30

3.1.2.3 Reinforcement Learning . 30

i

3.1.2.4 Ensemble Learning . 31

3.1.3 Gray Box Performance Modeling . 34

3.1.3.1 Divide et Impera . 35

3.1.3.2 Parameter Estimation . 36

3.1.3.3 Hybrid Ensemble. 39

3.2 Performance Modeling and Self-tuning of DTPs 47

3.2.1 Transactions-unaware Performance Modeling for DTPs 48

3.2.2 Transactions-aware Performance Modeling for DTPs 50

3.2.2.1 Black box models . 51

3.2.2.2 White box models . 52

3.2.2.2.1 System model. 52

3.2.2.2.2 Data Management Scheme. 52

3.2.2.2.3 Physical resources. 53

3.2.2.2.4 Workload characterization. 54

3.2.3 Critique to state of the art DTP performance modeling and thesis con-

tributions . 58

4 The Divide et Impera Approach 67

4.1 The Divide et impera performance modeling technique 68

4.1.1 Design of the Divide et impera performance modeling technique 68

4.1.2 Overview of DTPs Divide et impera performance modeling 69

4.2 Divide et impera performance models of DTPs 72

4.2.1 System overview and model . 72

4.2.1.1 System overview . 73

ii

4.2.1.1.1 Concurrency control scheme. 73

4.2.1.1.2 Replication Protocol. 75

4.2.1.2 System model . 77

4.2.2 White box modeling in the proposed DTP models 79

4.2.2.1 Transactions’ response time computation 79

4.2.2.1.1 Read only transactions response time. 79

4.2.2.1.2 Update transactions response time. 80

4.2.2.2 Contention model . 82

4.2.2.2.1 Locking model. 82

4.2.2.2.2 Conflict probabilities. 84

4.2.2.3 Remote nodes involved in the distributed commit phase. . . . 94

4.2.2.4 CPU Model . 96

4.2.2.4.1 Transactions’ service demand computation. 97

4.2.2.4.2 CPU jobs arrival rates computation. 99

4.2.3 Black box modeling in the proposed DTP models 101

4.2.4 Model resolution . 103

4.2.4.1 Predicted KPIs . 104

4.2.5 Models evaluation . 105

4.2.5.1 Experimental test-bed . 106

4.2.5.2 ACF validation . 108

4.2.5.3 ML validation . 111

4.2.5.3.1 Black box modeling in full replication. 112

4.2.5.3.2 Black box modeling in partial replication. 112

iii

4.2.5.4 Validation of the hybrid performance models 114

4.2.5.4.1 ETL validation. 114

4.2.5.4.2 CTL validation. 118

4.2.5.5 Comparison with pure ML approaches 120

4.2.5.6 Measurements overhead and models resolution time 122

4.3 Conclusion . 125

5 The Hybrid Ensemble Approach 127

5.1 Notation . 128

5.2 Patching-based Hybrid Ensemble Techniques 129

5.2.1 Bootstrapping . 130

5.2.1.1 Synthetic Knowledge Base Initialization 132

5.2.1.2 Update of the Knowledge Base 135

5.2.2 Hybrid Boosting . 137

5.3 Selection-based Hybrid Ensemble Techniques 138

5.3.1 Hybrid K Nearest Neighbors . 139

5.3.2 Probing . 141

5.4 Evaluation . 142

5.4.1 Experimental test-bed . 143

5.4.1.1 Total Order Broadcast Overview 144

5.4.1.2 Introduction on the Employed Base Models 145

5.4.1.3 Preliminary considerations on the evaluation 148

5.4.2 Bootstrapping . 151

5.4.2.1 Initialization . 152

iv

5.4.2.2 Updating . 154

5.4.2.3 Bootstrapping in extrapolation 159

5.4.3 Hybrid Boosting . 161

5.4.4 Hybrid KNN . 162

5.4.5 Probing . 164

5.4.6 Comparison among the approaches 167

5.5 Conclusions . 169

6 Conclusions and Future Work 171

v

vi

List of Figures

1.1 Gray box performance modeling methodologies proposed in this dissertation. . 8

1.2 DTPs design space dimensions considered in this dissertation: replication de-

gree, replication protocol and concurrency control scheme. Leaves of the

tree marked in black correspond to design choices for which this dissertation

presents a performance model; lighter gray, instead, denotes combinations that

are not addressed. The motivations behind the exclusion of specific combina-

tions are discussed in Chapter 4. 10

2.1 Performance of different workloads in Infinispan. 22

2.2 Scalability analysis of different workloads in Infinispan (2PC-ETL). 23

4.1 Design of the Divide et impera performance modeling technique. 68

4.2 Divide et impera applied to DTPs performance modeling. 70

4.3 ACF using heterogeneous benchmarks and platforms. 109

4.4 NuRand’s data access pattern varying the bit mask. 110

4.5 Accuracy of the ML-based Rprep predictions in full replication (ETL). 112

4.6 Single and multi-model validation for different MLs 114

4.7 Accuracy of the ML-based Rprep predictions in partial replication (CTL). . . . 114

4.8 Validation of the ETL models using the TPC-C benchmark deployed on the

PC-B infrastructure. 115

4.9 Validation of the ETL-2PC model using the TPC-C benchmark deployed on the

EC2 infrastructure. 116

vii

4.10 Validation of the ETL-2PC model using the Radargun benchmark on the FG-I

infrastructure. 117

4.11 Absolute relative error’s CDF of the predictions produced by the ETL-2PC

models. 118

4.12 Accuracy of the CTL-2PC model for different workloads (r = 2) 119

4.13 Accuracy of the CTL-2PC model while varying r (B-5-H-PC) 119

4.14 Comparing the Divide et Impera models with purely ML-based predictors. . . . 120

4.15 Monitoring overhead. 123

4.16 Model resolution time. 124

5.1 Main phases of the Bootstrapping technique. 129

5.2 Messages delivery time of the STOB service as a function of l and b 146

5.3 Error distribution of the base white box models of the two case studies. 149

5.4 Fitting the white box model via ML: training time vs MAPE. 152

5.5 Impact of the weight parameter for the Merge updating policy, using 1K and

10K synthetic samples. 154

5.6 Impact of the weight and cut-off parameters for RNN, RNR, and RNR2, using

10K synthetic samples. 157

5.7 Comparison between Merge and Replace-based Bootstrapping 159

5.8 Assessing Bootstrapping’s effectiveness when working in extrapolation. 160

5.9 Evaluating the accuracy of HyBoost. 161

5.10 Sensitivity analysis of KNN w.r.t. the c parameter (TOB) 163

5.11 Sensitivity analysis of KNN w.r.t. the c parameter (DTP) 163

5.12 Sensitivity analysis of Probing w.r.t. the c parameter (TOB) 165

5.13 Sensitivity analysis of Probing w.r.t. the c parameter (DTP) 166

viii

5.14 Comparing the performance of the 4 proposed gray box techniques. 167

ix

x

1Introduction
1.1 Context

The advent of Cloud computing has drastically impacted the resource provisioning scheme at

the basis of current computing platforms: in typical Cloud Infrastructure as a Service (IaaS)

platforms, in fact, resources are dispensed elastically, with a seemingly unbounded amount

computational power and storage available on demand, in a pay-only-for-what-you-use pric-

ing model. This elastic scaling capability allows any user to provision a cluster of virtually

any size within minutes and comes with the promise of enormous money saving and resource

efficiency (Buyya et al., 2009).

Getting additional computational resources, however, is not as simple as upgrading to a big-

ger, more powerful machine with commensurate increases in CPUs, memory, and local storage;

conversely, in the cloud, additional resources are typically obtained by allocating additional

server instances to a task. Therefore, programmers are faced with the challenging task of devel-

oping distributed applications tailored for very dynamic, elastic, and fault-prone environments.

Distributed Transactional Platforms (DTPs) are specifically built to facilitate this task: by

building upon the familiar construct of transaction, programmers can delegate to a distributed

middleware the burden of regulating concurrent accesses to critical sections, enforcing coher-

ence and consistency of data, while transparently tolerating failures and masking latencies.

On the other hand, unfortunately, determining the right amount of resources to allocate to a

DTP in such a way to match a desired Quality of Service (QoS) is far from being a trivial task.

Solutions to automate the elastic scaling of data platforms that are provided by commercial

Cloud providers are typically based on heuristics and thresholds. As an example, a widely

employed rule-of-thumb policy to orchestrate the resource provisioning process is based on

CPU utilization: if it is higher than a user-supplied threshold, then new resources are allocated,

2 CHAPTER 1. INTRODUCTION

proportionally to the incoming workload’s intensity; if it is lower than another user-defined

threshold, then some resources are deallocated (Google, 2015b; Amazon, 2015a; Microsoft,

2015a).

This provisioning scheme leaves on the user’s shoulders the burden of determining proper

values for thresholds and amount of resources to de/allocate at need. Unfortunately, scalability

trends and performance of DTP applications are influenced by several, intertwined, factors, e.g.,

CPU processing times, network latencies and dynamics of transactional protocols.The problem

of right-sizing a DTP is further exacerbated by the huge design space that characterizes this kind

of platforms. For example, transactional protocols can be implemented according to different

principles, e.g., single vs multi-master, and resilience to faults can be achieved by different

means, e.g., logging to disk or in-memory replication. The space of possible DTP configu-

rations grows even further when considering the set of different parameterizations for tuning

knobs that are typically exposed to programmers/system administrators. For example, for in-

memory replicated platforms, the number of per-datum copies that are maintained represents a

fundamental trade-off between performance and fault resiliency.

Manually identifying, in such a large search space, the platform configuration that mini-

mizes resource usage, and hence operational cost, while meeting a target QoS is, therefore, a

daunting task. Performance modeling represents the means by which the problem of provision-

ing and self-tuning of DTPs can be effectively tackled. Once a performance model of the target

DTP application has been obtained, in fact, the end-user can simply exploit it in order to jointly

determine the optimal application’s parameterization and platform sizing for a given workload,

or the process of tuning the application can be automatized (IBM Corp., 2004).

1.2 The evolution of Performance Modeling

Analytical Modeling (AM) and Simulation have been for decades the reference technique for

performance modeling and prediction (Kleinrock, 1976; Fujimoto, 1990; Menasce & Almeida,

2001; Menasce et al., 2004; Harchol-Balter, 2013; Tay, 2013). These two techniques rely

on some a priori knowledge of the internal dynamics of the target application/system and of

the hosting platform in order to express their mapping to performance, which they express by

1.2. THE EVOLUTION OF PERFORMANCE MODELING 3

means of some kind of mathematical formalism, e.g., a set of equations in the case of Queueing

Theory (Kleinrock, 1975) or a graph in the case of Petri Nets (Petri, 1966) or via simulation

model (e.g., a discrete-event based simulator (Fujimoto, 1990)). For this reason, these two

techniques are referred to as white box.

The most appealing feature of white box modeling solutions is that, once instantiated, they

are capable of accurately predicting several Key Performance Indicators (KPI), e.g., throughput

and response time, for a wide set of application’s workloads, tuning parameters and character-

istics of the underlying hosting infrastructure. Yet, white box modeling comes often with the

downside of relying on assumptions and approximations, which are necessary to ensure the an-

alytical tractability of the model, in the case, e.g., of Queueing Theory-based model, or to avoid

an overly complex code in the case of a simulation-based model. The prediction accuracy of a

white box model is, thus, hindered in scenarios that do not match such assumptions (Harchol-

Balter, 2013).

Over the last years, however, the successful application of white box modeling has been

progressively challenged by a multitude of factors, which jointly contributed to exacerbate the

complexity of applications and systems.

A first source of increase in complexity lies in the rise of new computing paradigms, which

led to a revolution in the way applications are designed, encoded and deployed, challenging

existing and long-standing white box modeling methodologies. On one hand, the advent of

multi-core architectures has brought concurrent programming to the forefront of software de-

velopment, leading applications to be parallel by design. Not only does this reflect into the

need of a proper modeling of resource sharing in architectures characterized, for example, by a

massive amount of computing units and non-uniform memory accesses (Hong & Kim, 2009);

it also forces to explicitly take into account, when devising a white box model, the effects of

concurrent accesses of processes/threads to shared data, capturing dynamics that are specific to

the abstractions exploited to regulate concurrency, e.g., locking in databases (Yu et al., 1993) or

Transactional Memory (Di Sanzo et al., 2010).

Analogously, the establishment of Cloud Computing as a reference computing model has

caused a revolution in the distributed computing paradigm. The elastic nature of Cloud infras-

4 CHAPTER 1. INTRODUCTION

tructures challenges the ability of white box models to predict accurately the performance of an

application when deployed over a platform whose scale can range from a handful to hundreds

or thousands of — possibly heterogeneous — machines. Moreover, the need for elasticity has

led to the proliferation of new data models (e.g., NoSQL (Han et al., 2011)) and abstractions

(e.g., Distributed Transactional Memory (Kotselidis et al., 2008; Couceiro et al., 2009)), aimed

at enhancing scalability or at simplifying the development of distributed applications. Just like

in the case of parallel programming, white box models architects must bear the burden of for-

malizing the impact that adopting a specific data model and relying on a specific abstraction has

on performance.

In addition, the Cloud Computing paradigm brought about the challenge of explicitly cop-

ing with virtualized platforms. In Cloud infrastructures, in fact, applications do not interact

directly with the hardware of the physical hosting machine; instead, they are stacked on top

of a virtualization layer that intentionally hides low-level details on the actual underlying plat-

form (Barham et al., 2003). While being the fundamental enabling technology at the basis of

the Cloud revolution, virtualization represents at the same time a major threat to the derivation

of white box applications performance models. In fact, virtualization impairs the possibility of

observing the dynamics according to which the application’s runtime interacts with the hard-

ware, e.g., the network topology used by the cloud provider. This clearly impairs the ability to

develop detailed white box models, hindering the adoption of white box modeling techniques

Further complexity in the design of modern applications stems from the tight dependability

requirements that current services must abide by. A typical solution to achieve high availabil-

ity and fault tolerance consists in replicating a service across multiple instances (Guerraoui &

Schiper, 1997). Unfortunately, from a performance modeling perspective, this implies dealing

with other complex dynamics, stemming from the actual implementation of the replication (e.g.,

full or partial replication of data and services (Charron-Bost et al., 2010)) and from the protocol

according to which modifications to the state of a service at one site are consistently managed

and propagated to other replicas (Charron-Bost et al., 2010).

On the light of these considerations, it appears evident that DTPs represent the archetype of

the modern, complex, distributed application, as they incarnate all the functional and business

1.2. THE EVOLUTION OF PERFORMANCE MODELING 5

requirements discussed so far. DTPs are, in fact, intrinsically concurrent, parallel and distributed

and adopt complex consistency and replication protocols. As already mentioned, moreover, they

have established as reference data platforms for the Cloud, as proven by the numerous academic

projects in the field (e.g., CloudTM (Romano et al., 2010) and CumuloNimbo (Jiménez-Peris

et al., 2012)) and by the proliferation of commercial relational and NoSQL Cloud platforms

(e.g., Google Cloud Datastore (Google, 2015a), Amazon SimpleDB (Amazon, 2015b) or Mi-

crosoft Azure SQL Database (Microsoft, 2015b)). As such, the natural deployment environment

for DTPs is mainly constituted by virtualized infrastructures. All these characteristics jointly

contribute to make the definition of an accurate white box performance model for DTPs an

extremely challenging task.

Fortunately, the last years have also witnessed the maturing of research in the area of Ma-

chine Learning (ML) (Bishop, 2006), which resulted into the development of a wide range of

freely-available high quality toolkits (e.g., Weka (Hall et al., 2009) and Apache Mahout (Owen

et al., 2011)). This has led a growing number of researchers to explore the possibility of using

ML techniques to build black box predictors of the performance of complex computer sys-

tems (Ganapathi et al., 2009; Delimitrou & Kozyrakis, 2013; Tesauro et al., 2006).

The black box approach lies on the other side of the performance modeling methodologies

spectrum with respect to its white box counterpart: it relies on inferring the input/output rela-

tionships that map application’s and system’s characteristics to the target KPI, and on encoding

such relationships via statistical models. Such models are built on the basis of a so called train-

ing phase, during which the target application is tested while generating different workloads

and being parametrized with different configurations, with the purpose of observing the cor-

responding achieved performance. The most appealing property of this approach is that it is

sufficient for the model architect to identify which are the inputs — a.k.a. features — of the

target performance function, and the ML algorithm will take care of inferring how they map to

the target KPI, without exploiting any additional knowledge about the application.

ML, however, does not represent the definitive solution to the performance modeling prob-

lem, as the lack of a priori information about the target application/system does come with a

price. The accuracy of ML-based performance predictors, in fact, ultimately depends on the

6 CHAPTER 1. INTRODUCTION

representativeness of the input/output samples collected during the training phase. In order to

exhaustively cover the whole space of possible inputs, the training phase should ideally sweep

all combinations of possible workloads and system configurations. Unfortunately, the cardi-

nality of the resulting set grows exponentially with the number of input features, making it

cumbersome, or even practically impossible, to carry out an exhaustive training phase for com-

plex systems — the so called curse of dimensionality. As a result, black box models typically

deliver a very good accuracy when working in interpolation, i.e., in regions of the features’

space that they have been sufficiently explored; conversely, their accuracy is typically poor

when working in extrapolation, i.e., with inputs belonging to a portion of the features’ space

not sampled sufficiently during the training phase (Bishop, 2006).

As already happened for the white box modeling case, unfortunately, DTPs fall also into

the category of systems for which building an accurate black box performance model is cum-

bersome. In fact, as previously described, DTPs are characterized by a huge design and config-

uration space, and transactional workloads are characterized by high heterogeneity (Q. Zhang et

al., 2007; Elnikety et al., 2009). Therefore, the training phase of a black box algorithm aimed at

learning the behavior of a DTP application is severely affected by the curse of dimensionality,

with a commensurate effect on the predictive power of the resulting performance model.

To cope with the limitations of white box and black box modeling in predicting perfor-

mance of complex applications and computer systems, in the last years researchers have started

investigating possible synergies between these two paradigms. The solutions resulting from

these research efforts aim at leveraging on both white box and black box techniques to create a

new, superior breed of performance predictors, referred to as gray box models (Q. Zhang et al.,

2007; Thereska & Ganger, 2008; Herodotou et al., 2011).

Unfortunately, research on gray box performance modeling is still in its infancy and none

among the limited number of hybrid techniques that it has produced can be straightforwardly

applied to accurately capture the performance dynamics of DTPs. To the best of our knowledge,

in fact, gray box performance models for transactional platforms have either been proposed in

the context of single-node environments (Mozafari et al., 2013; Di Sanzo et al., 2013) or, when

targeting distributed deployments, do not capture dynamics stemming from data distribution or

1.3. THESIS STATEMENT AND OUTLINE OF THE CONTRIBUTIONS 7

concurrent, potentially conflicting accesses to shared data (Q. Zhang et al., 2007).

1.3 Thesis statement and Outline of the Contributions

The proposed retrospective has described how research in the field of performance modeling has

evolved into two main branches, namely white box and black box modeling, highlighting their

advantages and limitations. White box models, on the one hand, require very limited (or null)

training time in order to be instantiated; on the other hand they often introduce approximations

and rely on assumptions to reduce complexity and ensure tractability. Black box modeling,

conversely, is oblivious about low-level details of the target application and hosting platform,

but normally achieve poor accuracy in areas of the model’s input space that have not been

sufficiently explored.

For these reasons, the two methodologies have been regarded as antithetic, with one being

preferred over the other depending on specific characteristics of the target application and of its

use cases; particular, the previous section has discussed why neither of these two approaches

tackles adequately the challenges related to performance modeling of modern DTPs.

To overcome their limitations, researchers have started to propose computer systems’ per-

formance prediction methodologies that draw solutions and techniques from both the white box

and black box modeling paradigms.

This dissertation is framed in the context of this emerging performance modeling field and

defends the thesis that it is possible to construct accurate performance prediction models of

DTPs by using the white box and black box performance modeling methodologies in synergy,

i.e., by employing hybrid performance predictors that aim to take the best of the two worlds:

reduced training time, increased robustness in extrapolation, and ability to correct initial inac-

curacies by incorporating new factual knowledge over time. These appealing properties can

be achieved by exploiting the complementarity of white and black box approaches’ strengths:

on one hand, by integrating a white box model, a gray box performance predictor can be in-

stantiated requiring a shorter training phase than a pure black box one; on the other hand, by

incorporating some ML component, the accuracy of a gray box model can be increased as new

8 CHAPTER 1. INTRODUCTION

Gray box modeling
(Didona & Romano, 2015)

Divide et impera
(Didona, Romano, et al., 2012)

(Didona et al., 2014)
(Didona & Romano, 2014b)

(Di Sanzo et al., 2015)

Hybrid Ensemble

Selection

Hybrid KNN
(Didona et al., 2015)

Probing
(Didona et al., 2015)

Patching

Bootstrapping
(Didona & Romano, 2014a)

Hybrid Boosting
(Didona et al., 2013a)
(Didona et al., 2013b)
(Didona et al., 2015)

Figure 1.1: Gray box performance modeling methodologies proposed in this dissertation.

data from the operational system are collected, allowing for the correction of possible inaccu-

racies of the complementary white box model.

In order to support this thesis, this dissertation defines several novel gray box performance

modeling methodologies, which are summarized in Figure 1.1 and briefly described below.

1. Divide et impera. This approach allows for the joint usage of white and black box mod-

eling techniques, each capturing the performance of distinct, yet possibly inter-related,

modules of the target system. The key advantage of this technique is that it allows for

decomposing the problem of predicting the performance of a complex system into a set

of simpler sub-models, which can exploit the modeling methodology (i.e., white box or

black box) that better fits the characteristics of the considered system’s module.

In this dissertation the Divide et impera approach is employed in the context of DTP mod-

eling as follows: analytical models are employed to capture the performance of transac-

tional consistency protocols, whose algorithmic dynamics are fully specified and are thus

amenable to be described via white box approaches; black box modeling is used to pre-

dict response time of operations that require distributed synchronization, which would be

hard to predict accurately without detailed knowledge on the underlying physical (e.g.,

networking) infrastructure.

1.3. THESIS STATEMENT AND OUTLINE OF THE CONTRIBUTIONS 9

2. Hybrid Ensemble. This approach is based on the idea of combining the output of a set of

white and black box models with the purpose of generating a single model with a higher

predictive accuracy than any of its constituent parts. In particular, the role of the black

box components is to complement the predictions provided by one or more base white box

models by correcting their possible inaccuracies. Such a correction can be implemented

using two key principles:

(a) Selection, i.e., employing the performance model (either white or black) that is ex-

pected to maximize accuracy depending on the configuration/workload whose per-

formance is being predicted.

(b) Patching, i.e., progressively learning how to “patch” the predictions generated by

the white box models. Such a goal is pursued by accumulating knowledge on the

errors of such models in various regions of their parameter space.

These two principles can be instantiated using different techniques, which correspond to

different ways of combining the outputs of an ensemble of white and black box models.

This dissertation investigates four such techniques; the first two are based on the Selection

principle, whereas the last two are inspired by the Patching principle.:

• Hybrid KNN, which consists in building several performance models independently

and to use, depending on the incoming query, the one with the lowest expected

predictive error. In particular, in order to estimate the error in predicting the per-

formance for a new sample x, this technique evaluates the accuracy of the available

models on a set of samples Dk that are as similar as possible to x.

• Probing, which trains a black box learner only in regions of the parameter space in

which a base white box model (or a set thereof) is found to achieve unsatisfactory

accuracy. In order to decide in which scenarios the black box or the white box

models should be used, an additional black box classifier is trained to predict which

of the available models is expected to maximize accuracy in different regions of the

parameter space.

• Bootstrapping, which consists in relying on a white box model to generate a syn-

thetic training set over which a complementary machine learner is initially trained.

10 CHAPTER 1. INTRODUCTION

Locking Scheme

ETL

Replication Protocol

PR

Replication Degree

Full Partial

2PC

Replication Degree

Full Partial

CTL

Replication Protocol

PR

Replication Degree

Full Partial

2PC

Replication Degree

Full Partial

Figure 1.2: DTPs design space dimensions considered in this dissertation: replication degree,
replication protocol and concurrency control scheme. Leaves of the tree marked in black corre-
spond to design choices for which this dissertation presents a performance model; lighter gray,
instead, denotes combinations that are not addressed. The motivations behind the exclusion of
specific combinations are discussed in Chapter 4.

The synthetic training set is then updated over time to incorporate new samples

collected from the operational system. By re-training the machine learner over the

updated knowledge base, the Bootstrapping technique aims to progressively correct

the performance function of the white box model.

• Hybrid Boosting, which is based on the idea of exploiting a base white box model

and a chain of black box learners. The latter ones, instead of targeting the prediction

of the desired performance function, are trained to learn the error function of the

white box model, with the ultimate goal of compensating for it.

The proposed gray box methodologies are employed to derive performance models that

address a wide region of the design space of DTP systems. In particular, the proposed gray box

models capture the performance of DTP systems that use different approaches regarding three

key dimensions, as also illustrated in Figure 1.2:

• Full vs partial replication: In fully replicated DTPs, the entire data set is replicated on ev-

ery machine of the DTP, whereas in partially replicated systems, data items are replicated

1.3. THESIS STATEMENT AND OUTLINE OF THE CONTRIBUTIONS 11

over a (typically small) number of machines. The two approaches have dual pros and

cons. Larger degrees of replication lead to higher synchronization overheads and mem-

ory consumption since data need to be updated and stored on every machine, but provide

stronger failure resilience guarantees. Smaller replication degrees, conversely, require

costly remote accesses to retrieve data that is not replicated locally, but have higher scal-

ability potential thanks to their lower memory and synchronization overheads.

• Locking strategy: In order to ensure isolation, several locking strategies have been pro-

posed in the literature. In this dissertation two variants are considered: Encounter-time vs

Commit-time locking, which, as the name suggests, differ by the time in which locks are

acquired by a transaction (i.e., upon the first access to a data item or at commit time). The

former has the advantage of allowing a more timely detection of conflicts, but can un-

necessarily constrain parallelism by increasing the lock duration. Commit time locking

avoids this drawback, but, due to its more optimistic nature, can lead to worse perfor-

mance in high contention scenarios.

• Single vs Multi master: The cost and complexity of inter-node synchronization in a DTP

is strongly affected by the choice of the number of nodes that can execute update trans-

actions. Multi master schemes allow any node in a DTP to process update transactions,

and, as such, require a (costly) distributed consensus phase to manage conflicts arising

from transactions executing at different nodes. In single master approaches, only a single

node (typically called primary) is entitled to process update transactions. This hampers

the scalability of the system in presence of write-intensive workloads, but streamlines

the processing of update transactions by detecting and resolving conflicts locally at the

primary node.

In this dissertation the gray box methodologies illustrated in Figure 1.1 are employed to

derive performance models for DTPs as follows.

1. First, the Divide et impera methodology is employed to derive gray box models capa-

ble of predicting the performance of a DTP depending on its scale, parametrization and

workload characteristics. Achieving this result has required developing a set of novel

12 CHAPTER 1. INTRODUCTION

white box models which capture the performance dynamics of the different transactional

consistency protocols depicted in Figure 1.2.

The devised white box models represent another relevant contribution of this disserta-

tion. In fact, not only they fill relevant gaps in the literature on performance modeling of

DTPs by targeting transactional protocols whose models, to the best of our knowledge,

have never proposed in literature. They also introduce a novel abstraction, namely the

Application Contention Factor (ACF), which is crucial to enable the modeling of realis-

tic applications that generate complex, non-uniform data access patterns. More in detail,

the ACF abstraction allows for modeling arbitrary data access patterns (e.g., skewed data

popularity) by means of an equivalent one in which each datum is accessed with equal

probability. It is noteworthy to mention that the applicability of the ACF abstraction is

not constrained to the case of the DTP algorithms considered in these dissertation, but,

conversely, it can be employed in the broader context of (possibly non distributed) trans-

actional platforms.

The Divide et impera-based DTP performance models have been validated via an exten-

sive experimental evaluation on an industrial quality open-source DTP, namely Infinispan

by Red Hat (Marchioni & Surtani, 2012). Infinispan is, at the moment of writing, the

reference NoSQL data platform and clustering technology for JBoss AS, one of the most

popular open-source J2EE application servers. Infinispan has also been the reference

transactional cloud data store for the recent European project Cloud-TM (Romano et al.,

2010). The models presented in this dissertation have been integrated in the final proto-

type of the Cloud-TM’s platform (Didona & Romano, 2014c) and employed to automate

the resource provisioning process of the Cloud-TM platform.

2. The Hybrid ensemble techniques were instantiated and validated considering two base

predictors:

(a) a pure white box model, already available in literature (Romano & Leonetti, 2012),

of Total Order Broadcast (TOB) implementation (Cachin et al., 2011), which is

a fundamental building block for a number of replicated DTPs, e.g., Distributed

Transactional Memories (Couceiro et al., 2009) and Distributed Databases (Pedone

1.3. THESIS STATEMENT AND OUTLINE OF THE CONTRIBUTIONS 13

et al., 2003).

(b) the gray box DTP performance models resulting from the application of the Divide

et impera methodology. In fact, despite not having a purely white box nature, these

models do embed a priori knowledge about the internals of the target application

and can hence be regarded as base predictors, whose accuracy and robustness can

be enhanced by means of Hybrid ensemble techniques.

The use of two base predictors, a purely white box one and a gray box one, allows for

assessing not only the effectiveness of the Hybrid ensemble techniques to enhance the

accuracy of a white box base predictor. It also aims at showing how different gray box

modeling techniques can be combined to yield a single, superior performance predictor.

Finally, this dissertation also proposes what it is, to the best of our knowledge, the first

taxonomy on gray box performance modeling techniques applied to the context of computer

systems and applications. In fact, proposed solutions in this field represent isolated attempts to

tackle specific problems, and the literature lacks a thorough and organic discussion that identi-

fies and relates the different base methodologies that have been proposed to combine the white

box and the black box modeling paradigms.

This taxonomy is not only intended to describe better how the techniques proposed in this

dissertation relate to existing solutions, and how they are framed in the literature of gray box

performance modeling. It especially aims at providing a first systematic presentation of the

works that embody this emerging performance modeling paradigm: in particular, it classifies

existing solutions on the basis of the methodology employed to reconcile the two conventional

performance modeling paradigms and also highlights their relations with similar approaches

proposed in other engineering fields, namely System Identification (Ljung, 1999).

The remainder of the thesis is structured as follows: Chapter 2 provides background on

DTPs and presents Infinispan; Chapter 3 introduces basic concepts, terminology and method-

ologies in the fields of white and black box modeling, discusses existing solutions in the field

of gray box modeling and provides an overview of state-of-the-art solutions for performance

modeling of DPTs; Chapter 4 presents the Divide et impera gray box modeling methodology

14 CHAPTER 1. INTRODUCTION

and applies it to derive different performance models for DTPs; Chapter 5 presents and evalu-

ates the Hybrid Ensemble modeling methodologies, employing both the DTP and the TOB case

study; finally, Chapter 6 concludes the thesis and discusses future research avenues.

2Background on Distributed Transactional

Platforms

This chapter provides an overview of Distributed Transactional Platforms (DTP), and introduces

Infinispan, the distributed transactional key-value store that is going to be employed in this dis-

sertation as main case study to validate the effectiveness of the proposed gray box performance

modeling techniques.

2.1 Overview on Distributed Transactional Platforms

DTPs are data platforms deployed over a set of distributed nodes that allow data manipulation

by means of the transaction abstraction. A transaction is a portion of code, enclosed by a begin

and a commit instruction, which abides by the so called ACID properties (Bernstein, 1986).

• (A)tomicity: transactions are executed according to an all-or-nothing fashion. This means

that either a transaction successfully completes, i.e., it commits, or it aborts, i.e., it is canceled

and all the performed tentative modifications to the system state are discarded, just like if

they have never been issued. Transaction aborts can be triggered in two situations: i) upon an

explicit application request, e.g., in case the system is in a state that does not allow processing

correctly the transaction logic; ii) as a result of a conflict between two or more transactions,

i.e., the attempt to modify or access a portion of the system state in a way that is not compliant

with the ACID properties.

• (C)onsistency: transactions access consistent states of the system, and any committed trans-

action induces a transition towards a consistent state of the system. Consistency is defined

as a set of domain-specific rules and invariants that define the state of the system, and that

must be always respected and satisfied. A typical rule enforcing consistency comes from the

banking world: if data items represent bank accounts, then, in order to withdraw money from

16 CHAPTER 2. BACKGROUND ON DISTRIBUTED TRANSACTIONAL PLATFORMS

one of them, the deposited amount of money has to be greater or equal than the one to be

withdrawn.

• (I)solation: this property defines when and how modifications to the state performed by a

transaction become visible to other ones. For example, Serializability (Berenson et al., 1995)

enforces that the execution of transactions, despite being concurrent, results in a system state

that could have been obtained by executing the transactions in a serial order, i.e., one after

the other.

• (D)urability: once a transaction has been committed, its effects on the system state are per-

manent. This entails that modifications to the state are made persistent and resilient to crashes

and failures.

2.1.1 Consistency, Atomicity and isolation in DTPs

Consistency, atomicity and isolation are enforced in DTP by means of a concurrency control

scheme and a replication protocol.

The concurrency control scheme is responsible for ensuring that, despite their parallel activa-

tion, transactions appear as if they were executed in isolation and atomically, thereby allowing

only safe and consistent transitions between system states. The isolation level enforced by the

concurrency control scheme directly maps to the ease of programming parallel/distributed ap-

plications. In fact, the stronger is the degree of isolation that is guaranteed to transactions, the

more the behavior of the system is similar to a single-threaded, serial execution, which is the

most natural way of reasoning about the flow of programs’ execution.

On the other hand, in general, the stronger are the isolation guarantees, the higher is the

overhead incurred by the running application. Two are the root causes of such overhead: i)

the stronger is the isolation level, the lower is the number of transactional histories, i.e., inter-

leavings of transactional operations, that are acceptable by the system. This, depending on the

implementation, yields a higher number of aborts or a reduced degree of concurrency, which

ultimately results in lower throughput; ii) the amount of meta-data to be collected and processed

2.1. OVERVIEW ON DISTRIBUTED TRANSACTIONAL PLATFORMS 17

on a per-transaction basis grows as a function of the strength of the isolation level. For exam-

ple, enforcing Serializability requires to keep track not only of data items that are written by

transactions, but also that are just read; this is not required, for instance, to enforce Snapshot

Isolation (Berenson et al., 1995).

Much research effort has been spent to mitigate these overhead, especially motivated by the

fact that their impact grows with the scale a the DTP. The solutions proposed over the years have

mainly pursued two, orthogonal, research lines, namely i) increasing the available concurrency

while keeping a strong isolation level, e.g., Serializability (Faleiro et al., 2014; Bailis et al.,

2014; Diegues & Romano, 2015) and ii) identifying weaker isolation levels that strike a good

balance between imposed overhead and ease of programming (Sovran et al., 2011; Peluso et al.,

2012; Li et al., 2012).

The replication protocol determines how updates to the system state attempted on one node

are propagated to other nodes in the platform. Replication protocols can coarsely be grouped

according to two schemes, namely the multi-master and the single-master, also referred to as

Passive Replication (PR). According to the multi-master scheme, each node in the system can

serve both read-only and update transactions; this requires taking into account the need to deal

with conflicts among transactions originated at different nodes.

The most common multi-master replication protocol is Two-Phase Commit

(2PC) (Bernstein, 1986). As the name suggests, 2PC is a protocol that evolves in two

rounds. In the first, namely the prepare phase, the node which wants to commit a transaction,

namely the coordinator, sends the set of the data accessed by the transaction to a cohort of

nodes for validation. The amount of information sent to the cohort depends on the enforced

isolation level and by the adopted concurrency control scheme. The cohort of nodes send back

a vote, depending on whether they have been able to successfully validate the transaction, i.e.,

on whether the execution of the transaction is compliant to the ACID properties on their side.

In the second round, namely the commit phase, if the coordinator receives all positive votes,

than it sends a commit message, and the transaction’s outcome is persisted on each node;

otherwise it sends a rollback message, and the transaction is discarded. The cohort coincides

18 CHAPTER 2. BACKGROUND ON DISTRIBUTED TRANSACTIONAL PLATFORMS

with all the nodes involved in the transaction, i.e., all the nodes which replicate at least one

datum accessed by the transaction.

A drawback of the 2PC protocol is that it is prone to distributed deadlocks, i.e., situa-

tions in which two (or more) transactions require conflicting sets of locks on multiple nodes

in different orders, mutually blocking their progress. This happen because the prepare mes-

sages corresponding to conflicting transactions can be delivered in different orders on different

replicas. Distributed deadlocks are a major threaten for the scalability of DTPs (Gray et al.,

1996), and implementing mechanisms for their detection and resolution introduces additional

overheads (Singhal, 1989). A possible solution to the issue of distributed deadlocks in DTPs is

to exploit a Total Order primitive to disseminate the prepare messages, which ensures them to

be delivered in the same order on all the recipients (Ruivo et al., 2011). By leveraging such a

primitive, nodes in the platform may commit transactions according to a common order, thus

ruling out the possibility of incurring deadlocks. On the downside, Total Order primitives are

typically expensive, as they require multiple synchronization rounds among the nodes in the

system to reach consensus on the transactions delivery order.

Also the single-master scheme represents a solution to the distributed deadlocks problem. In

such a scheme, in fact, only a node, namely the primary, is entitled to serve update transactions:

all other nodes, the backups, can only process read-only transactions (Budhiraja et al., 1993).

This implies that, once the validation of a transaction has been performed on the primary, then it

is safe to replicate its outcome also on the backups. As a result, the commit/abort decision about

a transaction can be performed locally on the master, without the need of expensive distributed

validation protocols. The price to pay for distributed deadlock freedom, in this case, is that the

primary node may become the bottleneck for the whole system, in presence of write-intensive

workloads.

The scope of the performance modeling techniques proposed in this dissertation is general, i.e.,

they are intended to be applicable to any variant of DTPs, and to other kind of applications and

systems as well. As introduced in Section 2.2 and detailed in Chapter 4, however, the novel

analytical models provided in this thesis are specifically oriented towards DTPs that pursue

2.1. OVERVIEW ON DISTRIBUTED TRANSACTIONAL PLATFORMS 19

lower overheads, and hence higher scalability, by means of lower isolation level; on the other

hand, the proposed models target both a single-master and a multi-master replication protocol,

so as to showcase their wide applicability.

2.1.2 Durability in DTPs

The conventional approach to achieve durability in DTPs is based on persisting the system

state on disk, by registering on a log modifications to the system state performed by committed

transactions (Bernstein, 1986). The rationale behind this choice is that stable storage was orders

of magnitude cheaper than main memory; synchronous writes to persistent storage, however,

poses a significant overhead to transactions execution, as the operation of writing to disk is on

the critical path of transactions processing (Harizopoulos et al., 2008).

The landscape has drastically changed over the last years, as the price of main memory has

exponentially decreased, while RAM banks’ capacity has increased (Plattner & Zeier, 2011). In

addition, the use of high performance networking infrastructures like Infiniband (Pfister, 2001)

or the new breed of Ethernet (IEEE, 2014) allows for drastically reducing the communication

latency between remote hosts. These factors have jointly contributed to the shift towards the

in-memory data replication paradigm, according to which all data is maintained in main mem-

ory (Marchioni & Surtani, 2012; Kallman et al., 2008). In this case, the replication degree,

noted r, determines on how many different nodes every item in the platform is replicated and,

consequently, the degree of resilience to failures: a replicated DTP can tolerate up to r � 1

concurrent failures without suffering any data loss.

This design choice allows for removing logging to stable storage from the critical path

of execution of transactions, as well as for adopting optimized strategies (e.g., asynchronous

writes (Perez-Sorrosal et al., 2011), batching (Baker et al., 2011), data de-duplication (Zhu et

al., 2008)) aimed at minimizing the costs associated with the usage of cloud storage systems

(typically offered as additional pay-per-use service (Amazon, 2013) by IaaS infrastructures).

For these reasons, in-memory DTPs are particularly attractive and have gained, in the last

decade, a lot of momentum (Plattner & Zeier, 2011): the performance models developed in this

20 CHAPTER 2. BACKGROUND ON DISTRIBUTED TRANSACTIONAL PLATFORMS

dissertation specifically target this emerging class of DTPs, although they could be extended to

cope also with persistent storage logging dynamics.

2.1.3 Data models in DTPs

The importance and widespread adoption of DTPs also reflect into the diversity of proposed de-

signs and implementations stemming from the supported data models, which varies depending

on the target use case.

• Distributed Database Management Systems (DDBMS). They represent the evolution of clas-

sic centralized databases. This kind of platform has been designed to improve availability,

reliability and performance of their single-node counter-part. DDBMS embrace the classic

relational model, and provides support for complex SQL queries. In order to support high-

level operators, like the join, DDBMS typically rely on data sharding, such that a single query

can be served by a single node in the platform (Curino et al., 2010; Taft et al., 2014).

• NoSQL data stores. This new breed of data platforms has been built from the ground up

specifically to meet the elasticity and availability requirements of the Cloud. For this rea-

son, they typically embrace lower isolation levels (Wada et al., 2011) and expose schema-

less, non-relational data models, e.g., key-value (Marchioni & Surtani, 2012; Das et al.,

2010; Project Voldemort, 2015; Oracle, 2011), graph (Martı́nez-Bazan et al., 2007; Neo4j,

2015; Objectivity, 2015), or document-oriented ones (mongoDB inc., 2015; Apache Soft-

ware Foundation, 2015). Because of the exposed data model, unlike the relational case,

these platforms typically do not natively provide support for complex queries. As such,

although optimizations can be implemented (Paiva et al., 2014), NoSQL data platforms typ-

ically do not rely on data sharding and manage data placement by means of consistent hash

functions (Karger et al., 1997). Additional details on hash functions will be provided when

introducing the Infinispan data platform.

• Distributed Transactional Memories (DTM). In the Transactional Memory (TM) paradigm,

the abstraction of transaction becomes an integrating part of the programming language and

acts as a replacement of the typical lock-based scheme for accessing critical sections (Herlihy

2.2. THE INFINISPAN CASE STUDY 21

& Moss, 1993). DTMs represent the distributed evolution of shared-memory TMs, and al-

low every object or memory location of the system state to be transactionally accessed and

modified (Kotselidis et al., 2008; Couceiro et al., 2009).

2.2 The Infinispan case study

Infinispan is a distributed, in-memory, transactional key-value store, written in Java and devel-

oped by JBoss/Red Hat. At the moment of writing, Infinispan represents the reference NoSQL

data platform and clustering technology for JBoss AS, one of the most popular open-source

J2EE application servers. It has also been the reference cloud data store in the context of the

European project Cloud-TM (Romano et al., 2010), which aimed at developing a transactional

data platform specifically conceived to meet the requirements of Cloud applications.

An application deployed over Infinispan interacts with the data items by means of get and

put operations. A get is a read operation, i.e., it retrieves the value corresponding to a given key;

a put is a write operation, i.e., it modifies the value corresponding to a given key, optionally

returning the previous value. Note that a put operation can be any operation that modifies the

state of the application, i.e., an insertion of a new data item, as well as the modification or the

deletion of an existing one. Transactions are enclosed between a begin and a commit statements,

and can include an arbitrary number of put and get operations.

Like many other NoSQL platforms (Orientechnologies, 2014; Aerospike, 2014; eXistdb,

2014; Kobrix Software, 2014; Redis, 2014), Infinispan opts for partially sacrificing consistency

in order to enhance performance. In particular, it does not ensure serializability (Bernstein,

1986), but only guarantees variants of the Repeatable Read ANSI/ISO isolation level (Berenson

et al., 1995). Specifically, upon reading a datum, a transaction caches the obtained correspond-

ing value, and returns it for any subsequent read of the same datum; if the datum is updated

by the transaction itself, its value is cached as well, and the most up-to-date cached value is

returned upon read.

Isolation is enforced by means of a non-serializable variant of the multi-version concur-

rency control algorithm, which never blocks or aborts any transaction upon a read operation.

22 CHAPTER 2. BACKGROUND ON DISTRIBUTED TRANSACTIONAL PLATFORMS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2 3 4 5 6 7 8 9 10

C
o
m

m
itt

e
d
 T

ra
n
sa

ct
io

n
s/

se
c

Number of nodes

RG - Small RG - Large TPC-C

Figure 2.1: Performance of different workloads in Infinispan.

This allows read-only transactions to commit locally, without requiring any inter-node synchro-

nization. Only write-write conflicts are detected by means of locking: this prevents concurrent

updates of existing data items or insertions of new ones by different transactions that would

result into breaking isolation. Deadlocks are detected using a simple, user-tunable, time-out

based approach.

2.2.1 Complexity of the Infinispan Case Study

Due to its complex internal dynamics, predicting the performance of applications deployed over

Infinispan as a function of the workload, of the various replication and concurrency control

protocols that it supports, as well as of its internal parameters (e.g, the replication degree), is a

very challenging task. This complexity is clearly highlighted by Figure 2.1, which reports on the

y axis throughput values (expressed as committed transactions per second) obtained by running

two transactional benchmarks, namely Radargun1 and TPC-C2, over a platform interconnected

by a Gigabit Ethernet network, while varying the size of the platform from 2 to 10 nodes (on the

x axis). These results have been obtained using a 2PC replication protocol, and an encounter

time locking scheme in full replication, which will be described in Section 4.2.1.1.

1https://github.com/radargun/radargun/wiki
2http://www.tpc.org/tpcc

2.2. THE INFINISPAN CASE STUDY 23

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

C
o
m

m
it

P
ro

b
a

b
ili

ty

Number of nodes

RG - Small RG - Large TPC-C

(a) Transaction commit probability

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 2 3 4 5 6 7 8 9 10

N
e

tw
o

rk
 R

T
T

 L
a

te
n

cy
 (

m
ic

ro
se

c)

Number of nodes

RG - Small RG - Large TPC-C

(b) Distributed commit network latency

Figure 2.2: Scalability analysis of different workloads in Infinispan (2PC-ETL).

As shown in Figure 2.1, the scalability trends of the three considered workloads are quite

heterogeneous. The considered TPC-C workload scales almost linearly, whereas the two Radar-

gun workloads clearly demonstrate how the effects of high contention on logical and physical

resources can lead to non-linear scalability trends. The workload RG-large represents a case

in which transactions insist on data items selected uniformly at random from a large dataset

(100K objects): as shown in Figure 2.2a, transactions of this workload incur very little abort

probability; on the other hand, network latencies sharply increase as the delivered throughput

and the size of the underlying platform increase, as depicted in Figure 2.2b, up to the point

that adding more nodes to the platform is actually detrimental for performance. Finally, the

workload RG-small depicts a case in which transactions insist on a small data set (1K objects)

and it is representative of a completely non-scalable workload. Unlike the RG-Large workload,

however, looking at Figures 2.2a and Figure 2.2b, it is evident that in this case scalability is not

hindered by congestion on the network; rather, the lack of scalability is caused by the excessive

level of data contention, which impairs transactions progress.

These dynamics are caused by the intertwined effect of workload characteristics, contention

on data and on physical resources: accurately capturing such complex dynamics via white box

models appears to be a daunting task. On the other hand, the vast design space of the platform,

e.g., scale and replication degree, and the several parameters characterizing a workload, e.g.,

percentage of update vs read-only transactions and conflict likelihood, make the application of

24 CHAPTER 2. BACKGROUND ON DISTRIBUTED TRANSACTIONAL PLATFORMS

pure black box solutions easy prey of the curse of dimensionality. Chapters 4 and 5 will describe

in detail how the proposed gray box modeling techniques can be applied to build an accurate

yet fast-to-instantiate performance model for such complex and high-dimensional performance

functions characterizing DTP, and more specifically Infinispan, applications.

3Related Work
This chapter serves a twofold purpose. In Section 3.1 it provides an overview of the main

performance modeling methodologies that have been proposed in literature, and discusses the

innovative contributions in the field of gray box performance modeling that are proposed in this

dissertation. Section 3.2, instead, presents the state of the art on performance modeling and

self-tuning solutions for DTPs, and highlights how the proposed analytical models overcome

the main limitations that affect existing solutions.

3.1 Performance Modeling Methodologies

As described in Chapter 1, performance modeling has evolved into two main branches, namely

white box and black box modeling: background on these two modeling methodologies is pro-

vided, respectively, in Section 3.1.1 and Section 3.1.2. Section 3.1.3, instead, discusses ex-

isting techniques and solutions that combine the two aforementioned performance modeling

paradigms into gray box models; specifically, the section serves the twofold purpose of i) orga-

nizing existing and proposed gray box performance modeling methodologies into a taxonomy

and ii) describing how the proposed techniques relates to and advance the state of the art in the

field of gray box performance modeling.

3.1.1 White Box Performance Modeling

White box modeling refers to the modeling methodology that leverages specific and detailed

knowledge about the internals of a system or application to model its behavior and, ultimately,

predict its performance. Many different modeling techniques comply with such definition, in-

cluding Queueing Theory (Kleinrock, 1975), Petri Nets (Petri, 1966) and Simulation (Fujimoto,

26 CHAPTER 3. RELATED WORK

1990). This section, however, will only cover introductory aspects about Queueing Theory, as

it is at the basis of the analytical performance models proposed in Chapter 4.

In Queueing Theory, a system is modeled as a set of waiting lines, or queues. To each queue

corresponds a server, which is in charge of processing requests coming from clients. Requests

join the queue at a rate l and are enqueued till they can be processed. A queue is described by

a set of parameters, which are typically expressed via the Kendall’s notation A/B/C/K/N/D1.

• A is the distribution of the requests’ arrival rate.

• B is the distribution characterizing the service demand of a request, i.e., the time it takes to be

served without accounting for the waiting time in the queue. Values for A and B are typically

D (deterministic), G (generic), M (markovian, i.e., following an exponential distribution).

• C is the number of servers that process elements in a queue.

• K is the capacity of the queue, i.e., the total number of requests, both in service and in the

waiting line, that the queue can accommodate.

• N is the number of clients that generates requests towards the queue. If N is a finite quantity,

then the queueing system is called closed; a closed system is generally characterized also by

a think time, i.e., the time that a client waits after the completion of a request before issuing

a new one. If N is infinity, instead, then the queue serves an unbounded numbers of clients

and the system is called open. The requests’ arrival rate in an open system does not depends

on the number of request currently in the system. An open system is said to be stable if

the requests’ arrival rate does not exceed the system capacity: this prevents an unbounded

number of jobs to queue up. According to this definition, closed systems are stable by nature,

since the population of users is fixed and a user cannot issue a new request towards the system

if the previous has not been served yet.

• D is the policy adopted to serve request. Values for this parameter include First/Last Come

First Serve, in which requests are processed depending on the order they join the queue, and

1If omitted, C and K are equal to •; similarly, the default value for D is First Come First Served

3.1. PERFORMANCE MODELING METHODOLOGIES 27

Processor Sharing, in which the processing power of the servers is concurrently shared by the

requests.

Once this set of parameters is specified, a model based on Queueing Theory can be solved

to obtain several performance indicators, like the average number of requests in the system,

maximum achievable throughput (i.e., number of jobs completed per unit of time) and response

time of a request (i.e., the time it spends in the queue plus the time needed to be actually

processed by the server).

The model resolution process does not always consist in applying a closed-form equation:

in many case, Queueing Theory models are solved iteratively or recursively, providing as input

parameters for iteration k the output obtained at iteration k � 1. The Mean Value Analysis

(MVA) algorithm (Reiser & Lavenberg, 1980) to solve model for closed systems is probably

the most famous example of an iterative resolution technique. It exploits the arrival theorem,

which states that when one user in an N-users closed system arrives at a queue, she observes

the rest of the system to be in the equilibrium state for a system with N � 1 users: therefore,

MVA obtains solves the performance model for N users by iteratively solving the same model

for n = 1 . . .N �1 users first.

The literature on DTPs performance modeling is also rich in solutions that rely on itera-

tive/recursive schemes to obtain the target performance indicator, typically to break the inter-

dependency that arises between the transactions’ response time function and the lock contention

probability (Nicola & Jarke, 2000). Also the analytical models presented in the next chapter

represent instances of models solved by means of iterative scheme, precisely to cope with the

aforementioned issue.

Finally, one of the most important results relevant to Queueing Theory, which will also

be exploited in the proposed analytical models, is Little’s law (Little, 1961). It states that the

long-term average number of customers in a stable system is equal to the long-term average

effective arrival rate multiplied by the average time a customer spends in the system. This is

one of the most exploited results in Queueing Theory-based analytical models, including the

models introduced in Section 4, because of its universal applicability (Little, 2011). Little’s

law, in fact, applies independently from the arrival process distribution, the service distribution

28 CHAPTER 3. RELATED WORK

and the serving policy.

3.1.2 Black Box Performance Modeling

Unlike its white box counterpart, which entails different ramifications, in the area of perfor-

mance modeling of computer systems black box approaches have largely borrowed results from

the Machine Learning (ML) domain. ML is the field of artificial intelligence that deals with

construction and study of systems that can learn from data (Bishop, 2006): this section intro-

duces the fields of ML that are more closely related to the gray box models that are object

of this dissertation, and that are among the most widely applied in related works on perfor-

mance modeling and self-tuning of computer systems, namely, Supervised, Unsupervised and

Reinforcement Learning.

3.1.2.1 Supervised Learning

Supervised Learning is the task aimed at learning the relation between a set of input parameters,

called input features, and a set of outputs, called target features. More formally, a supervised

machine learner tries to infer a function (also called model) f : X ! Y basing on the observed

output corresponding to a set X̃ ⇢ X , called training set. Such a function can, then, be exploited

to predict the output value y corresponding to values of the input parameters that are not present

in the training set. If the codomain of the f function is continuous, then the machine learner is

defined regressor. If it is discrete, then the learner is defined classifier; in this case, the values

that the output can assume are called classes.

Many supervised ML tools have been proposed in literature; the remainder of this Section

briefly overviews the ones that are exploited the most for performance modeling purposes.

• Decision trees (DT)(Quinlan, 1986) build their inner model according to a tree-structured

graph. Each interior node of the tree corresponds to one of the input variables; edges from

a parent to a child are labeled with a predicate about the value of the input feature relevant

to the parent node. In the case of DT classifiers, each leaf represents a value of the target

feature; in the case of regressors, it is a function of the input values.

3.1. PERFORMANCE MODELING METHODOLOGIES 29

• Support vector machines (SVM)(Cortes & Vapnik, 1995) are classifiers which map the

points of the training set to a multidimensional space W such that elements in the same class

occupy a specific portion of that space and are as far away as possible from elements of other

classes. The dimensionality of W , in general, is higher than the one, X , of the samples in

the training set; the function responsible for the mapping of elements from X to W is called

kernel. Although initially introduced in the context of classification, also SVM has been

extended to cope with regression problems (Bishop, 2006).

• Artificial Neural Networks (ANN) (Haykin, 1998) are machine learners whose inner design

resembles the neural structure of the brain, which learns through experience thanks to the in-

terconnection of billions of simple neurons. Similarly, an ANN is based on artificial neurons.

In its simplest form, a neuron is a classifier that performs a weighted sum of the input pa-

rameters and maps it onto a binary set by means of a sigmoid function. The weights used

by the neurons are adjusted during an initial learning phase over the training set. An ANN is

structured in layers. The input layer, which does not execute any computation and just repli-

cates the input in such a way that neurons in the next layer are provided with the whole set of

features; the hidden layers, which are composed by neurons and perform weighted sums and

classification; the output layer, which combines the output of the neurons into the final result

(which, again, can either be a class or a real number).

A particular sub-field of Supervised Learning is Instance-based Learning. This technique

is based on computing the output relevant to a previously unseen input x by analyzing the

output of the training samples that, given a similarity function, are the most similar to x. In this

way, the machine learner is spared from the burden of performing explicit generalization of the

input/output relations by means of inferring a mapping function. A typical instance of this kind

of learning is the K-Nearest-Neighbor algorithm (Cover & Hart, 1967), in which the output

corresponding to x is computed, in the regression case, as weighted sum of the K samples in the

training set which are most similar to x and, in the classification case, by means of voting.

30 CHAPTER 3. RELATED WORK

3.1.2.2 Unsupervised Learning

Unsupervised Learning is the task aimed at finding patterns in the data above and beyond what

would be considered pure unstructured noise (Ghahramani, 2004). An Unsupervised Learn-

ing algorithm, in fact, is not provided with an output corresponding to the value of a function

evaluated on the samples in the training set: all it can do, therefore, is extracting hidden struc-

tures according to which samples are organized. The most common application of unsupervised

learning in performance modeling works is Cluster analysis (Sander et al., 1998). The aim of

Cluster analysis is to group objects into disjoint sets, such that, given a similarity function, the

most similar elements belong to the same set.

3.1.2.3 Reinforcement Learning

Reinforcement Learning is the branch of ML that investigates the issue of how an agent should

perform actions in an environment in order to maximize a cumulative reward (Bishop, 2006).

One of the most important issues in Reinforcement Learning techniques is the trade-off between

exploration and exploitation. In absence of an explicit model capable of determining a priori

the optimality of an action over another one, the agent must explore the environment in order to

gather feedback on the rewards of the action. A reinforced machine learner tries to identify the

minimum number of exploratory steps that maximizes the long-term reward. On the other hand,

in order to reduce the number of sub-optimal choices when performing actions, a Reinforcement

Learning algorithm also exploits knowledge about actions that are known to be good, favoring

them over exploration of actions whose outcome is more uncertain (but potentially better than

the optimal known so far).

In Reinforcement Learning algorithms applied to the optimization of an application, the

agent is represented by a controller in charge of determining the optimal configuration for the

application, the environment is the set of tunable parameters and external factors (e.g., the

workload) and the reward generally identifies with performance. Two of the most widely ap-

plied Reinforcement Learning algorithm in performance modeling and optimization tasks are

probably Q-Learning and UCB.

3.1. PERFORMANCE MODELING METHODOLOGIES 31

• UCB (Auer et al., 2002) is an algorithm which solves the so called multi-armed bandit

problem (Robbins, 1985). In this problem, a gambling agent is faced with a slot machine

(the bandit) with k arms, each associated with an unknown reward distribution. The gambler

iteratively plays the arms and observes the associated reward, adapting his strategy in order

to maximize the average reward. An optimization problem consisting in finding the optimal

value out of k possible alternatives for a parameter can be cast to the multi-armed bandit

problem and solved with UCB.

• Q-learning (Watkins & Dayan, 1992) is a model-free Reinforcement Learning technique

aimed at learning a function which maps haction,statei pairs into values, such that the value

corresponding to an ha,si pair is the expected utility of performing action a in the state s and

following a fixed policy thereafter. Two important parameters for a Q-learning based agent

are the learning rate, i.e., the weight given to most recent explorations, and the discount

factor, which discriminates between a more greedy or a long term reward striving exploration

of actions. Despite the transient behavior of the agent is highly affected by these parameters

and the policy used to drive exploration, Q-learning is characterized by a strong convergence

property towards a near-optimal learnt function.

3.1.2.4 Ensemble Learning

Ensemble learning is a specific branch of ML that investigates how to combine multiple learn-

ing algorithms to build a predictor with better accuracy than any of its components alone. The

literature on ensemble learning is vast, and several solutions have been proposed, corresponding

to different specializations of the general recipe of combining models (Dietterich, 2000; Caru-

ana et al., 2004). Among these solutions, the most important and most widely employed ones

are based on three following principles.

• Bagging (Breiman, 1996). Given a training set D, Bagging generates K sub-training set

obtained by sampling D uniformly at random with replacement; then, K black box models are

trained over the K sub-training sets (typically, the K models are different instances of the same

learning algorithm, e.g., DT). The outputs of the K models obtained in this way are combined

according to a majority voting, in case of classification, or by means of averaging, in case of

32 CHAPTER 3. RELATED WORK

regression problems. By obtaining a unique predictive model by means of sampling on the

original data distribution in D, Bagging is especially effective into reducing over-fitting in

the prediction process.

• Boosting (Schapire, 1999). Given a training set D, Boosting serially trains a chain of ML

algorithms in such a way that the i�th such algorithm tries to compensate for the prediction

errors of the i� 1�th one. In the case of classification, this is done by training the i�th

algorithm on a sampling of D which gives more priority to elements in D that had been

mis-classified in previous iterations (Schapire, 1999). In the case of regression, instead,

this is accomplished by training the i� to learn not the target feature itself, but the error

distribution of the previous learner on the target feature, so that such error can be properly

compensated (J. Friedman et al., 2000).

• Stacking (Wolpert, 1992). Given a training set D, Stacking independently trains K ML algo-

rithm over it and, then, combines their output by means of a gating function. The definition

of the Stacking technique is rather general, and particular implementations of it can coincide

with other established ensemble learning techniques. For example, it is clear that Bagging

can be seen as a Stacking technique, with the several learners being trained over sub-sets

of the original training set and the gating function being an arithmetic average or a voting

scheme. The training phase and gating function, however, can be arbitrarily more complex

than in the Bagging case. In the proposed Hybrid Ensemble techniques that embrace the Se-

lection principle (introduced in Section 1.3), for example, the gating function is implemented

via a classifier that acts as a multiplexer, providing as output of the stacked model only the

prediction of the inner model that is supposed to be the best for a particular query.

3.1. PERFORMANCE MODELING METHODOLOGIES 33

6 CHAPTER 3. 3
G

ra
y

b
o
x

m
o
d
el

in
g

(D
id

on
a

&
R

om
an

o,
20

15
)

H
y
b
ri

d
E
n
se

m
b
le

P
a
tc

h
in

g

H
y
b
ri

d
B

o
o
st

in
g

(D
id

on
a

et
al

.,
20

13
a)

(D
id

on
a

et
al

.,
20

13
b
)

(D
id

on
a

et
al

.,
20

15
)

B
o
o
ts

tr
a
p
p
in

g

O
�

in
e

(D
id

on
a

&
R

om
an

o,
20

14
b
),

(T
er

es
h
ka

&
G

an
ge

r,
20

08
),

(R
u
gh

et
ti

&
al

.,
20

14
)

O
n
li
n
e

(R
om

an
o

&
L
eo

n
et

ti
,
20

12
)

(S
ch

ro
ed

er
et

al
.,

20
06

)

S
el

ec
ti

o
n

L
o
ca

l
S
el

ec
ti

o
n

(C
h
en

et
al

.,
20

14
)

P
ro

b
in

g
(D

id
on

a
et

al
.,

20
15

)
H

y
b
ri

d
K

N
N

(D
id

on
a

et
al

.,
20

15
)

D
iv

id
e

et
im

p
er

a
(D

id
on

a,
R

om
an

o
et

al
.,

20
12

)
(D

id
on

a
et

al
.,

20
14

)
(D

id
on

a
&

R
om

an
o,

20
14

b
)

(D
i
S
an

zo
et

al
.,

20
15

)

P
a
ra

m
et

er
E
st

im
a
ti

o
n

M
o
d
el

-f
re

e
(S

in
gh

et
al

.,
20

10
)

(M
oz

af
ar

i
et

al
.,

20
13

)
Z
h
an

g
et

al
.,

20
07

(H
er

od
ot

ou
et

al
.,

20
11

)

M
o
d
el

-b
a
se

d
(H

ei
ss

&
W

ag
n
er

,
19

91
)

(D
i
S
an

zo
et

al
.,

20
13

)
(E

ye
rm

an
et

al
.,

20
11

)
(J

u
an

,
20

14
)

(W
oo

d
si

d
e

et
al

.,
20

08
)

F
ig

u
re

3.
1:

T
ax

on
om

y
of

gr
ay

b
ox

p
er

fo
rm

an
ce

m
od

el
in

g
m

et
h
od

ol
og

ie
s.

T
h
e

so
lu

ti
on

s
th

at
h
av

e
b
ee

n
p
ro

p
os

ed
in

th
e

co
nt

ex
t

of
th

is
d
is

se
rt

at
io

n
ar

e
in

b
la

ck
;
th

e
on

es
th

at
ca

n
b
e

al
re

ad
y

fo
u
n
d

in
th

e
li
te

ra
tu

re
ar

e
in

re
d
.

34 CHAPTER 3. RELATED WORK

3.1.3 Gray Box Performance Modeling

As already discussed in Section 1, the white box and black box performance modeling ap-

proaches exhibit complementary strengths and limitations. This has lead to the definition of

a research line aimed at devising effective ways to exploit the two techniques in synergy to

model the performance of complex computer systems. This research field is, however, still in

its infancy: the number of proposed gray box performance modeling techniques is indeed very

small, with respect to the abundant literature on white and black box modeling.

This section serves two purposes. On one hand it reviews state-of-the-art gray box per-

formance modeling techniques and organizes them according to a taxonomy, which classifies

existing solutions depending on the methodology employed to combine white box and black

box modeling. On the other hand, this section also compares the gray box proposed in this

dissertation with existing ones.

The proposed taxonomy, depicted in Figure 3.1, extends the gray box performance model-

ing techniques classification already introduced in Section 1.3: existing solutions are marked

in red; the techniques proposed in this dissertation, instead, are in black. To the best of our

knowledge, this taxonomy represents the first attempt to classify existing solutions on the basis

of the methodology they employ to reconcile the two performance modeling paradigms: it aims

at providing an initial, systematic study of the gray box performance modeling approaches that

have been proposed in literature. The taxonomy identifies three main classes of gray box mod-

eling techniques applied to the problem of computer systems’ performance prediction: Divide

et impera, Parameter Estimation and Hybrid Ensemble.

The remainder of this section provides, for each of these techniques, a discussion that de-

velops on three levels: i) description of the technique, with the aim of identifying the key

principles that are at the basis of different gray box methodologies; ii) overview of the main

solutions that adopt the technique, so as to show how a specific methodology has specialized in

different implementations; and iii) comparison of state-of-the-art solutions with the new tech-

niques proposed in this dissertation, with the aim of discussing relations and highlighting how

this thesis advances the state of the art in the field of gray box performance modeling.

3.1. PERFORMANCE MODELING METHODOLOGIES 35

3.1.3.1 Divide et Impera

The Divide et impera approach consists in the joint usage of white and black modeling tech-

niques that target the performance prediction of distinct, but possibly inter-related, modules of

the system being modeled. In particular, the Divide et impera approach decomposes the perfor-

mance prediction problem into sub-tasks, and tackles each of them by means of the modeling

methodology (either white or black) that is more appropriate.

The different models, although built separately, may exhibit input dependencies: for exam-

ple, a model may need, as input, a parameter that is not measurable in the current configura-

tion/workload, and that, therefore, needs to be estimated by another model. For this reason, the

Divide et impera also requires the definition of a resolution scheme that reconciles the output

of the various sub-models in such a way to produce the performance prediction for the system

as a whole.

In this thesis, the Divide et impera approach is applied to the problem of predicting per-

formance of DTPs: white box modeling is applied to capture the effect of replication and con-

current accesses to data; black box modeling, instead, is used to predict the response time of

network-bound operations. This modeling choice is aimed at circumventing the previously

discussed limitations posed by virtualization in Cloud environments. Specifically, the lack of

details about the networking layer of the hosting infrastructure impairs the adoption of the pure

white box modeling paradigm to predict the cost of transactional operations that require inter-

node synchronization.

To the best of our knowledge, the Divide et impera methodology has never been proposed

before in literature: therefore, additional details about this technique are going to be provided

in Chapter 4, which will describe extensively this gray box performance modeling methodol-

ogy and how it has been implemented to predict the performance of DTPs. The discussion of

the relations with other gray box performance modeling techniques, instead, is deferred to the

following two sections and is provided after a review of the other existing methodologies and

of the solutions that implement them.

36 CHAPTER 3. RELATED WORK

3.1.3.2 Parameter Estimation

In the proposed taxonomy, the Parameter Estimation technique refers to solutions that rely

on black box techniques to infer or perform pre-processing of a set of parameters or inputs

of a white box predictor. Techniques belonging to this category can be further classified into

two sub-classes, namely Model-based and Model-free, which are going to be described in the

following.

Model-based. Solutions belonging to this class rely on a white box model to provide the func-

tional form of the target KPI function (e.g., polynomial) and aim at estimating the model’s

coefficient and tunable parameters by fitting (e.g., via regression) the model’s output to ex-

perimental data. To the best of our knowledge, model-based Parameter Estimation techniques

have originally been proposed in the field of System Identification (SI) (Ljung, 1999). SI tech-

niques aim at inferring, from available measurements, the transfer function of a system, i.e., the

function that describes the input-output relationship of such system (Ogata, 2001).

SI solutions are usually black box, as they typically obtain the whole transfer function (and

not only its parameters) entirely from data, by means of regression or the use of ANN (Ljung,

1999). It is possible, however, to build a parametric model of the target system and to apply

Parameter Estimation techniques to infer only values for the free parameters of the model,

rather than the whole transfer function (Astrom & Eykhoff, 1971; Kristensen et al., 2004).

Gray box SI techniques have been mainly applied to build mathematical model of physical

systems, e.g., aircrafts or engines, which are typically based on sets of differential equations,

rather than on the aforementioned solutions for performance modeling of computer applica-

tions (e.g., Queueing Theory). This model-based Parameter Estimation branch of the SI field is

mentioned in this dissertation to show how synergies between white box and black box model-

ing have been object of research also out of the context of performance prediction of computer

systems: the focus of this section, however, is on reviewing existing (and proposed) classes

of gray box modeling techniques applied to performance prediction of computer systems and

applications.

3.1. PERFORMANCE MODELING METHODOLOGIES 37

The first application of this technique in this context is — to the best of our knowledge —

the “parabola approximation”, proposed to capture the relation between the level of parallelism

in a database and its performance (Heiss & Wagner, 1991). In this model, the throughput

achieved by a database is expressed as a parabolic function of the number of active threads,

i.e., it increases up to a maximum and then decreases because of thrashing phenomenons due

to contention on hardware and data items. The functional form of the performance model is,

therefore, a second level polynomial, and its coefficients are estimated by sampling the target

performance function at some selected configurations.

Always in the context of transactional systems, Di Sanzo et al. developed an analytical

model to predict performance of Transactional Memory applications (Di Sanzo et al., 2013);

such model captures the data conflict likelihood by means of an exponential function, whose

parameters are fitted via regression starting from runtime measurements.

The model-based Parameter Estimation technique has also been applied to model the per-

formance of processors (Eyerman et al., 2011), to tune operational voltage and frequency in

multi-core processors (Juan, 2014) and to represent birth-death stochastic processes (Kleinrock,

1975), which are the foundations of many analytical models for computer systems (Kleinrock,

1976).

Woodside et al. propose the use of Kalman Filters (Welch & Bishop, 1995) instead of

regression to estimate the parameters of performance models from runtime measurements, and

show how to obtain input parameters for open and closed queueing models (Woodside et al.,

2008).

Model-free. Unlike the previous case, techniques belonging to this class do not exploit the

target white box model to perform parameter estimation. On the other hand, they rely on black

box techniques to pre-process experimental data and are aimed at obtaining the value of some

input parameters of the white box model, rather than coefficients of the functional form embed-

ded by it. Therefore, in these approaches the black box component is not actually employed to

build the model, but rather to identify, in a robust manner, the input parameters, e.g., workload

characterization, needed for its effective invocation.

38 CHAPTER 3. RELATED WORK

Singh et al. propose the use of Clustering to determine the workload characteristics for

a multi-tier system, i.e., average service demand and requests mix (Singh et al., 2010). A

similar approach is undertaken by Mozafari et al. to identify different transactional classes,

their computational requirements and data access pattern in a database (Mozafari et al., 2013).

Zhang et al., instead, starting from Little’s Law, use regression to determine the service

demand of different job types in a multi-tier architecture (Q. Zhang et al., 2007). Such demands

are, then, supplied as input to a MVA-based performance model of the system.

Finally, a different approach is undertaken by the Elastizer framework, which is aimed

at supporting automated provisioning for Map-Reduce (Dean & Ghemawat, 2008) jobs pro-

cessing infrastructures in the Cloud (Herodotou et al., 2011). In Elastizer Decision Trees are

used to estimate how some processing costs and other relevant parameters of Map-Reduce jobs

change when moving from the development cluster (used for profiling and training the black

box learner) and the production one (where the jobs submitted by users are actually executed).

Such costs are provided as input to an analytical model, which produces jobs running time

estimates.

Among the proposed gray box modeling techniques, Parameter Estimation solutions may be

seen as related to the Divide et impera methodology: also this technique, in fact, encompasses

the possibility of some models to provide input to other ones.

The Divide et impera approach, however, is fundamentally different from existing Param-

eters Estimation techniques. In these solutions, in fact, the performance function is ultimately

expressed only by means of white box modeling: black box approaches are solely undertaken

to provide inputs to the model, and not to predict the performance of a whole sub-module of

the target applications. On the other hand, the Divide et impera approach encompasses the

definition of multiple, distinct performance models, which can be either white box or black

box. In addition, black box modeling is not used to solely initialize white box predictors as in

existing Parameter Estimation-based solutions. Rather, as explained in more detail in the next

chapter, the models can exhibit arbitrary input dependencies and, once solved, their outputs are

reconciled to produce the performance prediction for the target application as a whole.

3.1. PERFORMANCE MODELING METHODOLOGIES 39

3.1.3.3 Hybrid Ensemble.

This modeling methodology is descended from the Ensemble Learning techniques originally

introduced in the ML community (see Section 3.1.2.4); it comprises different solutions that

combine multiple instances of black box and white box predictors with the aim of building a

gray box model whose predictive accuracy is higher than any of its components alone.

In the proposed taxonomy, this rather general principle can be implemented according to

two paradigms, namely the Patching and the Selection one.

Patching. In Patching-based Hybrid Ensemble techniques, white box modeling is used to in-

stantiate a base performance predictor, whose accuracy is refined via black box techniques.

In particular, the black box model construction phase takes as input both the output of the base

white box predictor and performance measurements collected from the operational system, with

the aim of correcting inaccuracies in the function initially encoded by the base white box model.

The proposed taxonomy identifies two hybrid techniques that implement such principle:

Bootstrapping and Hybrid Boosting.

Bootstrapping. This Patching technique consists into exploiting a white box model to initialize

the knowledge base, i.e., the training set, of a black box learning algorithm. This allows a black

box model to be initially instantiated without the need for a training phase on the live system;

the training set can be updated over time to include samples collected from the running system,

and a new model can be trained, so as to include this new available factual knowledge about

the system behavior. The peculiar feature of this Hybrid Ensemble technique is that, after being

used in the initialization phase, the white box model is put aside: once the initial training set has

been populated, in fact, both the learning and the prediction phases are performed by a black

box algorithm.

The Bootstrapping technique has been applied in the context of both on-line and off-line

learning. In the on-line domain, Romano and Leonetti (Romano & Leonetti, 2012) propose the

use of UCB to minimize the messages delivery latency in a Total Order Broadcast implementa-

40 CHAPTER 3. RELATED WORK

tion depending on the messages arrival rate. This solution relies on discretizing the domain of

the encompassed arrival rates: one UCB instance is associated with each of the obtained mes-

sages arrival rate intervals, and is responsible for the optimization of the target application in the

corresponding workload conditions. An analytical model, based on Queueing Theory, is used

to initialize the state of the UCB instances, so as to reduce their learning phase. Schroeder et

al. (Schroeder et al., 2006), instead, exploit hill-climbing (Russell & Norvig, 2003) to tune the

number of active threads in a database; an analytical model is responsible to identify a suitable

starting point for the hill-climbing, in such a way to achieve faster convergence to the optimal

solution.

An on-line solution that is related to Bootstrapping has also been proposed by Tesauro et

al. (Tesauro et al., 2007). In their solution, an analytical model is used to build an approxi-

mate performance model to initially guide the automatic provisioning process in a data center.

A Reinforcement Learning algorithm is trained on data collected while the analytical model-

based policy controls the system; at steady state, the RL-based policy completely replaces the

AM-based ones and implement a continuous process of refinement of the learned provisioning

scheme.

In the off-line domain, IRONMODEL (Thereska & Ganger, 2008) represents, to the best of

our knowledge, the first attempt to initialize the knowledge base of a regressor (specifically, a

DT) by means of analytical modeling combine analytical, and has been proposed in the context

of anomaly detection in data centers. IRONMODEL relies on human supervision to detect the

deviation of an application/component’s performance from the expected one and to trigger, as

a consequence of such a deviation, a corrective phase. This phase consists in the execution of

a set of synthetic tests specifically crafted to replicate the conditions (i.e., workload) that lead

to the deviation between observed and predicted performance and that are aimed at providing

enough data to induce the black box learner to correct the original discrepancy between ob-

served behavior and model’s prediction. In a similar fashion, Rughetti et al. (Rughetti et al.,

2014) propose to train an ANN with a mix of samples generated by an analytical model and

obtained by available execution traces of the target application. The obtained model is used to

tune the number of active threads in a single-node Transactional Memory system.

3.1. PERFORMANCE MODELING METHODOLOGIES 41

This dissertation makes a twofold contribution in the field of off-line Bootstrapping-based

performance modeling, i) by presenting the most in-depth study, to the best of our knowledge,

of the Bootstrapping technique to date and ii) by proposing novel algorithms to implement

the Bootstrapping technique. The work presented in this thesis, in fact, explores extensively

the design space of this methodology, proposes new algorithmic variants and provides novel

insights on its effectiveness, thanks to a comprehensive experimental evaluation on two different

case studies.

With respect to IRONMODEL (Thereska & Ganger, 2008), the proposed Bootstrapping

implementation relies on a totally automated work-flow, which is capable of correcting the

inaccuracies of the base white box model without requiring any human intervention. In ad-

dition, IRONMODEL does not address two crucial issues, which, as shown in Section 5.4.2,

strongly impact the accuracy of a bootstrapped model, namely how to initialize and update the

knowledge base of the black box model. Conversely, the proposed Bootstrapping technique

encompasses different implementations and parameterizations for these operations, and their

impact on the accuracy of the resulting gray box model is thoroughly investigated.

The solution proposed by Rughetti et al. (Rughetti et al., 2014) is, to the best of our knowl-

edge, the most similar to the proposed Bootstrapping technique2. With respect to it, however,

the investigation on Bootstrapping provided in this thesis presents several differences, both at

the design and experimental level.

On the design side, this dissertation proposes and evaluates i) an automated mechanism to

determine how many sample to adopt for the initial training set obtained by querying the base

white box model; ii) several variants to update the (initially “white”) training set with samples

collected on the running applications; and iii) the use of weighting, to allow the black box

learning algorithm to give more relevance to real samples over synthetic ones. Conversely, the

proposal by Rughetti et al. does not specify how to properly size the synthetic training set, does

not investigate the use of weighting and only encompasses one training set update technique

(which the performed experimental evaluation, reported in Section 5.4.2.2, has shown to be

2It is important to point out that the investigation on Bootstrapping presented in this dissertation has been
performed concurrently with and independently from Rughetti et al. (Rughetti et al., 2014)

42 CHAPTER 3. RELATED WORK

sub-optimal for the considered case studies).

On the experimental side, this work differs from the one by Rughetti et al. for several

reasons: i) the Bootstrapping technique is evaluated by using two, very diverse, case studies.

This allows for assessing the impact that the characteristics of the performance function and

of the corresponding performance model have on the delivered accuracy of the bootstrapped

predictor; ii) a thorough sensitivity analysis is performed, with the aim of understanding how

the setting of the several encompassed parameters affects accuracy; and iii) an experimental

evaluation of the accuracy of Bootstrapping when working in extrapolation is performed, so as

to assess the robustness of this technique when the “patching” of the base white box model can

be performed only in a limited region of the input space.

Note that most of the aforementioned contributions could also be extended to on-line solu-

tions, like the one developed by Romano and Leonetti (Romano & Leonetti, 2012). The main

difference between off-line and on-line Bootstrapping, in fact, is that on-line approaches do not

maintain a training set, as they already specify how the state/knowledge of the learner (e.g., a

UCB instance) is updated whenever a new sample is received. Conversely, updating the train-

ing set to include factual knowledge coming from the real system is a key function in off-line

bootstrapped predictors. Therefore, except from the novel training set updating algorithms, the

contributions aimed at addressing the other limitations of off-line Bootstrapping equally apply

to the on-line case.

Hybrid Boosting. Hybrid Boosting builds upon the Additive Logistic Regression algo-

rithm (J. Friedman et al., 2000), namely a Boosting-oriented solution for regression: this tech-

nique organizes several instances of learning algorithms in a chain, such that each algorithm

is trained to learn how to correct for the inaccuracies of the previous one (also referred to as

residuals).

To the best of our knowledge, this Correction-based Hybrid Ensemble technique has never

been proposed in the literature of performance modeling before. The Hybrid Boosting tech-

nique proposed in this dissertation inherits from the Additive Logistic Regression algorithm the

sequential training of learning algorithms over residual training sets; it places, however, a white

3.1. PERFORMANCE MODELING METHODOLOGIES 43

box model as first in chain. This allows Hybrid Boosting to leverage some knowledge domain

that is encoded in the base white box model and to employ black box learning algorithms to

incrementally refine its predictions by correcting for its inaccuracies. To the best of our knowl-

edge, the idea of specializing the boosting algorithm to learn correcting functions for a white

box performance model is still unexplored in the literature.

Unlike Bootstrapping, Hybrid Boosting does not discard the white box model once it has

been used: as detailed in Section 5.2.2, in fact, it is retained to be queried both upon re-training

the chain of black box learners, as well as at prediction time.

Selection. According to this Hybrid Ensemble principle, white box and black box models are

built independently, and a black box classifier is trained to determine, depending on the input

configuration x, which is the model, among the available ones, that is expected to produce the

most accurate performance prediction corresponding to x.

This principle is implemented by three solutions, namely Local Selection, Hybrid KNN and

Probing. The first one has already been proposed in literature; the other two represents a novel

contribution of this dissertation.

Local Selection. This approach is implemented by the Chorus framework (Chen et al., 2013),

which relies on the availability of several white and black box models to predict the performance

of general applications in a data center. For this reason, Chorus’ white box models are typically

simple, as they are designed to capture asymptotic behaviors of the target application in well

specified operational conditions, for example in cases in which the workload is CPU-, disk-

or memory-bound. Black box models include SVMs and simple regression models (linear,

polynomial or exponential functions), whose parameters are determined by fitting the output of

the various models to the data in the training set.

These models are all trained independently but queried selectively, depending on the input

sample. In particular, the inputs space of the target performance function is initially discretized

and partitioned into regions, and the target application is profiled over a number of configura-

tions. The resulting data set is employed both to train the black box learners and to perform

44 CHAPTER 3. RELATED WORK

a validation phase aimed at assessing which predictor performs best for each of the regions

corresponding to the aforementioned partitioning of the input space.

Hybrid KNN. This approach leverages the availability of potentially more than one white box

model and several black box learning algorithms. According to this technique, the available

data-set is partitioned intro a training and a validation set (noted T S and V S respectively): T S

is used to train the black box models, whereas V S is used at query time. In fact, to predict the

query corresponding to a sample x, Hybrid KNN evaluates the accuracy of the available models

in predicting the performance for the samples in V S that are more similar to x; the models that

minimize predictive error is selected to predict the performance corresponding to x.

Probing. This technique relies on the availability of potentially multiple white box models and a

single black box learning algorithm, which is trained only in regions of the feature space corre-

sponding to unsatisfactory accuracy of any of the white box predictors. Probing, therefore, aims

at building a black box model that is as specialized, and, hence, as accurate as possible, by nar-

rowing the black box learning problem to circumscribed regions of the feature space. In order

to determine which among the available models must be used to serve a specific performance

prediction query, an arbitrary classifier can be used.

The two Selection-based techniques proposed in this dissertation are orthogonal to the approach

undertaken by the aforementioned Chorus framework. One important distinction, however, is

that Chorus must undergo a preliminary discretization phase, aimed at defining the regions over

which the different models are specialized. This step has a crucial impact on the effectiveness

of the approach: if regions are too wide, the corresponding models will be under-specialized;

if they are too narrow, the training phase is going to be negatively affected as it must collect a

huge amount of data to understand which model is the best for a huge number of regions.

Unfortunately, Chorus does not provide an automated way to perform such critical opera-

tion, leaving to the end user the burden of identifying the most effective discretization technique

to learn the target performance function (Liu et al., 2002). On the other hand, both Hybrid KNN

3.1. PERFORMANCE MODELING METHODOLOGIES 45

and Probing avoid the need for discretization; moreover, the effect of internal parameters that

affect their operational behavior is thoroughly investigated and solutions for their automated

tuning are provided.

As a final note on Hybrid Ensemble techniques in general, it is important to stress that these

solutions are orthogonal and complementary to the other two aforementioned gray box perfor-

mance modeling methodologies. In fact, as detailed in the next chapters, Divide et impera-based

and Parameter Estimation-based performance models can be used as base building blocks to

build Hybrid Ensemble performance predictors. The study conducted in this dissertation, there-

fore, also shows how different gray box performance modeling techniques can be combined via

the Hybrid Ensemble methodology, with the aim of building more accurate and robust perfor-

mance predictors.

To conclude this section, Table 3.1 summarizes the discussion conducted so far about the gray

box performance modeling paradigm, by reporting the techniques identified in the proposed

taxonomy, a brief description of the solutions that implement them and the contributes made by

this dissertation to advance the state of the art in each of such methodologies.

46 CHAPTER 3. RELATED WORK
Technique

D
escription

Im
plem

entations
Thesiscontributions

D
ivide

etim
pera

D
ivide

the
perform

ance
prediction

problem
into

sub-tasks
and

tackle
each

of
them

by
m

eans
of

the
m

ost
appropriate

m
odeling

tech-
nique

(i.e.,black
orw

hite).

This
technique

has
been

applied
to

m
odel

the
per-

form
ance

ofD
TPs

applications:
w

hite
box

m
odeling

is
applied

to
capture

contention/replication
dynam

-
ics

and
C

PU
response

tim
e;

black
box

m
odeling

is
applied

to
predictlatency

of
netw

ork-bound
transac-

tionaloperations.W
hite

box
techniques

em
ployed

to
this

end
are

A
nalyticalM

odeling
(D

idona,R
om

ano,
etal.,2012;D

idona
etal.,2014;D

idona
&

R
om

ano,
2014b)and

Sim
ulation

(D
iSanzo

etal.,2015).

To
the

bestofourknow
ledge,thistechnique

isa
novel

contribution
of

this
dissertation.

M
oreover,the

pro-
posed

D
ivide

etim
pera

m
odelsare

em
ployed

asbuild-
ing

block
to

com
pose

H
ybrid

Ensem
ble

predictors.

Param
eter

Estim
ation

M
odel-Free:

use
black

box
tech-

niquesto
obtain

inputparam
etersof

a
w

hite
box

m
odel

U
se

C
lustering

to
obtain

w
orkload

characteriza-
tion

(Singh
et

al.,
2010;

M
ozafari

et
al.,

2013)
or

D
T

to
predictjob

service
dem

andsw
hen

changing
de-

ploym
entinfrastructure

(H
erodotou

etal.,2011).

The
thesis

show
s

how
predictors

based
on

this
technique

can
be

furtherim
proved

upon
by

m
eans

of
H

ybrid
Ensem

ble.In
fact,this

thesis
evaluates

the
proposed

H
ybrid

Ensem
ble

m
odels

also
using

as
base

predictoran
analyticalm

odelw
hose

param
eters

values
are

obtained
by

fitting.
M

odel-B
ased:use

w
hite

box
to

ob-
tain

a
param

etric,
functional

form
of

the
target

K
PI;

use
black

box
techniques

to
infer

the
param

eters
of

the
function

via
fitting

over
ex-

perim
entaldata.

A
pproach

borrow
ed

from
the

System
Identification

field
(Ljung,1999).

In
the

contextof
com

puter
sys-

tem
s

perform
ance

m
odeling,techniques

em
ployed

to
obtain

the
param

eters
for

the
w

hite
box

functional
form

are
regression

(H
eiss&

W
agner,1991;Q

.Zhang
etal.,2007;

D
iSanzo

etal.,2013)
and

K
alm

an
Fil-

ters
(W

oodside
etal.,2008).

H
ybrid

Ensem
ble

Selection:build
m

ultiple
w

hite
and

black
box

m
odels

in
paralleland

use,depending
on

the
incom

ing
perform

ance
prediction

query,only
the

one
thatis

expected
to

m
axim

ize
accuracy.

LocalSelection:
partition

the
feature

space
in

region
and

find
the

per-region
m

ostaccurate
m

odel.
Partitioning

the
input

space
is

a
hard

discretization
problem

,
for

w
hich

an
autom

ated
solution

has
not

been
proposed

in
the

original
paper.

This
thesis,

instead,
provides

an
analysis

of
the

proposed
ap-

proaches
to

the
setting

of
internal

param
eters,

and
provides

solutions
fortheirautom

atic
tuning.

H
ybrid

K
N

N
:find

the
training

sam
ples

thatare
m

ore
sim

ilarto
the

inputone;use
the

m
odelw

hich
is

m
ore

accurate
in

predicting
theirperform

ance.

Proposed
in

this
thesis.

Probing:train
a

black
box

m
odelonly

in
region

ofthe
input

space
w

here
w

hite
box

m
odeling

is
not

accu-
rate

enough;use
a

generic
classifier

to
decide

w
hich

m
odelto

use
depending

on
the

input.

Proposed
in

this
thesis.

Patching:rely
on

a
base

w
hite

(or
gray)box

predictorand
use

black
box

techniques
to

progressively
correctits

outputby
incorporating

factualknow
ledge

about
operationalbehaviorofthe

system
.

H
ybrid

B
oosting:

train
a

chain
of

black
box

algo-
rithm

s
to

learn
the

error
distribution

of
the

base
pre-

dictor,so
as

to
build

a
“patching”

function
to

correct
forthese

inaccuracies.

Proposed
in

this
thesis.

B
ootstrapping:

in
the

off-line
case,

it
uses

w
hite

box
m

odels
to

produce
an

initial
training

set
for

a
black

box
learning

algorithm
,

w
hich

can
be

up-
dated

over
tim

e
w

ith
sam

ples
corresponding

to
real

input-outputperform
ance

m
easurem

ents(Thereska
&

G
anger,

2008;
R

ughetti
et

al.,
2014);

in
the

on-line
case,itusesw

hite
box

m
odelsto

initialize
R

einforce-
m

entLearning
(R

om
ano

&
Leonetti,2012)oron-line

optim
ization

(Schroederetal.,2006)algorithm
s.

This
thesis

provides
the

m
ost

extensive
study

and
evaluation

of
the

off-line
Bootstrapping

technique
to

date;
m

oreover,
it

proposes
new

algorithm
ic

im
ple-

m
entations

of
the

functions
responsible

for
initializ-

ing
the

w
hite

box
m

odel-based
training

setand
forup-

dating
itw

ith
factualinput-outputperform

ance
sam

-
ples

collected
from

the
running

system
.

Table
3.1:M

ain
lim

itations
affecting

existing
perform

ance
m

odels
forD

TPs
and

corresponding
solutions

proposed
in

this
dissertation.

3.2. PERFORMANCE MODELING AND SELF-TUNING OF DTPS 47

3.2 Performance Modeling and Self-tuning of DTPs

The problem of modeling and self-tuning performance of DTPs has been extensively inves-

tigated in literature, with solutions tailored for distributed databases (Nicola & Jarke, 2000;

Elnikety et al., 2009; Soundararajan et al., 2009), data-grids (Di Sanzo et al., 2012, 2014; Cou-

ceiro et al., 2013) and transactional memory systems (Couceiro et al., 2011; Kobus et al., 2013).

Solutions for modeling DTPs performance can be divided into two classes. Although it may

seem counter-intuitive at first, this classification is based on whether the performance model

explicitly takes into account specific dynamics stemming from the adoption of the transaction

abstraction, like data conflicts and global synchronization phases caused by data replication.

The first class of solutions is hereafter referred to as transactions-unaware and the second as

transaction-aware.

As already hinted, the proposal of transaction-unaware performance models for DTPs may

appear a paradox, but it is not. Solutions belonging to this class, in fact, are tailored to model

either i) transactional systems that, although distributed and dependable, do not encompass

a distributed commit phase (e.g., by relying on Passive Replication and logging to persistent

storage at the primary node for fault tolerance (Singh et al., 2010)) or ii) read-intensive work-

loads, or workloads that are assumed to induce negligible contention on data (Q. Zhang et al.,

2007). The benefit of employing this approach to performance modeling of DTPs is twofold:

transaction-unaware models i) can be exploited to capture the performance dynamics of many

kinds of applications, like multi-tier ones (Dejun et al., 2010, 2011) or weakly consistent data

platforms (Trushkowsky et al., 2011; Stewart et al., 2013) and ii) avoid the complexity of deal-

ing with the dynamics stemming from concurrency control (CC) schemes and replication pro-

tocols. The resulting model, therefore, may rely on fewer assumptions, and may be able to

exploit more detailed workload characterizations (e.g., generic service demands instead of ex-

ponentially distributed) and finer-grained KPI predictions (e.g., percentiles instead of mean

values) than many transactions-aware models (particularly, AM-based ones). Consequently,

transactions-unaware performance models for data platforms are by far more common than the

transactions-aware counterparts, especially looking at the literature of the last ten years devoted

to automatic resource provisioning schemes for Cloud applications (Galante & Bona, 2012).

48 CHAPTER 3. RELATED WORK

The DTP performance models proposed in this dissertation are transactions-aware; how-

ever, this section also surveys state-of-the-art on transactions-unaware performance models.

Such analysis is performed because of the wide adoption of this kind of solutions, especially in

the context of multi-tier architectures that encompass transactional storage.

Given the vastness of the literature, first Section 3.2.1 and Section 3.2.2 provide an overview

of the works that addressed the performance modeling of DTPs using, respectively, transaction-

aware and transaction-unaware approaches. The focus of these sections is on describing the

target systems to which existing performance models have been applied, and on providing an

overview of the methodologies they employed. Section 3.2.3, then, presents a critical analysis

of the relations between these works, with the aim of discussing their shortcomings and how

they have been addressed by the contributions of this dissertation.

3.2.1 Transactions-unaware Performance Modeling for DTPs

Unlike their white box counterpart, black box models do not typically need to make simpli-

fying assumptions about the replication scheme of the platform or the conflict likelihood of

the target application: as long as a characterization of these aspects is provided as input to the

learning algorithm, they will be taken into account in the performance model. For this reason,

transactions-unaware performance models for DTPs are typically white box.

This class of models typically relies on the implicit assumption that performance of the

target application is inherently scalable, i.e., adding more computational nodes to the platform

results into better performance. The most prominent models of this kind are based on Queuing

Theory and typically find applications in automatic resource provisioning schemes for Cloud

applications deployed according to a multi-tier architecture. In these solutions, the system is

modeled as a network of queues, in which requests flow from queue to queue, i.e., from tier to

tier, until completion.

Singh et al. (Singh et al., 2010) consider an open system and employ a clustering algorithm

to characterize the workload mix of the target application. A multi-class analytical model is

then built, in which each class models the different arrival rate and resource demand of a cluster.

3.2. PERFORMANCE MODELING AND SELF-TUNING OF DTPS 49

Such a model is able to determine the number of nodes to allocate to the tiers of a multi-tier

application in order to guarantee a given QoS in terms of a high percentile of the response time

distribution. This task is accomplished by modeling each server as an open G/G/1 queue.

Other works, instead, model the system as closed, in order to better capture the dynamics

of session-based workloads. Urgaonkar et al. (Urgaonkar et al., 2005) employ G/G/1 queues

whose arrival rate is adjusted to take into consideration multiple visits to the same queue stem-

ming from the same session; Zhang et al. (Q. Zhang et al., 2007), instead, assume exponentially

distributed service demands, thus solving the model by means of the MVA algorithm (see Sec-

tion 3.1.1).

The main limitation of these works is that they only consider homogeneous platforms, i.e.,

in which each node in the system is equal to each other. Cloud providers, on the other hand,

support multiple type of Virtual Machines (VM), which are differentiated by computational

power. On one hand, this gives the possibility of tailoring the resource provisioning to the

current workload at a finer granularity, leading to higher efficiency; on the other hand, taking

advantage of machines with differentiated characteristics requires the definition of performance

models capable of specifically taking into account the heterogeneity in the computational power

of VMs.

Sharma et al. (Sharma et al., 2012) propose a heterogeneity-aware model, in which each tier

is modeled as a M/G/1/PS queue where the generic distribution of the service time is obtained

by fitting observed response time on several shifted exponential distributions. The parameters

for these distributions are obtained by means of a clustering algorithm.

The solution proposed by Dejun et al. (Dejun et al., 2011) deals with heterogeneity in

Cloud platforms at two levels. In fact, not only it encompasses the possibility of provisioning

the target platform with machines characterized by different computational powers (both in

terms of CPU and I/O); it is also able to detect possible mismatches between the computational

power that is advertised by the Cloud provider and the one that is effectively delivered by the

machine (Dejun et al., 2009). This is accomplished by means of specific micro-benchmarks

that are executed on newly acquired machines and are able to accurately characterize their

computational power. Thanks to this profiling phase, the proposed scheme is able to determine

50 CHAPTER 3. RELATED WORK

whether a given machine would be better exploited to serve CPU-intensive jobs (e.g., web-

server workloads) or I/O intensive ones (e.g., database workloads). Moreover, by modeling

nodes as M/G/N/PS queues, it is able to support a smart load balancing scheme that is able

to determine how many requests can be dispatched towards a given machine so as to match the

desired QoS.

A final class of white box transactions-unaware models is represented by solutions that

are able to take into account specific characteristics of the target system. The model proposed

by Urgaonkar et al. (Urgaonkar et al., 2005), for example, is able to model possible caps on

the maximum concurrency degree, which is a typical case for web-servers (e.g., Apache) and

DBMS (Schroeder et al., 2006): if a server is configured to serve at most K concurrent jobs,

then it is modeled as a M/M/1/K queue.

Dejun et al. (Dejun et al., 2010) propose a model that is, instead, able to capture the effect

that provisioning one tier has on the other ones. In the model, tiers are organized according to

a hierarchical tree-graph, with the front-end tier being the root. The effect of a provisioning

decision (acquire/release a node or relocate it to a different tier) at one level of the tree is

propagated on other levels in order to determine its impact on the whole system. Thanks to this

approach, for example, the model is able to predict the effect that provisioning the cache tier in a

multi-tier architecture, and thus changing the cache hit rate, has on back-end tiers. Performance

of single nodes in the system are predicted by modeling them as M/M/K/PS queues.

3.2.2 Transactions-aware Performance Modeling for DTPs

There is an abundant body of work on both white and black box transactions-aware perfor-

mance models for DTPs. The former mostly come from the literature on capacity planning of

distributed databases; the latter are more common in the literature on self-tuning and automated

resource provisioning, prominently spurred by the advent of Cloud Computing.

3.2. PERFORMANCE MODELING AND SELF-TUNING OF DTPS 51

3.2.2.1 Black box models

Solutions based on black box models relax the most critical assumptions of the aforementioned

works, i.e., the inherent scalability assumption and the conflict/replication unawareness. Thanks

to their black box nature, in fact, they just require a characterization of the conflict likelihood of

the target workloads and of the replication settings of the platform as input, in order to model

their impact on performance.

In the context of database automatic resource provisioning, Chen et al. (Chen et al., 2006)

propose a KNN-based approach in which the machine learner is trained off-line, i.e., before

actually deploying the system to serve client requests. In a subsequent work (Ghanbari et al.,

2007), the off-line training phase is only used to determine the features that are correlated the

most with the target performance metric and to initialize the knowledge base of a SVM learner.

This is responsible, at runtime, to guide the database provisioning scheme, and it is updated in an

on-line fashion with samples gathered from the operational system corresponding to scenarios

whose prediction had been inaccurate.

Different solutions have also been proposed to self-tune and provision other kinds of dis-

tributed transactional platforms, e.g., data-grids like Infinispan or Distributed Transactional

Memories (Couceiro et al., 2011).

Di Sanzo et al. (Di Sanzo et al., 2012) propose the exploitation of ANN to determine the

replication degree that maximizes throughput in in-memory distributed transactional data grids.

The solution is extended in a following work (Di Sanzo et al., 2014), in which the ANN-based

model is aimed at providing QoS on a per-transactional class basis, by jointly tuning the repli-

cation degree and the amount of allocated resources.

Self-tuning of the replication protocol has been investigated especially in the context of

Distributed Transactional Memories. The authors of PolyCert (Couceiro et al., 2011) investigate

the exploitation of both off-line regression algorithms (specifically DTs) and Reinforcement

Learning (specifically UCB) to determine, on a per-transaction basis, which replication protocol

to use among three different TO-based approaches. MORPHR (Couceiro et al., 2013), instead,

employs C5.0 (Quinlan, 1996), a DT classifier, to switch among a TO-based, a 2PC and a PR

52 CHAPTER 3. RELATED WORK

replication protocol depending on the workload that the application is generating.

3.2.2.2 White box models

White box transaction-aware models are explicitly crafted to capture how the concurrency con-

trol scheme and replication protocol reflects not only on resources utilization (CPU, disk, net-

work) but also on data contention. The literature on performance modeling for DTPs is heavily

oriented towards distributed database environments, and is rich in both simulation-based (Carey

& Livny, 1988; Di Sanzo et al., 2015) and analytical models (Nicola & Jarke, 2000; Elnikety

et al., 2009). The following discussion is specifically focused on surveying different modeling

choices and techniques in the context of analytical models, as they are more closely related to

the model proposed in Section 4.

The differences among the plethora of analytical models for DTPs that have been proposed

throughout the years lie in the kind of considered system, the set of aspects and parameters of

the platform that are captured and the way they are modeled.

3.2.2.2.1 System model. Open queueing networks are at the basis of many works, e.g.,

(Raghuram et al., 1992; Ciciani et al., 1990, 1992); others exploit a closed system model and

solve it by means of the MVA algorithm, e.g., (Elnikety et al., 2009; Q. Zhang et al., 2007).

Open models are more common, and the arrival rate is typically assumed to follow an exponen-

tial distribution, because it has been found to be a good approximation for a large number of

users submitting jobs independently (Gallersdörfer & Nicola, 1995). On the other hand, closed

systems are more suitable to model session-based workloads (Q. Zhang et al., 2007; Urgaonkar

et al., 2005) or to capture dynamics of solutions that limit the number of concurrently active

transactions to reduce data contention and resource sharing (Schroeder et al., 2006; Urgaonkar

et al., 2005). Yu et al. (Yu et al., 1993) propose an iterative solution that consists in modeling the

system as open and then exploiting Little’s law to approximate the behavior of a closed system;

a more accurate description of this technique will be provided in Section 4.2.4.

3.2.2.2.2 Data Management Scheme. Analytical models for distributed databases typically

focus on serializability (Ciciani et al., 1990, 1992; Raghuram et al., 1992). This isolation

level is obtained by means of two-phase locking (Ciciani et al., 1990; Raghuram et al., 1992)

3.2. PERFORMANCE MODELING AND SELF-TUNING OF DTPS 53

(locks are acquired during the execution of transaction), optimistic locking (Ciciani et al., 1992)

(locks are acquired only at commit time) or multi version concurrency control (Ren et al.,

1996; Son & Haghighi, 1990) (several versions of each datum are stored). Wojciechowski et

al. (Wojciechowski et al., 2012) analyze and compare the performance of a Distributed Trans-

actional Memory delivering serializable isolation level by means of two different TO-based

replication protocols.

Weaker isolation levels are also investigated. Elnikety et al. (Elnikety et al., 2009) consider

Snapshot Isolation (Berenson et al., 1995), enforced by a single node in the system which acts

as certifier; Gallersdorfer and Nicola (Gallersdörfer & Nicola, 1995) study the benefits coming

from relaxing consistency by means of a temporal parameter which defines how much time a

replica may lag behind another replica of the same logical data object.

Another aspect that has been largely investigated is the impact of data replication on per-

formance of DTPs. Many policies have been studied and evaluated via analytical modeling in

literature, ranging from the no distribution case (i.e., data partitioning) (Son & Haghighi, 1990;

Raghuram et al., 1992), to the full replication one (Garcia-Molina, 1979; Sheth et al., 1985). In-

termediate policies entail different kinds of partial replication including i) every datum is stored

by a fixed number of replicas and ii) each datum has a probability r of being fully replicated and

1�r of not being replicated at all (Gallersdörfer & Nicola, 1995). Other proposed policies allow

for specifying a replication degree on a per-datum basis (Carey & Livny, 1988, 1991); never-

theless their instantiation has only been considered for a simple case, in which each datum has

a uniformly distributed replication degree, thus narrowing down its applicability to the partial

replication case. Ciciani et al. (Ciciani et al., 1992), instead, consider a hybrid distributed-

replicated system in which a central node maintains the full dataset and other, geographically

distributed, nodes only store data relevant to their zone.

3.2.2.2.3 Physical resources. Existing DTPs performance models are also very heteroge-

neous in the way in which they model physical resources, i.e., CPU, disk and network. Trans-

actions are typically characterized by exponentially distributed service demands (Ciciani et al.,

1990, 1992; Raghuram et al., 1992; McDermott & Mukkamala, 1994; Elnikety et al., 2009;

Menascé & Nakanishi, 1982), and are served in a FCFS fashion. Some models are more com-

54 CHAPTER 3. RELATED WORK

plex from this point of view, as they entail generic (Alonso et al., 1990), or 2-phase hyper-

exponentially CPU service demands (Gallersdörfer & Nicola, 1995; Att & Leung, 1997) to

capture the variance in the distribution, or more sophisticated jobs serving policy (Round Robin

in (Att & Leung, 1997)). Disks are generally modeled as M/M/1 queues (Menascé & Nakan-

ishi, 1982) or as M/D/• (Ciciani et al., 1990), i.e., servers with infinite capacity which result

into fixed delays.

As for inter-node communication modeling, most performance studies assume assume in-

finite network bandwidth, i.e., they neglect queueing effects at the network level. The response

time is supposed either to be fixed (M/D/• server) (Garcia-Molina, 1979; Ciciani et al., 1990,

1992), exponentially distributed (M/M/•) (Shyu & Li, 1990; Kuang & Mukkamala, 1991) or

generic (M/G/•) (Ren et al., 1996). In some studies (Gallersdörfer & Nicola, 1995; Nicola

& Jarke, 2000) messages containing read/write sets are modeled as bigger than distributed pro-

tocol messages (e.g., commits), whereas in others this distinction is not present (Menascé &

Nakanishi, 1982). More realistic proposals model the network layer at each node as a queue

with a finite capacity, thus encompassing queueing effect on the inter-node communication

medium (Sheth et al., 1985; Raghuram et al., 1992; Nicola & Jarke, 2000; Knottenbelt et al.,

2001).

3.2.2.2.4 Workload characterization. One of the key aspects of analytical models for

transactional platforms is the workload that they are able to capture, i.e., the mix of transac-

tional classes and the data access pattern that they exhibit.

The great majority of analytical models for transactional platforms assumes that the dataset

is uniformly accessed (Raghuram et al., 1992; Garcia-Molina, 1979; Elnikety et al., 2009); this

implies that, whenever a transaction issues a read/write operation on a dataset of cardinality

D, any datum has a probability 1
D of being chosen. This assumption is clearly far from being

matched in typical real world scenarios, thus yielding to the proposals of increasingly more

complex data access pattern modeling techniques.

To the best of our knowledge, more sophisticated data access patterns, from the point of

view of data conflicts, are considered in solutions tailored for centralized transactional systems.

These solutions are surveyed in the following, as they are closely related to the workload char-

3.2. PERFORMANCE MODELING AND SELF-TUNING OF DTPS 55

acterization technique proposed in Section 4.

Tay et al. (Tay et al., 1985) introduce the b-c data access pattern, in which the b% of trans-

actions access the c% of the total number D of data item and the 1�b% access the remainder.

In the same work it is shown that, under a set of mild assumptions and the a priori knowledge

of the b� c parameters, it is possible to approximate this access pattern through an equivalent

uniform one. This model allows for capturing the presence of hot spots in the dataset, i.e.,

elements that are accessed more frequently than others.

A generalization of the b�c model is provided in following works (B. Zhang & Hsu, 1995;

Thomasian, 1998). There, the stream of requests is partitioned in transactional classes and the

dataset is divided in disjoint sub-datasets. Each sub-dataset corresponds to a class, and elements

in each of them are accessed according to a uniform distribution.

The uniformity assumption is further relaxed in a following work (Di Sanzo et al., 2008),

which provides a model of a multi-version concurrency control scheme. In this work, every data

item x is given an access probability P(x); this allows for capturing more complex non-uniform

data access patterns. In particular, the model is validated, via simulation, against different

parameterizations of the zip f function such that P(x) = zip f (x).

Finally, more sophisticated models allow for defining even more complex data access pat-

terns, according to which each distinct operation can access a given portion of the whole data-

set (Thomasian, 1994; Mozafari et al., 2013; Di Sanzo et al., 2010). The detailed knowledge

about the data items accessed by each operation is carried out by means of off-line tracing.

In distributed environments, the data access pattern also includes the locality of accesses,

i.e., how likely it is that a datum is collocated with the transaction that wants to access it.

This depends both on characteristics of the workload and on the data replication scheme/data

placement adopted by the hosting platform.

Regarding the characterization of a workload’s locality, the b� l locality model (Raghuram

et al., 1992; Hwang et al., 1996) entails that the b% of the request can be served without any

remote interaction; Alonso et al. (Alonso et al., 1990), instead, consider the case of a non-

transactional system in which a percentage of data items is cached upon remote access, and is

56 CHAPTER 3. RELATED WORK

f time more popular than other data items.

Regarding the modeling of the shift of the locality as a function of the nodes composing

the distributed platform, existing works either consider all data required by a transaction to be

stored on a node (whether it is the local or a remote one) (Hwang et al., 1996; Gallersdörfer

& Nicola, 1995) or do not investigate the shift of data locality when scaling the platform (i.e.,

they assess the impact of locality for different scales, but the probability of a local access is an

invariant of the application) (Ciciani et al., 1990, 1992; Raghuram et al., 1992).

Finally, some works focus on analytically deriving the probability distribution for the num-

ber of nodes involved in the execution of a distributed transactions, but do not couple the pro-

posed stochastic model with a performance one (Mukkamala & Bruell, 1990; Simha & Majum-

dar, 1997; Thomasian, 1993).

3.2. PERFORMANCE MODELING AND SELF-TUNING OF DTPS 57

W
or

kFe
at

ur
e

M
od

el
in

g
M

et
ho

do
lo

gy
C

on
c.

C
on

tr.
W

ha
t-i

fs
up

po
rt

D
is

tri
bu

te
d

D
at

a
C

on
te

nt
io

n
R

ep
lic

at
io

n
Lo

ca
lit

y
N

et
w

or
ki

ng
m

od
el

U
ni

fo
rm

Sk
ew

ed
Fu

ll
Pa

rti
al

N
on

e
Fi

xe
d

Va
ria

bl
e

(E
ln

ik
et

y
et

al
.,

20
09

)
W

hi
te

3
3

3
3

7
3

7
7

3
7

Fi
xe

d
de

la
y

(Y
u

et
al

.,
19

93
)

W
hi

te
3

3
7

3
7

7
7

7
7

7
N

/A
(D

i
Sa

nz
o

et
al

.,
20

08
,

20
10

;
M

oz
af

ar
i

et
al

.,
20

13
;

Th
om

as
ia

n,
19

94
)

W
hi

te
3

3
7

3
3

7
7

7
7

7
N

/A

(R
ag

hu
ra

m
et

al
.,

19
92

)
W

hi
te

3
3

3
3

7
7

7
3

3
7

M
/M

/1
qu

eu
e

(T
ay

et
al

.,
19

85
)

W
hi

te
3

3
7

7
3

7
7

7
7

N
/A

7
(G

al
le

rs
dö

rf
er

&
N

ic
ol

a,
19

95
;N

ic
ol

a
&

Ja
rk

e,
20

00
)

W
hi

te
7

3
3

3
7

3
3

3
7

3
M
/M

/1

(D
iS

an
zo

et
al

.,
20

12
,2

01
4;

C
he

n
et

al
.,

20
06

;G
ha

nb
ar

ie
t

al
.,

20
07

)

B
la

ck
3

3
3

–
–

–
–

–
–

–
—

-

(U
rg

ao
nk

ar
et

al
.,

20
05

;
D

e-
ju

n
et

al
.,

20
10

,2
01

1)
W

hi
te

7
3

3
–

–
–

–
–

–
–

—
-

(C
ic

ia
ni

et
al

.,
19

90
)

W
hi

te
3

3
3

3
7

3
3

3
3

7
Fi

xe
d

de
la

y
(C

ic
ia

ni
et

al
.,

19
92

)
W

hi
te

3
3

3
3

7
H

yb
rid

fu
ll

/p
ar

tia
l

3
7

Fi
xe

d
de

la
y

(H
w

an
g

et
al

.,
19

96
)

W
hi

te
3

3
3

7
7

3
3

3
7

3
Fi

xe
d

de
la

y
(A

lo
ns

o
et

al
.,

19
90

)
W

hi
te

7
3

3
7

7
3

3
3

3
7

M
/M

/1
(K

no
tte

nb
el

te
ta

l.,
20

01
)

W
hi

te
3

3
3

7
7

C
en

tra
liz

ed
/n

on
e

7
3

M
/G

/1
(S

he
th

et
al

.,
19

85
)

W
hi

te
3

3
3

3
7

3
7

7
3

7
M
/M

/1
(M

en
as

cé
&

N
ak

an
is

hi
,1

98
2)

W
hi

te
3

3
3

3
7

3
7

7
3

7
Fi

xe
d

de
la

y
(S

hy
u

&
Li

,1
99

0)
W

hi
te

3
3

3
3

7
7

7
3

3
7

M
/M

/•
(M

cD
er

m
ot

t
&

M
uk

ka
m

al
a,

19
94

)
W

hi
te

3
3

3
3

7
3

7
7

3
7

Fi
xe

d
de

la
y

(G
ar

ci
a-

M
ol

in
a,

19
79

)
W

hi
te

3
3

3
3

7
3

7
7

3
7

Fi
xe

d
de

la
y

(C
ou

ce
iro

et
al

.,
20

11
)

B
la

ck
3

7
-

-
-

3
7

7
3

7
-

(C
ou

ce
iro

et
al

.,
20

13
)

B
la

ck
3

7
-

-
-

3
7

7
3

7
C

om
m

it
du

r.
=

fe
at

ur
e

(Q
.Z

ha
ng

et
al

.,
20

07
)

G
ra

y
7

3
3

7
7

7
7

7
7

7
–

Pr
op

os
ed

M
od

el
s

G
ra

y
3

3
3

3
3

3
3

3
7

3
B

la
ck

B
ox

Ta
bl

e
3.

2:
C

om
pa

ris
on

be
tw

ee
n

so
m

e
of

th
e

m
ai

n
ex

is
tin

g
D

TP
s

pe
rf

or
m

an
ce

m
od

el
s

an
d

th
e

pr
op

os
ed

on
es

.

58 CHAPTER 3. RELATED WORK

3.2.3 Critique to state of the art DTP performance modeling and thesis

contributions

This section is devoted at analyzing the limitations that affect the surveyed state-of-the-art solu-

tions in performance modeling and optimization for DTPs and at describing how the proposed

models and modeling techniques overcome them.

Table 3.2 compares the most relevant DTP performance models with the ones proposed in

this dissertation. The comparison is performed on the basis of the main characteristics of the

corresponding performance model or optimization scheme: the following discussion is aimed

at highlighting in which aspects state-of-the-art solutions fall short, and how the proposed gray

box models and modeling techniques overcome their limitations.

Modeling methodology. The first characteristic existing solutions can be grouped by is the

modeling methodology that they embrace, namely white or black box. As it is possible to see,

black box solutions typically encompass the majority of the most important features of a DTP

performance model. This characteristic is descended by the fact itself that ML algorithms only

need an input feature characterizing a given aspect of the system to include it in the model,

taking the burden of statistically correlating it to the target KPI. For example, the work by Chen

et al. (Chen et al., 2006) characterizes conflict likelihood by means of the number of locks re-

quested by a transaction: this feature works equally well in case of uniform or skewed data

access patterns. Likewise, MorphR (Couceiro et al., 2013) takes as input (among other fea-

tures) the abort rate measured when running with a given replication protocol P and determines

whether P is optimal for the current workload: as in the previous case, the abort rate feature is

unaware of the data access pattern that has generated it.

Clearly, as already discussed, the key drawback of black box approaches is that they typ-

ically require long training phases. In order to derive models capable of accurately capturing

the complex performance dynamics of DTPs, black box approaches need to be fed with a suffi-

ciently large number of samples to be able to infer statistical relations between input and output

variables.

3.2. PERFORMANCE MODELING AND SELF-TUNING OF DTPS 59

White box approaches, on the other hand, typically focus on some aspects of the target

platform and neglect others. The rationale behind this choice is, of course, to remove some

complexity in the design of the model, and ease its analytical tractability. The most evident sim-

plicity vs expressiveness trade-off lies in the modeling of the data access pattern: non-uniform

popularity of data items, leading to hot-spots of data contention, are only encompassed by some

works on single-node transactional system (Thomasian, 1994; Di Sanzo et al., 2010; Mozafari

et al., 2013); conversely, models for DTPs consider non-uniformity in the locality of data ac-

cesses, but neglect skewed popularity of data items from the point of view of contention (Ciciani

et al., 1990; Raghuram et al., 1992; Elnikety et al., 2009).

This simplicity vs expressiveness trade-off, as already discussed, reduces the applicability

of analytical models to the scenarios in which simplifying assumptions hold.

On the other hand, the proposed DTPs performance models embrace the gray box modeling

paradigm, and, specifically, represent an instantiation of the Divide et impera technique. The

technique divides the performance prediction problem into sub-problems, each to be tackled by

the most suitable modeling technique. In particular, as detailed later, the proposed performance

models regard the networking layer as a black box, so as to overcome the availability of limited

knowledge about the hosting infrastructure that is typical of virtualized environments. At the

same time, by reducing the extent of the prediction task tackled by means of black box mod-

eling, the Divide et impera approach also enables to instantiate a performance model requiring

less samples than a pure ML-based approach.

In addition, these thesis also proposes the Hybrid ensembling gray box technique, which

aims at enhancing the accuracy of a given white (or gray) box predictor by complementing

its predictive capabilities with ML techniques applied to data collected from the operational

system. This gray box technique aims at reconciling the strengths of the white and black box

modeling techniques into a unified approach: by including a white box model component, which

embeds domain knowledge, it allows for reducing the number of samples needed to build an

accurate and reliable predictor in comparison to a pure black box approach; at the same time,

the black box component allows for incorporating factual knowledge about the target system’s

performance, thus enhancing the accuracy of the original white box model.

60 CHAPTER 3. RELATED WORK

Chapter 5 will show how Hybrid Ensemble methods can be applied to the proposed DTPs

models to enhance their predictive capabilities and to make them more robust in performing

predictions for workloads that do not meet some of their basic assumptions.

Transaction awareness. As discussed in the previous section, existing solutions can be

coarsely classified based on whether they explicitly model concurrency and replication pro-

tocols or not. Section 2.2.1, however, has provided clear evidence of the critical effect that

transactional dynamics have on performance and scalability of applications deployed on DPTs

such as Infinispan.

Therefore, the proposed performance models embrace the transactional-aware design. In

particular, they target different combinations encompassing two replication protocols (2PC and

PR) and two concurrency control schemes (ETL and CTL), and consider both full and partial

replication deployments.

What-if support. Typical solutions to support capacity planning and on-line optimization/re-

source provisioning rely on a performance model capable of supporting what-if analysis, i.e., to

predict the absolute performance of a given workload in a target platform configuration.

On the other hand, the surveyed literature on DTPs performance modeling and optimiza-

tion includes two solutions for DTPs optimization that do not provide what-if analysis sup-

port (Couceiro et al., 2011, 2013). The performance models proposed in those works are, in

fact, not able to predict the performance under different workload conditions. Instead, they ei-

ther rely on Reinforcement Learning or a classifier to determine which is the best configuration

(specifically, in terms of employed replication protocol) for the workload currently generated

by the application.

Also the solution proposed by Zhang et al. (Q. Zhang et al., 2007) suffers from some what-if

capability limitations. In this work, CPU demands of transactions are inferred (i.e., not directly

measured), by applying some Queuing Theory results, starting from the measurement of per-

formance metrics like CPU utilization for the workload currently generated by the application.

However, the CPU transaction demands that are derived from a workload mix that is very dif-

3.2. PERFORMANCE MODELING AND SELF-TUNING OF DTPS 61

ferent from the one that is used in prediction might lead to inaccurate performance predictions,

thus reducing the what-if capabilities of the proposed approach. This is, indeed, a limitation that

this work shares with any black box approach: in that work, such limitation is descended from

the adoption of black box techniques according to the Parameter Estimation gray box modeling

approach (described in Section 3.1.3.2).

Note that, although only two among the solutions listed in Table 3.2 lack what-if support,

Reinforcement Learning-based or even model free solutions for the autonomic provisioning

and optimization of non transactional data platforms are very common (Tesauro et al., 2006;

Tsoumakos et al., 2013; Cruz et al., 2013).

It is clear that the lack of what-if capabilities and quantitative modeling represents a major

impairment to the exploitation of the Cloud business model: for example, without what-if sup-

port, it is impossible to estimate the operational costs to withstand a given workload. In order

to meet this fundamental requirement, the proposed analytical models support what-if analysis

on a number of parameters, including data platform’s size, employed replication protocol and

replication degree. Therefore, they can serve as building block for resource provisioning in the

Cloud, and could equally find application in other contexts, e.g., anomaly detection.

Distribution, Data access pattern and Locality. Although the focus of this thesis is on per-

formance modeling for DTPs, models for non-distributed transactional systems have also been

reported, because of the different data access patterns that they encompass. On this regard,

Table 3.2 reveals that the effects of non-uniform data access patters on the transaction conflict

probability are only captured by performance models for single-node transactional platforms;

in such models, the data access pattern is supposed to be known a priori, thanks to an off-line

profiling phase.

In the light of this consideration, the analytical models proposed in this dissertation rep-

resent, to the best of our knowledge, the first white box solutions that address the modeling

of skewed data access patterns (from the point of view of conflict likelihood) in a DTP. This

is accomplished by introducing a novel abstraction, namely the Application Contention Factor

(ACF), that allows to approximate a skewed data access pattern through an equivalent, uniform

62 CHAPTER 3. RELATED WORK

one. In addition, obtaining the ACF does not require any expensive and intrusive off-line profil-

ing of the application, needed by existing solutions: conversely, it can be computed on-the-fly

from high-level statistics, which are cheap to collect and process.

Likewise, some models for DTPs consider non-uniform data access patterns for that con-

cerns locality of accesses. However, only a few encompass shifts in locality as the platform’s

size changes and, unfortunately, also these models present some limitations: Knottenbelt et

al. (Knottenbelt et al., 2001), for example, target a Distributed Lock Manager, in which transac-

tions consists of single lock requests; other solutions, instead, only consider the case in which

the locality is a property of a whole transaction, and not of a single access to a datum (Hwang

et al., 1996; Gallersdörfer & Nicola, 1995).

On the other hand, the proposed models consider the shift of data locality as a consequence

of the rescaling of the platform and the change of the replication degree; specifically, it targets

the case in which the platform relies on consistent hashing to determine the mapping of data

items to nodes. Moreover, it models locality at the granularity of the single data access, i.e., the

case in which any single data access can be either local or remote.

In the light of these considerations, to the best of our knowledge, the proposed proposed

models include the first white box models to jointly consider non-uniform data access patterns

from the point of view of data conflict and shifts of data locality, at the granularity of the single

data access, in a DTP.

Replication. Another aspect that differentiates the reviewed analytical models for DTPs is the

degree of data replication that they support. As reported in Table 3.2, the vast majority of works

only consider a sub-set of the possible replication policies, i.e., full, partial and no replication;

only a few, including both white box (Ciciani et al., 1990; Nicola & Jarke, 2000) and black

box (Di Sanzo et al., 2012) solutions encompass the whole spectrum.

The performance models proposed in this thesis encompass all three operational modes: in

particular, they are tailored for replicated DTPs in which data replicas are distributed according

to a consistent hash function, which is among the most widely used techniques to manage

data distribution in modern data platforms (DeCandia et al., 2007; Marchioni & Surtani, 2012;

3.2. PERFORMANCE MODELING AND SELF-TUNING OF DTPS 63

Oracle, 2011).

Network modeling. The final aspect used to classify existing solutions concerns the modeling

of the networking layer. In distributed environments, network latencies are typically domi-

nant over local processing times; therefore, the modeling of the networking dynamics is of

paramount importance to determine the accuracy of any performance model for DTPs, given

that inter-node synchronization is needed to retrieve remote data and to commit and to abort

transactions.

Regarding this aspect, existing solutions either i) coarsely model network interactions as

simple delays, by means of a fixed latency (Menascé & Nakanishi, 1982; Ciciani et al., 1990,

1992) or a queue with infinite servers (Ren et al., 1996; Shyu & Li, 1990; Kuang & Mukkamala,

1991), or ii) rely on the detailed knowledge of the network topology and the characterization of

messages sizes and service demands (Raghuram et al., 1992; Sheth et al., 1985; Alonso et al.,

1990).

The first approach clearly limits the scope of applicability of the resulting model, as it relies

on an assumptions that do not normally hold in many operational scenarios: the utilization

of the network layer has, in fact, a huge impact on real-world DTPs deployments (Padhye

et al., 1998; Menasce & Almeida, 2001), and, thus, queueing effects cannot be overlooked.

On the other hand, binding a performance model to the availability of a detailed network layer

characterization results into the twofold drawback of i) precluding its applicability in virtualized

environments, where little or no knowledge at all is available about the underlying physical

infrastructure and ii) hindering its portability to heterogeneous deployment platforms.

The DTPs performance models proposed in this dissertation overcome such limitations by

embracing the Divide et Impera gray box modeling approach. It allows them to accurately

model the performance of the network over which the DTP is deployed, while overcoming the

observability limitations posed by virtualization in Cloud environments: contention on CPU,

and the effect of replication protocols and concurrency control algorithms are analytically mod-

eled by means of Queueing Theory; performance of network-bound operations, instead, are

predicted by means of a ML-based statistical model.

64 CHAPTER 3. RELATED WORK

This dichotomy, as hinted, allows the proposed models to be applied to accurately predict

performance of applications deployed over virtualized infrastructures, where little or no knowl-

edge is available about the underlying hosting platform. At the same time, as the black box

network model is unaware of the actual details of the hosting infrastructure, this gray box mod-

eling approach allows the proposed models to be seamlessly employed in the management of

DTPs deployed over different infrastructures.

To conclude this section, Table 3.3 summarizes the conducted analysis of the state-of-the-art,

by reporting the main shortcomings affecting related works and highlighting how the proposed

DTPs analytical models and gray box modeling techniques overcome such limitations.

3.2. PERFORMANCE MODELING AND SELF-TUNING OF DTPS 65
A

sp
ec

t
Li

m
ita

tio
ns

Pr
op

os
ed

So
lu

tio
n

So
lu

tio
n’

se
ffe

ct

M
od

el
in

g
m

et
ho

do
lo

gy
W

hi
te

bo
x

m
od

el
in

g
re

lie
s

on
as

su
m

pt
io

ns
an

d
ap

pr
ox

im
at

io
ns

.
In

ad
di

tio
n,

it
is

cu
m

-
be

rs
om

e
to

ap
pl

y
in

vi
rtu

al
iz

ed
en

vi
ro

n-
m

en
ts

G
ra

y
B

ox
M

od
el

in
g

Th
e

D
iv

id
e

et
im

pe
ra

ap
pr

oa
ch

al
lo

w
s

fo
r

tre
at

in
g

un
ob

se
rv

ab
le

/p
ar

tia
lly

ob
se

rv
ab

le
co

m
po

ne
nt

s
as

bl
ac

k
bo

xe
s,

an
d

co
m

bi
ne

s
th

e
re

su
lti

ng
m

od
el

w
ith

a
w

hi
te

bo
x

on
e,

w
hi

ch
ta

rg
et

s
ot

he
ra

sp
ec

ts
of

th
e

ta
rg

et
sy

s-
te

m
.

Th
e

H
yb

ri
d

en
se

m
bl

in
g

ap
pr

oa
ch

,i
n-

st
ea

d,
al

lo
w

s
a

w
hi

te
bo

x
m

od
el

to
en

ha
nc

e
its

ac
cu

ra
cy

by
in

co
rp

or
at

in
g

fa
ct

ua
lk

no
w

l-
ed

ge
co

lle
ct

ed
fr

om
th

e
op

er
at

io
na

ls
ys

te
m

.
B

la
ck

bo
x

m
od

el
in

g
su

ff
er

sf
ro

m
cu

rs
e

of
di

-
m

en
si

on
al

ity
B

y
re

du
ci

ng
th

e
ex

te
nt

of
th

e
pr

ob
le

m
ta

r-
ge

te
d

by
m

ea
ns

of
M

L,
th

e
D

iv
id

e
et

im
pe

ra
ap

pr
oa

ch
re

du
ce

s
tra

in
in

g
tim

e
w

ith
re

sp
ec

t
to

a
pu

re
ly

bl
ac

k
bo

x
ap

pr
oa

ch
.

Th
e

H
y-

br
id

en
se

m
bl

e
m

et
ho

d,
in

st
ea

d,
ca

n
le

ve
ra

ge
th

e
av

ai
la

bi
lit

y
of

a
ba

se
w

hi
te

bo
x

m
od

el
,

w
hi

ch
in

cl
ud

es
ex

pl
ic

it
do

m
ai

n
kn

ow
le

dg
e.

Th
is

tra
ns

la
te

si
nt

o
ne

ed
in

g
le

ss
tra

in
in

g
da

ta
to

re
ac

h
a

gi
ve

n
ac

cu
ra

cy
de

gr
ee

th
an

a
pu

re
bl

ac
k

bo
x

ap
pr

oa
ch

.
W

ha
t-i

fa
na

ly
si

s
su

pp
or

t
O

nl
y

on
-li

ne
op

tim
iz

at
io

n
an

d
no

w
ha

t-i
f

an
al

ys
is

/o
ff

-li
ne

pr
ed

ic
tio

n
ca

pa
bi

lit
ie

s
Pr

op
os

ed
pe

rf
or

m
an

ce
m

od
el

s
ba

se
d

on
D

i-
vi

de
et

im
pe

ra
a

(a
nd

th
e

H
yb

ri
d

en
se

m
bl

e-
ba

se
d

on
es

de
ve

lo
pe

d
on

to
p

of
th

em
)

Ex
pl

ic
itl

y
pr

ed
ic

tt
he

pe
rf

or
m

an
ce

of
an

ap
-

pl
ic

at
io

n
de

pe
nd

in
g

on
w

or
kl

oa
d

an
d

ch
ar

-
ac

te
ris

tic
so

ft
he

un
de

rly
in

g
D

TP
/h

os
tin

g
in

-
fr

as
tru

ct
ur

e,
th

us
pr

ov
id

in
g

w
ha

t-i
f

an
al

ys
is

su
pp

or
t.

D
at

a
ac

ce
ss

pa
tte

rn
U

ni
fo

rm
Pr

op
os

ed
pe

rf
or

m
an

ce
m

od
el

s:
A

C
F

A
pp

ro
xi

m
at

e
no

n-
un

ifo
rm

da
ta

ac
ce

ss
pa

t-
te

rn
sb

y
m

ea
ns

of
an

eq
ui

va
le

nt
un

ifo
rm

on
e.

N
on

-u
ni

fo
rm

,
bu

t
w

ith
ac

ce
ss

di
st

rib
ut

io
n

kn
ow

n
a

pr
io

ri
vi

a
of

f-
lin

e
pr

ofi
lin

g.
C

an
be

co
m

pu
te

d
on

-li
ne

st
ar

tin
g

fr
om

st
at

is
tic

st
ha

ta
re

ea
sy

to
co

lle
ct

an
d

pr
oc

es
s.

Tr
an

sa
ct

io
n

un
aw

ar
en

es
s

La
ck

of
co

nc
ur

re
nc

y/
re

pl
ic

at
io

n
pr

ot
oc

ol
m

od
el

in
g

Pr
op

os
ed

pe
rf

or
m

an
ce

m
od

el
s

Th
ey

ex
pl

ic
itl

y
m

od
el

di
ff

er
en

t
co

nc
ur

re
n-

cy
/re

pl
ic

at
io

n
pr

ot
oc

ol
s.

D
at

a
re

pl
ic

at
io

n
Fu

ll
or

no
re

pl
ic

at
io

n
Pr

op
os

ed
pe

rf
or

m
an

ce
m

od
el

s
It

en
co

m
pa

ss
es

ar
bi

tra
ry

re
pl

ic
at

io
n

de
gr

ee
s

be
tw

ee
n

no
an

d
fu

ll
re

pl
ic

at
io

n

Lo
ca

lit
y

in
pa

rti
al

re
pl

ic
at

io
n

Fi
xe

d
lo

ca
lit

y
Pr

op
os

ed
pe

rf
or

m
an

ce
m

od
el

s
It

en
co

m
pa

ss
es

lo
ca

lit
y

sh
ift

s
gi

ve
n

by
th

e
ch

an
ge

of
th

e
sc

al
e

or
of

th
e

re
pl

ic
at

io
n

de
-

gr
ee

.
Sc

al
e-

se
ns

iti
ve

lo
ca

lit
y

on
ly

at
th

e
gr

an
ul

ar
-

ity
of

a
w

ho
le

tra
ns

ac
tio

n
C

ap
tu

re
s

lo
ca

lit
y

at
th

e
le

ve
l

of
th

e
si

ng
le

da
ta

ac
ce

ss
.

N
et

w
or

k
m

od
el

in
g

Fi
xe

d
de

la
y

or
no

qu
eu

ei
ng

ef
fe

ct
s

D
iv

id
e

et
Im

pe
ra

N
et

w
or

k-
bo

un
d

in
te

ra
ct

io
ns

ar
e

m
od

el
ed

as
a

bl
ac

k
bo

x.
Th

is
al

lo
w

s
fo

r
m

od
el

in
g

co
m

pl
ex

dy
na

m
ic

s
w

ith
ou

t
ha

vi
ng

de
ta

ile
d

kn
ow

le
dg

e
ab

ou
tt

he
ho

st
in

g
in

fr
as

tru
ct

ur
e;

it
al

so
en

ab
le

se
am

le
ss

po
rta

bi
lit

y
of

th
e

pr
o-

po
se

d
m

od
el

s
to

di
ff

er
en

ti
nf

ra
st

ru
ct

ur
es

.

Ta
bl

e
3.

3:
M

ai
n

lim
ita

tio
ns

af
fe

ct
in

g
ex

is
tin

g
pe

rf
or

m
an

ce
m

od
el

s
fo

rD
TP

s
an

d
co

rr
es

po
nd

in
g

so
lu

tio
ns

pr
op

os
ed

in
th

is
di

ss
er

ta
tio

n.

66 CHAPTER 3. RELATED WORK

4The Divide et Impera Approach

This chapter describes the Divide et impera gray box modeling technique, which consists in

capturing the target performance function by means of several sub-models, such that each of

them embodies the more convenient modeling paradigm (i.e., white box or black box).

In particular, this chapter introduces this novel gray box performance modeling methodol-

ogy and describes its implementation to predict the performance of DTPs. The models presented

in this chapter cover a wide spectrum of design choices among the ones introduced in Section

1. Specifically, they are intended to predict the performance of DTPs that employ a multi or

single-master replication protocol and that rely either on an encounter-time locking scheme in

full replication, or on a commit-time locking scheme in partial replication.

The novelty in these models does not lie solely into the implementation of the Divide et im-

pera modeling technique. The analytical models at their basis, in fact, contribute by themselves

to advance the state of the art in analytical modeling of DTPs, i) by providing analytical formu-

lations of combinations of concurrency control algorithm/replication protocols that have never

been discussed in literature and ii) by introducing the Application Contention Factor (ACF),

namely a novel technique to model the data access pattern of transactional applications.

It is also noteworthy to point out that the Divide et impera hybrid modeling technique

has also been implemented in a simulation framework (Di Sanzo et al., 2015) targeting the

performance prediction of DTP applications. The discussion of this specific solution is out of

the scope of this dissertation; however, the adoption of the Divide et impera methodology with

an alternative white box modeling technique showcases its effectiveness and flexibility.

The remainder of this chapter is structured as follows: Section 4.1 presents the design of the

Divide et impera technique; Section 4.2 describe how it is applied to derive performance models

68 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

Figure 4.1: Design of the Divide et impera performance modeling technique.

for DTPs; finally, Section 5.5 concludes the chapter.

4.1 The Divide et impera performance modeling tech-
nique

This section introduces the Divide et impera performance modeling technique: specifically,

Section 4.1.1 describes its design, and Section 4.1.2 provides an overview of how it is applied

to build performance models of DTPs.

4.1.1 Design of the Divide et impera performance modeling technique

The Divide et impera performance modeling technique consists in decomposing the problem

of predicting a target performance function into several, possibly inter-related, modeling sub-

tasks, each corresponding to a specific aspect/component of the target system. These sub-

tasks are tackled by means of the modeling technique that fits better the characteristics of the

corresponding prediction problem.

4.1. THE DIVIDE ET IMPERA PERFORMANCE MODELING TECHNIQUE 69

The design of the Divide et impera technique is depicted in Figure 4.1: white box and black

box models receive as input a vector x, corresponding to the workload characterization and

the target system’s configuration parameters for which the model has to provide a performance

prediction. A white box model can take as input the output of another white box one, and the

same can happen for black box models. This kind of input dependency is depicted in Figure 4.1

by means of thin blue lines connecting “homogeneous” predictors, i.e., predictors based on the

same modeling paradigm. Moreover, also “heterogeneous” models can mutually provide inputs

to each other. This kind of relation is depicted by means of thick arrows, which correspond to

the output of the white box models (noted fW (x)) and black box ones (noted fB(x))

As already discussed in Section 3.1.3, the possibility to combine models with arbitrary input

dependencies is a characteristic that distinguishes Divide et impera from other gray box perfor-

mance modeling approaches, like the Parameter Estimation one in which black box models are

only allowed to provide input to white box ones.

The outputs of the different white box and black box models, other than being provided as

input to each other, are finally combined together to produce the target KPI of the system as a

whole: in the proposed design, the component responsible for this task can be based on either

modeling paradigm. Such component is also in charge of determining whether the outputs of

the sub-models are “stable”: in fact, as already mentioned in Section 3.1.1 regarding white

box modeling, it can happen that the overall performance model requires an iterative resolution

scheme, or that the input relations among white box and black box sub-model form a cyclic

graph of dependencies

The overall model resolution scheme and the solution to the possible dependencies loop

issue are specific to the target model: the following section and Section 4.2.4 shall describe

how they are implemented in the proposed DTP models.

4.1.2 Overview of DTPs Divide et impera performance modeling

To accurately model the performance of DTPs, the proposed Divide et impera models imple-

ments the dichotomy between white and black box modeling in the following way. Analytical

70 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

Figure 4.2: Divide et impera applied to DTPs performance modeling.

Modeling, based on Queueing Theory, is applied to model the interactions of the application’s

runtime with the CPU, and to predict how the concurrency control scheme and the enacted

replication scheme (depending both on the employed protocol and replication degree) affect

performance. This is made possible because the specifications of the employed concurrency

control scheme and replication protocols are known, and because capturing CPU behavior time

by means of typical white box abstractions has proven to yield a satisfactory level of accuracy

(as shown by the experimental evaluation in Section 5.4).

On the other hand, the response time of operations that require distributed synchronization,

e.g., remote gets and commits, is predicted by means of a black box model. The rationale be-

hind this choice is that such operations are network-bound: as the proposed model targets (also)

Cloud deployments, it cannot rely on detailed information about the technology and topology

employed at the network layer to connect different nodes in the platform, or about service de-

mands to process and send/receive network packets. Moreover, DTPs’ transaction processing

typically lies on top of a group communication toolkit — e.g. JGroups (Ban, 2012) in the Infin-

ispan case — that provides several inter-process synchronization services (like failure detection,

4.1. THE DIVIDE ET IMPERA PERFORMANCE MODELING TECHNIQUE 71

group membership, remote procedure calls): the effect of the internal design and configuration

of this layer on performance exacerbates the complexity of deriving a detailed white box model

to predict the response time of network-bound operations.

Figure 4.2 portrays the organization of the different sub-models: i) white box ones are con-

nected among themselves, meaning that they provide each others with inputs, whereas the black

box ones are not, meaning that they are independent; ii) the model responsible for predicting

the target KPIs (transactions response time and closed-system throughput) is a white box one;

iii) white and black box models mutually provide some inputs to each other: this, as hinted in

the previous section, gives rise to a loop of between the two counterparts. Specifically, white

box models are used to predict the transactions’ abort probability (noted PAB); this is needed

to compute some inputs for the black box networking models (e.g., the arrival rate of network-

bound operations); at the same time, the output of the black box models is needed by the white

box ones to compute PAB, thus materializing the dependency loop.

Figure 4.2 depicts how these cyclic dependencies are broken, and the steps of the iterative

resolution scheme of the overall model. The step 1 of an iteration of the resolution process starts

by providing as input to the white box models a value for the abort probability PAB: on iteration

0, this value is set to an arbitrary value, and specifically PAB(0) = 0; on subsequent iterations,

it corresponds to the output of the previous iteration. Such input value is used by the white box

models to produce the inputs needed by the black box ones (step 2), which, in turn, provide

back the predictions corresponding to the network-bound operations response times (step 3).

These are needed by the white box models to compute an updated value of PAB.

The whole set of outputs produced by white box and black box models is, then, fed as

input to the white box model responsible for computing transactions’ response time and system

throughput (step 4). The values of the target KPIs are regarded as stable, and hence returned

as result, only if the value of PAB provided in input at the beginning of a resolution step is

sufficiently close to the one produced at the end of the same step, i.e., if |PAB(i�1)�PAB(i)
PAB(i) < e ,

where e > 0 is a threshold that can be used to tune the desired convergence accuracy. If this is

not the case, then PAB(i) is used as input for the next iteration.

This resolution scheme consists in a fixed point recursion, a methodology that is employed

72 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

by many existing analytical models for transactional systems (Menascé & Nakanishi, 1982; Yu

et al., 1993; Elnikety et al., 2009). Starting from an arbitrary value for a variable z, a fixed

point recursive scheme searches for a value z⇤ such that f (z⇤) ' z⇤, by recursively evaluating

the function f on the output provided by f at the previous iteration. In the case of the aforemen-

tioned resolution scheme, the function f coincides with PAB. Details about the implementation

and the convergence properties of this resolution scheme in the proposed DTPs models will be

provided in Section 4.2.4.

4.2 Divide et impera performance models of DTPs

This section describes the application of the Divide et impera methodology to build performance

models for DTPs embracing different design choices. Specifically, Section 4.2.1 provides a de-

tailed description of the internals of Infinispan, namely the DTP employed to instantiate and

validate the proposed models, and presents the system model; Section 4.2.2 and Section 4.2.3

present, respectively, the proposed white and black box models that constitute the building

blocks of the proposed Divide et impera-based DTPs performance models; Section 4.2.4 de-

scribes the resolution scheme of the proposed models and provides details on how the white

and black box components are reconciled to predict the overall performance of a DTP; Sec-

tion 4.2.5 evaluates the accuracy of the proposed models as well as operational details related

to their instantiation and employment in Infinispan, i.e., their querying time and workload char-

acterization overhead; finally, Section 4.3 concludes the chapter.

4.2.1 System overview and model

This section provides some details about the concurrency control scheme and replication proto-

cols that are targeted by the proposed DTPs models and that are integrated in Infinispan. This

section is preparatory to the description of the performance models presented in the next sec-

tions, and introduces the system model, namely the representation of the system in the proposed

analytical models, as well as core hypotheses and assumptions.

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 73

4.2.1.1 System overview

This section provides an overview of the combinations of concurrency control schemes and

replication policies targeted by the proposed DTPs performance models.

4.2.1.1.1 Concurrency control scheme. The proposed performance models target DTPs

that can run one of two concurrency control schemes: an Encounter-Time Locking (ETL)

scheme, which, as hinted in Section 1.3, is supported only in full replication, and a Commit-

Time Locking (CTL) one, which can be implemented both in full and partial replication.

ETL. In the ETL scheme, a transaction acquires the lock corresponding to a data item upon

issuing a put operation against it. Employing this concurrency control scheme has two main

ramifications. On one side, a transaction can detect conflicts on the node where it is executing

even before reaching the distributed consensus phase, thus resulting into an eager conflict reso-

lution policy. On the other side, locks are taken both during the local execution of a transaction’s

business logic and throughout the distributed commit phase, thus increasing the likelihood of

conflicts.

Because of this prolonged lock hold times, the ETL scheme is not particularly suited to be

integrated with a partial replication policy. In fact, in such a case, a transaction T running on a

node n could issue a put operation against a datum x which is not replicated on n . As a result,

T should communicate with the node that is responsible for locking x, incurring a network

round-trip latency (plus some CPU processing costs). This would lead to even longer locks

hold times, with a detrimental effect on achievable parallelism. Therefore, as already sketched

in Section 1.3, the proposed models target DTPs that implement ETL only in conjunction with

full replication: this combination allows T to acquire a local lock on x, without incurring the

penalty of a costly distributed synchronization.

CTL. In the CTL scheme, locks acquisition is attempted by transactions only upon completing

the local execution. This approach is more optimistic than the ETL counterpart: on one hand,

this may lead to increased scalability; on the other, it can lead to worse performance in high

74 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

contention scenarios, because of late conflicts detection.

Given that locks are acquired only at commit time, the CTL scheme is not affected by the

aforementioned limitations in terms of prolonged lock hold times. Therefore, the proposed

models target DTPs which implement the CTL scheme both in full and partial replication.

In partial replication, replicas of data items are mapped to nodes of the DTP by means of a

deterministic consistent hash function (Karger et al., 1997); this design choice is motivated by

the fact that hash functions have been shown to be extremely effective to uniformly spread most

accessed data across nodes in a system, allowing for a better load balancing (DeCandia et al.,

2007; Karger et al., 1997; Stoica et al., 2001). Moreover, given its deterministic nature, such

hash function allows any node to compute the owners of a datum without the need of any kind

of dedicated directory services (You et al., 2011). Finally, the exploitation of a deterministic

hash function allows for minimizing the number of data redistributed in the platform upon

joins/leaves of nodes.

The consistent hash function is also used to assign a primary owner node with each data

item: if a transaction wants to access a datum x that is not replicated on the node where it is

being executed, then it contacts the node that is primary owner for x, in order to retrieve it and

store it in its private context. Note that this retrieval is only private to the transaction that issues

it, i.e., the node where such transaction is executed does not become a replica of the datum:

replicas of data are only determined by the designated hash function.

In addition, CTL in partial replication also requires the definition of a designated lock owner

node for every data item. Such a node is responsible for acquiring the lock corresponding to a

written data item and, thus, regulating its concurrent manipulation. Lock ownership is imple-

mented in different ways depending on the employed replication protocol; additional details,

therefore, are going to be provided in the corresponding following sections.

As a final note, it is noteworthy to mention that the encompassed CTL variant guarantees

a weaker isolation level than its ETL counterpart, as it suffers, for example, from the update

loss anomaly (Bernstein, 1986). Suppose the value of element x is 10: a transaction T1 can

tentatively set x = 2x; concurrently, a transaction T2 can tentatively set x = 3x. If T2 completes

before T1 issues the commit, then T1’s outcome will overwrite T2’s one, and vice-versa, result-

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 75

ing into having x = 20 in the first case and x = 30 in the second. Such behavior is not allowed

in ETL, as the tentative modification of x would be guarded by a both a local and a remote lock

acquisition, resulting in at least one between T1 and T2 to abort, depending on the operations

interleaving.

4.2.1.1.2 Replication Protocol. The proposed performance models target both multi and

single-master replication protocols, and in particular Two-Phase Commit (2PC) and Passive

Replication (PR).

Regardless of the locking scheme and replication protocol combination, the timeout on

deadlock detection is set to 0, which means that transactions abort immediately upon detecting

a conflict on a lock. This solution is a typical approach to achieve deadlock freedom, and is often

preferred over more complex distributed deadlock detection schemes because of its simplicity

and practicality (Agrawal et al., 1987).

2PC. In the 2PC replication protocol, each node in the DTP can serve both update and read-

only transactions. This has the potential for allowing the DTP to withstand both read and

update-intensive workloads, but require a (costly) distributed consensus phase to manage con-

flicts arising from transactions executing at different nodes.

2PC with ETL. In ETL, during the first phase of the distributed consensus protocol (also called

prepare phase), locks acquisition is attempted at all the remote nodes, in order to detect conflicts

with transactions concurrently executing on other nodes, as well as for guaranteeing transaction

atomicity. If the lock acquisition phase is successful on all nodes, the transaction originator

broadcasts a commit message, in order to apply the transaction’s modifications on the remote

nodes, and then it commits locally. Otherwise, it broadcasts a rollback message in order to

induce the release of locks potentially held on remote nodes.

2PC with CTL. In CTL, during the prepare phase, a transaction first tries to acquire locally all

the locks whose the local node is owner. Lock owners are mapped to nodes in the DTP by

means of the same hash function that is used to determine primary owner replicas. If this step

76 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

succeeds, then the remaining locks are acquired on the corresponding owners. The commit

phase is completed, depending on the outcome of this remote lock acquisition phase, in the

same guise as in the ETL case.

Note that, although locks are acquired only on the lock owner nodes, all the nodes that store

a replica of written data items are contacted at prepare-time. This allows for the implementation

of schemes aimed at enabling the recoverability of a transaction in case of a failure of lock

owners during the prepare phase.

PR. In the PR replication protocol, a single node, referred to as primary or master, is entitled to

serve update transactions, and update transactions only; other nodes, referred to as backups or

slaves, can only process read-only transactions (Budhiraja et al., 1993). As already discussed,

this replication protocol simplifies conflicts detection and resolution, but may result into de-

graded performance in case of update-intensive workloads.

PR with ETL. In ETL, which is supported only in full replication, locks are only acquired on

the master node, which serves all update transactions; therefore, the local concurrency control

algorithm suffices to guarantee the isolation property of the transactions, and it does not require

any distributed coordination at commit time. The commit phase, in fact, only consists in broad-

casting to the backups the modifications performed locally; then, in order to enforce global

consistency, the primary waits until all the replicas have modified their state before notifying to

the application the successful commitment of the transaction.

PR with CTL. In this combination, unlike the 2PC case, the master node is designated as lock

owner for all the data items. This allows it to regulate concurrency locally; the propagation of

modifications to slave nodes is performed as in the ETL case, by contacting all the nodes that

replicate at least one written datum.

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 77

4.2.1.2 System model

The proposed white box model relies on Average Value Approximation (Tay, 2013) to forecast

the probability of transactions commit, the mean transactions duration, and achievable through-

put. The aim of the model is to support what-if analysis on the application’s performance when

changing parameters such as the scale (number of nodes and possibly number of threads) and

the replication degree, or shifts of workload characteristics, such as changes of the transactions’

data access patterns or of the transactional mix.

The model considers the number of nodes in the system (noted N), the number of threads

processing transactions at each node (q) and the replication degree of data items (r) as input

parameters. For the sake of simplicity, the nodes are assumed to be homogeneous in terms of

computational power and RAM, and the model distinguishes only two classes of transactions,

namely read-only and update transactions. As the model targets in-memory data stores, it as-

sumes that the data set maintained at each node fits fully in RAM, and does not encompass

interactions with persistent storage systems.

The system is modeled as open: transactions arrive according to a Poisson process with

rate ltx. The percentage of update transactions is noted %w; transactions belonging to this

class perform, on average, NUP
g read and Nw update operations on distinct data items; read-only

transactions, which compose the other 1�%w of the transactional mix, read, on average, NRO
g

distinct data items. In 2PC, incoming transactions are evenly distributed across all the nodes;

in PR, instead, the master processes only the update transactions, which account for a fraction

%w of the overall load, and the remainder, namely read-only transactions, are evenly distributed

across slave nodes.

The model relies on two sets of assumptions. The first concerns the independence of data

accesses and re-executions of transactions. More precisely, it assumes that each read or written

datum is chosen independently from each other; also, once a transaction is restarted upon ex-

periencing an abort, it is indistinguishable from a transaction that joins the system for the first

time.

The second kind of assumption concerns the mapping of data replicas onto nodes of the

78 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

system, and the data locality exhibited by transactions. The model relies on the definition

of a primary owner function PO(N,r) that, given the number of nodes in the system and the

replication degree, determines what is the probability that a transaction originated on a node n

accesses a datum for which n is primary owner. The r�1 non-primary replicas of a datum are

assumed to be scattered across the system uniformly at random. Hence, assuming that node n

is not the primary replica for a data item x, the probability that n is a non-primary owner replica

of x is l = r�1
N�1 . Thus, the probability that a transaction originated on node n accesses a datum

stored by n is:

L (N,r) = PO(N,r)+(1�PO(N,r))l.

To simplify notation, the arguments N and r will be omitted throughout the discussion, i.e., the

aforementioned probabilities will be noted, respectively, PO and L . The model further assumes

that whenever a transaction originated on a node n accesses a datum x for which n is not primary

owner, any other node has the same probability 1
N�1 of being primary owner of x.

Moreover, the model relies on the definition of the probability (noted LO) that the local node

of a transaction is the lock owner for a specific datum. In the 2PC protocol, for any data item, if

a node is primary owner of a datum it is also lock owner for that datum, and vice-versa; In PR,

instead, lock and data ownership are independent, as the primary node is owner of all the locks,

but not of all the data.

Although the model encompasses the possibility for some data items to be more frequently

accessed than others, it assumes that data hot spots are evenly distributed across nodes of

the system. Note that this assumption is not unrealistic, as load balancing and data hot-

spot avoidance are among the key advantages of the data distribution policies (e.g., consis-

tent hashing (Karger et al., 1997)) that are typically employed by modern distributed NoSQL

stores (DeCandia et al., 2007; Lakshman & Malik, 2010; Marchioni & Surtani, 2012). Overall,

this assumption, together with the one on the uniformity of the transactional arrival rate, allows

for considering all nodes as evenly loaded (except for master and slaves in PR).

Finally, the model assumes the system to be stable and ergodic: this means that all the

parameters are defined to be either long-run averages or steady-state quantities; also, this implies

that the transactions arrival rate does not exceed the service rate and equals the commit rate.

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 79

4.2.2 White box modeling in the proposed DTP models

This section describes the equations that are at the basis of the proposed white box models. The

derivation of such equations is provided in a top-down fashion: first, the transactions’ response

time is obtained, assuming commit probabilities and execution time of single operations to be

known; then, the data contention model is described, which explains how the model computes

conflict probabilities; finally, the CPU model is presented, which provides the derivation of the

single operations’ response time starting from their service demands.

The proposed white box model encompasses different concurrency control schemes and

replication protocols; therefore, each of the following subsections will provide, whenever nec-

essary, specified set of equations depending on the operational mode being modeled (e.g., 2PC

vs PR or ETL vs CTL). Table 4.1 reports the inputs of the model.

4.2.2.1 Transactions’ response time computation

This section describes how the model computes transactions’ response time for read-only and

update transactions.

4.2.2.1.1 Read only transactions response time. In the target consistency level, which is

the one guaranteed, for instance, by Infinispan, read-only transactions never abort: as a result,

the equations modeling their response time are invariant with respect to the concurrency control

scheme and replication protocol. Their response time, noted RRO
L , is simply determined as the

sum of the time spent to i) initialize the transaction (Rbeg), ii) perform read operations (Rg), iii)

execute the business logic of the transaction RRO
B , and iv) commit (RRO

com):

RRO
L = Rbeg +RRO

B +NRO
g Rg +RRO

com.

Rg is computed as the average cost of performing a local read (Rg
L), and a remote one (Rg

R):

Rg = L Rg
L +(1�L)Rg

R.

80 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

Class of parameter Notation Meaning

System

N Number of nodes in the DTP
r Replication degree
q # of threads per node serving transactions (only in closed system)

ACF Application Contention Factor
PO Probability of the local node being primary owner for a datum
LO Probability of the local node being lock owner for a datum

Workload

ltx Transactions arrival rate
w% Update transactions percentage
NUP

g Avg. # distinct gets issued by an update transaction

Nw Avg. # distinct puts issued by an update transaction
NRO

g Avg # distinct gets issued by a read-only transaction

CPU demands

Dbeg Begin of a transaction
DRO

B Business logic of a read-only transaction
DUP

B Business logic of an update transaction
Dg

L Local get operation
DP Put operation
Dg

L Retrieval of a remote datum
Dg

R Remote get (on a remote node)
DRO

com Commit of a read-only transaction
DUP

com Commit of an update transaction
Dwb Write-back of modifications upon commit

Dprep
L Local prepare of a transaction

Droll
L Rollback of a local transaction that aborts locally

Droll
LR Rollback of a local transaction that aborts remotely

Droll
R Rollback of a remote transaction

Table 4.1: Input parameters (divided by class) of the proposed performance models for DTPs.

On its turn, the cost for a remote get is expressed as the sum of a local computation (Rg
L) and

the latency for retrieving the remote datum (Rg
R):

Rg
R = Rg

L +Rg
R.

4.2.2.1.2 Update transactions response time. Unlike read-only transactions, update trans-

actions can abort while acquiring locks, either while executing the business logic (in ETL) or

during the final validation phase (both in ETL and CTL). The response time of an update trans-

action (RUP) is, thus, given by the sum of the response time of a successful execution plus the

time spent in previous aborted executions, i.e.:

RUP = NAR(RUP
AR +NALRUP

AL)+NALRUP
AL +RUP

C .

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 81

In this expression, RUP
AR , resp. RUP

AL , denotes the response time of a transaction that aborts because

of an abort that materializes on a remote node, resp. on the local node; NAR, resp. NAL, refers to

the number of average re-executions of a transaction due to conflicts arising on a remote, resp.

on the local, node; finally, RUP
C is the response time of a successfully committed execution.

RUP
C is computed, on its turn, as the sum of the local response time of the transaction (RUP

L)

plus the execution time of i) the local (Rprep
L) and global validation of the prepare phase (Rprep),

ii) the write-back of updated data items (Rwb), and iii) the notification to remote nodes about

the outcome of the transaction Rdec:

RUP
C = RUP

L +Rprep
L +Rprep +Rwb +Rdec.

The local execution time of a transaction, RUP
L , consists of the time needed to execute the

business logic of the transaction itself, plus the time spent to perform write (Nw on average)

and read operations (NR on average). Noting Rp the response time of a put operation, RUP
L is

computed as

RUP
L = Rbeg +RUP

B +NUP
g Rg +NwRp.

Note that a put operation does not require any inter-node synchronization: this is descended by

the fact that, as previously discussed, the model targets only concurrency control schemes in

which a lock is acquired at commit time only on its primary node (CTL) or in which a lock can

always be acquired locally (ETL in full replication).

The response time of an aborted run that fails while acquiring a remote lock is obtained as

RUP
AR = RUP

L +Rprep
L +Rprep +Rroll

L +Rdec,

where Rroll
L denotes the execution time of the rollback operations performed locally upon abort-

ing a transaction.

The following discussion explains how the model computes RUP
AL , namely the execution

time of locally aborted runs of update transactions. Its analytical expression, in fact, depends

on whether the DTP is configured to employ ETL or CTL: in the first case, a transaction can

82 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

abort before reaching the distributed commit phase, as locks are acquired upon issuing a put

operation; in the second case, instead, conflict detection is deferred to the prepare phase.

RUP
AL in ETL. The computation of RUP

AL in ETL is the same for the 2PC and the PR case, as

the local part of an update transaction is executed in the same fashion, regardless the employed

replication protocol. In ETL, an update transaction can incur a lock conflict, and, hence, an

abort, while trying to acquire the i�th lock, among the Nw ones that it acquires on average.

Write operations are modeled as uniformly spread across the local execution of a transaction,

i.e., the i�th put operation happens after a period corresponding to iRUP
B

Nw
. Therefore, noting

P(AL = i|AL) the probability for a transaction of incurring an abort at put operation i, condi-

tioned to the event that the transaction is going to abort in the current run, RUP
AL is computed

as

RUP
AL =

⇥ Nw

Â
i=1

(
RUP

B
Nw

· i) ·P(AL = i|AL)
⇤
+Rroll

L .

RUP
AL in CTL. When operating according to the CTL mode, update transactions cannot incur

aborts while executing locally. The only case in which an update transaction can abort before

undergoing the global validation phase is if the node on which it is executed is primary owner

for some of the updated objects and the corresponding locks are concurrently being held. Hence,

the execution time of a locally aborted run of an update transaction in CTL is computed as

RUP
AL = RUP

L +Rprep
L +Rroll

L .

4.2.2.2 Contention model

This section presents the contention model, i.e., the set of equations that compute abort proba-

bilities and expected number of re-runs for update transactions. First, the general locking model

is presented; then it is applied to the specific DTP operational modes.

4.2.2.2.1 Locking model. Each lock is modeled as an independent M/G/1 server: a lock is

acquired at a rate llock and the average service time to complete a request, Th, is the lock hold

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 83

time, namely the time since the lock acquisition and until its release (either caused by a commit

or by an abort). Note that, in general, a transaction can hold more than one lock at a single

time and, as described later, hold times for locks taken by the same transaction are correlated:

such characteristics violate the independence assumption for the aforementioned server. The

model, nevertheless, relies on this simplifying assumption for the sake of analytical tractability.

By exploiting this assumption, the probability that a transaction incurs contention when trying

to acquire a lock is computed as the utilization of the corresponding server. Such metric is

defined as the fraction of time that a server is busy serving a request (Kleinrock, 1975) and, in

the model, it is computed as

U = llockTh (4.1)

(assuming llock ·Th 1).

On its turn, llock depends on the application’s data access pattern: if every datum were

equally likely to be accessed in a data-set of cardinality D, then, noting Llock the total locks

acquisition rate, llock could be computed as llock = Llock
D . However, this uniformity assumption

does not hold in general, as data access distributions are often skewed. Unfortunately, a full

characterization of an application’s data access pattern requires an extensive and costly profiling

phase, typically performed off-line (Mozafari et al., 2013). In order to address this issue, the

model relies on the abstraction of the Application Contention Factor (ACF) (Didona et al.,

2014), a metric that allows for succinctly characterizing the skew of a data access pattern. The

ACF is a scalar value that is inferred from the application’s behavior, with minimal profiling,

and represents the inverse of the cardinality of an equivalent dataset that, under a uniform data

access pattern, would yield to the measured contention probability. Namely, noting Plock the

lock contention probability:

ACF =
Plock

LlockTh
. (4.2)

Section 4.2.5.2 will show that, under the hypotheses described in Sec. 4.2.1.2, the ACF can

be considered an invariant of the application’s workload. Therefore, it can be exploited by the

model to speculate about the performance of the application when deployed over a different

number of nodes, or when changing the replication protocol/degree in the platform. Moreover,

given that its computation relies only on the profiling of average values, it is very lightweight to

84 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

compute on-line (Ciciani et al., 2012; Palmieri et al., 2012), thus allowing the adoption of the

proposed model also in presence of time varying data access patterns.

4.2.2.2.2 Conflict probabilities. This paragraph is devoted at providing specializations of

Equation 4.1 depending on the operational mode implemented by the DTP.

ETL. In ETL, update transactions acquire locks both during the local execution and the dis-

tributed commit phase, on each node (remember that this variant is only encompassed by the

model in full replication). Therefore, the lock hold time depends on the index i 2 1 . . .Nw of

the corresponding put operation. It is clear that a lock acquired at operation j (noted L j) has a

higher lock hold time than a lock acquired at operation k > j (Lk); as a result, without taking

into account items popularity, it is more likely, for another transaction, to conflict on L j rather

than on Lk (Yu et al., 1993).

Therefore, the ETL model obtains the mean lock hold time of a transaction starting from

the sum of the hold times of the locks acquired during its local execution (regardless of its final

outcome). This sum is referred to as cumulative hold time and it is defined, for a transaction

that acquires i locks, as

G(i) =
i

Â
j=1

jRUP
B

Nw
.

The following sections provide specialization of the ETL contention model for the 2PC and

PR cases, which both rely on Equation 4.2.2.2.2 for the cumulative lock hold time duration.

2PC. Update transactions running according to the 2PC replication protocol in ETL can experi-

ence lock conflict both during the local execution and the distributed commit phase. Therefore,

the model encompasses two different contention probabilities: PL,lock, for the former case, and

PR,lock for the latter one.

In addition, in both cases, a transaction can contend locks both with co-local and remote

transactions. In the model, the events of conflicting with a remote or a local transactions are

disjoint: in fact, only one transaction can hold a lock at any given time and transactions imme-

diately abort upon trying to acquire a busy lock (i.e., there are no queued transactions waiting

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 85

for the lock release). For this reason, the two aforementioned lock conflict probabilities are

expressed as the sum of the probabilities of the single events of aborting because of a local or a

remote transaction:

PL,lock = PLL,lock +PLR,lock, PR,lock = PRL,lock +PRR,lock.

The model further decomposes conflict probabilities, distinguishing between conflicts that

arise with committing and aborting transactions (either remotely or locally) and computes the

aforementioned probabilities as sum of the single sub-contributes.

For the local conflict, in particular, the conflict probability equations are the following:

PLL,lock = ACF(lC
L,lockTC

Lh +l AL
L,lockT AL

Lh +l AR
L,lockT AR

Lh),

PLR,lock = ACF(lC
R,lockTC

Rh +l AR
R,lockT AR

Rh).

These probabilities take into account that, on the local node, a transaction T on node n can

conflict with co-local transactions that i) commit (which have lock request rate equal to lC
L,lock

and lock hold time TC
Lh) or ii) abort locally (which have lock request rate equal to l AL

L,lock and

lock hold time T AL
Lh or iii) abort while being validated on a remote node (which have lock request

rate equal to l AR
L,lock and lock hold time T AR

Lh); similarly, T can experience a conflict with remote

transactions being validated on n that i) commit (whose lock request rate is lC
R,lock and lock

hold time TC
Lh) or ii) abort because of a conflict arisen on a node n 0 6= n (whose lock request rate

is l AR
R,lock and lock hold time T AR

Rh). Note that the model does not encompass conflicts between

T and remote transactions that abort on n itself: in fact, during the remote validation, locks are

acquired sequentially, without any business logic computation. Therefore, the lock hold time

on n for remote transactions that abort on n itself is considered negligible.

The lock acquisition rates of the aforementioned five classes of transactions are expressed as

the product of the corresponding transactions arrival rate and the expected number of acquired

locks. Noting NAR the expected number of re-runs due to remote aborts and NAL the average

number of re-runs needed to a transaction to reach the distributed commit phase, the model

86 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

computes the locks acquisition rates as follows:

lC
L,lock = lUP

Ltx NC
L,lock, l AL

L,lock = NAL(NAR +1)lUP
Ltx NAL

L,lock, l AR
L,lock = NARlUP

Ltx NAR
L,lock

lC
R,lock = lUP

Rtx NC
R,lock, l AR

R,lock = NARlUP
Rtx NAR

R,lock.

On their turn, the arrival rate of update transactions to local, resp. remote, nodes are com-

puted as

lUP
Ltx =

l%w
N

, lUP
Rtx = lUP

Ltx (N �1).

The expected number of locks acquired by transactions are, instead, obtained as follows.

Four out of the five classes of transactions considered so far acquire Nw locks on a node

n where they are executed: committing transactions (either local or remote), local transactions

that abort during the remote validation or remote transactions that are successfully validated on

a node n 0 but abort on another node n 00, i.e.,

NC
L,lock = NAR

L,lock = NC
R,lock = NAR

R,lock = Nw.

The number of locks acquired by locally aborting transactions, instead, depends on how much

a transaction has progressed before experiencing a lock conflict, namely,

NAL
L,lock =

Nw

Â
i=2

(i�1)P(AL = i|AL).

The equations for PAL and P(AL = i|AL) are obtained by exploiting the independence be-

tween operations issued by transactions: the sequence of lock acquisitions is modeled as a

Bernoulli process (Papoulis, 1991) of length Nw, with “lock successfully acquired” and “abort”

as possible outcomes for each operation. Therefore, the abort probability is computed as the

probability of the complement of the event “the transaction successfully acquires all the re-

quested locks”, i.e.,

PAL = 1� (1�PL,lock)
Nw . (4.3)

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 87

Therefore, by applying Bayes’ theorem, the model computes P(AL = i|AL) as

P(AL = i|AL) =
P(AL = i^AL)

P(AL)
=

P(AL = i)
P(AL)

=
PL,lock(1�PL,lock)

i�1

PAL
.

The lock hold times, instead, are computed in the following way

TC
Lh =

G(Nw)

Nw
+Rprep, TC

Rh = T AR
Rh = Rprep,

T AL
Lh =

Nw

Â
i=1

G(i�1)

Nw
P(AL = i|AL), T AR

Lh = TC
Lh.

In particular, the lock hold time for remote transactions is obtained by approximating it with the

time needed by the transaction’s coordinator to perform the distributed prepare phase (Rprep).

The model follows a similar analysis for what concerns remote transactions. Specifically,

PRL,lock = PLL,lock, PRR,lock = ACF(lC
RR,lockTC

Rh +l AR
RR,lockT AR

Rh).

Note that PRL,lock equals PLL,lock because a transaction T that joins a node n can contend with

transactions originated on n regardless of whether T is a local or a remote transaction. Instead,

the model needs to take into account that remote transactions originated on a node n 0 cannot

contend among themselves on a remote node n , as they have successfully acquired locks on

their local node and are, thus, non-conflicting. This means that they can contend with remote

transactions only coming from N �2 nodes (i.e., all the nodes in the platform except n and n 0).

Therefore,

lUP
RRtx = lUP

Ltx (N �2)

and

lC
RR,lock = lUP

RRtxNC
R,lock, l AR

RR,lock = NARRlUP
RRtxNA

R,lock.

In the last equation, NARR is the expected number of times that a remote transaction suc-

cessfully acquires all the locks on a node n 0 but eventually aborts because of a conflict that has

materialized on node n 00. The equation used to compute NARR will be provided later in this

88 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

section, once its generating probability will have been obtained. The equation corresponding to

the number of acquired locks per remote transaction class, instead, can be already computed as

NC
R,lock = NA

R,lock = Nw.

It is now possible to obtain the expected number of retries NAL,NAR and NARR. By ex-

ploiting the assumptions that restarting transactions are indistinguishable from brand new ones,

executions of transactions are modeled as Bernoulli processes. In particular, NAL is obtained as

follows:

NAL =
1�PAL

PAL
.

The computation of NAR is, instead, more cumbersome, as the model must take into account

that events corresponding to remote conflicts may occur for the same transaction on different

nodes in parallel, i.e., are not statistically independent. In fact, if a transaction T remotely aborts

due to conflict with transaction T 0 on a node n 0 then it is very likely that the same conflict arises

also on other nodes.

In order to obtain an equation similar to the ones obtained for NAL, which leverages the

independence of the considered conflict events, the model resorts to the following approxima-

tion: the probability of T to incur remote conflict with T 0 coincides with the probability that

such conflict arises on the node on which T 0 has been originated. Such probability coincides

with PRL,lock, which has been already obtained. In other words, the model computes the proba-

bility of a transaction T to abort remotely only as a function of the unique remote transactions

in the system, and not of their several instantiations spawned on different nodes to perform

system-wide validation.

Thanks to this approximation, the probability of a transaction to fail the remote prepare

phase can be computed as follows:

PAR = 1� (1�PRL,lock)
(N�1)Nw (4.4)

By leveraging this approximation, the model also computes the probability needed to obtain

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 89

NARR, i.e., P(NR,lock = Nw|AR). This represents the probability that a transaction T successfully

acquires all the locks on a specific remote node while being validated but fails on another one,

given that T ’s validation remotely fails.

P(NR,lock = Nw|AR) =
P(NR,lock = Nw ^AR)

PAR
⇡

(1�PRL,lock)Nw
⇥
1� (1�PRL,lock)(N�2)(Nw)

⇤

1� (1�PRL,lock)(N�1)Nw
. (4.5)

Note that, because of the aforementioned simplification, the model overestimates the probability

of acquiring all the locks on a given node. In fact, it is clear that a transaction T can abort with

any transaction on a remote node n , and not just with the ones that are local to n . Instead, also

in Equation 4.5, the model only considers conflicts between T and local transactions on n . This

simplification is, again, introduced for the sake of analytical tractability.

Finally, it is possible to compute NAR and NARR:

NAR =
1�PAR

PAR
, NARR =

1�PARR

PARR
.

PR. In the PR replication protocol, concurrency among update transactions is regulated by the

primary node, during the local execution phase. This implies that replicating the outcome of an

update transaction cannot give rise to aborts due to concurrency on slave nodes. As a result the

modeling of conflicts for the PR case can be obtained by performing simple modifications to

the one already obtained for the 2PC one.

In particular, since a transaction T running on the master can experience conflicts only with

collocated transactions, the local lock contention probability reduces to

PL,lock = ACF(lC
L,lockTC

Lh +l A
L,lockT AL

Lh)

and the remote one is zero.

Similarly to the 2PC case, the first part of this equation refers to conflict arising between

T and other transactions that are going to commit; the second one is related with the proba-

bility of T to conflict with transactions that are going to abort. In particular, lC
L,lock denotes

the rate at which locks are acquired by committing transactions and TC
Lh the mean lock hold

90 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

time for committing transactions; l A
L,lock and T AL

Lh are the respective counterparts for aborting

transactions.

The equations corresponding to locks request rate and locks hold times coincide with the

ones already obtained in the previous analysis of the 2PC model. The only modification pertains

the equation corresponding to the arrival rate of local update transactions; in fact, in PR, the

master node serves all the flow of incoming update transactions:

lUP
Ltx = ltx%w.

CTL. In CTL, locks are not held during the local execution of the transaction and they are

only acquired on the corresponding primary owner (in 2PC) or on the local node (in PR). As

for the ETL case, the following discussion will first describe the model for CTL with the 2PC

replication protocol, and then will show how to obtain the model for the PR case starting from

equations already derived for 2PC.

2PC. In 2PC, local transactions running on n that write to data items whose n is not primary

owner are not locally synchronized on the corresponding locks; therefore, unlike in the ETL

case, local transactions can conflict among themselves on a remote node. As a result, there is

no distinction between a lock requested on the local node or on a remote one. Therefore, a

single lock contention probability, noted Plock is computed in the model, and it is obtained the

sum of the probability of contending with co-local and remote transactions, i.e.,

Plock = PL,lock +PR,lock (4.6)

Just like in the ETL case, instead, the model considers conflicts arising on a node n between

a transaction T and any other transaction that successfully completes the lock acquisition phase

on n . In fact, also in CTL, a transaction releases all the locks it holds on a node upon detecting

a conflict on that node. Hence, the hold time of locks owned by an aborting transaction on node

n up to the occurrence of the conflict on n itself is considered negligible.

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 91

For this reason, when computing the contention probability Plock for a lock on node n ,

the model encompasses four kinds of transactions: i) local transactions that commit; ii) local

transactions that abort during the remote validation phase; iii) remote transactions that commit;

iv) remote transactions that successfully complete the locks acquisition phase on a node n , but

abort on another node n 0. Hence:

PL,lock ⇡ PC
L,lock +PA

L,lock = N ·ACF(lC
L,lockTC

Lh +l A
L,lockT A

Lh)

PR,lock ⇡ PC
R,lock +PA

R,lock = N ·ACF(lC
R,lockTC

Rh +l A
R,lockT A

Rh)

These last equations are specializations of Equation 4.6; however, here, the ACF is multi-

plied by the total number of nodes in the system. This is because, as detailed in the following

discussion, the locks acquisition rates used in the previous equations refer to the node where

the lock is requested. Given that, by hypothesis, each node stores the same amount of data

and data hot spots are evenly spread across N nodes, the “per node” equivalent uniform dataset

cardinality is (N ·ACF)�1.

As in the ETL case, the locks acquisition rate on a node for each of the four classes is

computed as the product of the transactions arrival rate l for that class in the whole system and

of the expected number of locks Nlock acquired by a transaction of that class on a specific node:

lC
L,lock = lUP

Ltx NC
L,lock, l A

L,lock = NARlUP
Ltx NA

L,lock,

lC
R,lock = lUP

Rtx NC
R,lock, l A

R,lock = NARlUP
Rtx NA

R,lock.

In these equations lUP
Ltx , resp. lUP

Rtx , is the global arrival rate of local, resp. remote, update trans-

actions, which can be computed as

lUP
Ltx =

l%w
N

, lUP
Rtx = (N �1)lUP

Ltx .

In order to compute the expected, per-class number of locks acquired on a node, the model

first obtains the following set of probabilities: i) PLL(i), i.e., the probability that exactly i locks

92 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

are acquired on the local node of a transaction; ii) PA(i), i.e., the probability of aborting while

trying to acquire i locks on a node; iii) Pcom, i.e., the probability of successfully committing a

transaction; iv) PAR, i.e., the probability of successfully acquiring all the local locks and aborting

during the two-phase commit. Exploiting the assumption that data are accessed independently,

these are computed as follows:

PLL(i) =

✓
Nw

i

◆
Li

O(1�LO)Nw�i, (4.7)

Pa(i) = 1� (1�Plock)
i, Pcom = 1�Pa(Nw),

PAR =
Nw

Â
i=1

PLL(i)(1�Pa(i))Pa(Nw � i).

The last probability has been computed as a weighted sum of the probability of requesting i

local locks, acquiring all of them locally, and failing in acquiring at least one of the Nw � i

remote locks (with i ranging from 1 to Nw).

From these equations it is possible to obtain other intermediate probabilities that can be

used to compute the expected number of acquired locks on a node per transaction type. For

a local transaction T originated on node n , the following probabilities are computed in the

model i) P(NL,lock = i|C) the probability that T acquires i locks on n , provided that it commits;

ii) P(NR,lock = i|C) the probability that T acquires i locks on a remote node n 0, provided that

it commits; iii) P(NL,lock = i|AR) the probability that T acquires i locks on n , provided that it

remotely aborts; iv) P(NR,lock = i|AR) the probability that T successfully acquires all the i locks

that it requires on a remote node n 0, provided that it aborts remotely (i.e., on some other remote

node). By using Bayes’ theorem, these probabilities are computed as follows:

P(NL,lock = i|C) = PLL(i), P(NR,lock = i|C) =
Nw�i

Â
j=0

P†
L (j, i,Nw)

P(NL,lock = i|AR) =
PLL(i)(1�Pa(i))Pa(Nw � i)

PAR

P(NR,lock = i|AR) =
ÂNw�i�1

j=0 P†
L (j, i,Nw)P†

A(j, i,Nw)

PAR
. (4.8)

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 93

In the last equations, P†
L (i, j,k) denotes the probability that T acquires i locks locally, j locks on

a node n 0 and k� i� j locks on other remote nodes; P†
A(i, j,k), instead, models the probability

of successfully acquiring the i locally requested locks and the j locks requested on a remote

node n 0, while failing to acquire the remaining k� i� j locks on other remote nodes different

from n 0. Exploiting again the hypothesis of independent accesses to data, the former probability

is computed starting from a multinomial distribution (Papoulis, 1991),

P†
L (i, j,k) =

k!
i! j!(k� i� j)!

Li
O(

1�LO

N �1
) j(

(1�LO)(N �2)

N �1
)k�i� j

while the latter is obtained as

P†
A(i, j,k) = (1�Pa(i+ j))Pa(k� i� j).

From these sets of probabilities the expected number of locks acquired on a node by the

different transaction kinds can be finally obtained:

NC
L,lock =

Nw

Â
i=1

iP(NL,lock = i|C), NA
L,lock =

Nw

Â
i=1

iP(NL,lock = i|AR),

NC
R,lock =

Nw

Â
i=1

iP(NR,lock = i|C), NA
R,lock =

Nw�1

Â
i=1

iP(NR,lock = i|AR).

Next, lock hold times are obtained. Local transactions hold locks during the whole prepare

phase and release them before sending the final commit/rollback message. As already men-

tioned, the transaction coordinator waits for all the cohorts’ replies, regardless of the outcome

of the distributed commit phase. Remote transactions, on the other hand, hold locks for the

time necessary to send back to the coordinator their vote and to receive the final commit/roll-

back message. Also the ETL model, in order to simplify the analysis, adopts the simplification

of considering this last latency comparable to the latency experienced by the coordinator to

complete the prepare phase. Moreover, it considers negligible the impact that the lock acquisi-

tion/release phase has on hold time (as compared to distributed the commit latency). Thus:

TC
L,H = T A

L,H = TC
R,H = T A

R,H = Rprep.

94 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

Finally, it is possible to compute the expected number of aborts experienced locally and

remotely by a transaction, noted, respectively, NAL and NAR. By leveraging on the hypothesis

that a retrying transaction is indistinguishable from a transaction that enters the system for the

first time,

NAL =
PAL

1�PAL
, NAR =

PAR

1�PAR
,

with

PAL =
Nw

Â
i=1

PLL(i)Pa(i).

PR. As for the ETL case, also the CTL-PR model can be obtained by modifying the equations

already provided for the contention model of the 2PC replication protocol. In particular, like

in the previous case, the equation corresponding to lock contention only encompasses conflicts

arising between local transactions; moreover, since there model considers negligible the lock

hold times corresponding to transactions that locally abort, the lock contention probability equa-

tion only encompasses contentions between a running transaction T and a co-local, committing

transaction T 0, i.e.,

Plock = PL,lock = PC
L,lock.

Similarly to the ETL case, moreover, the equation corresponding to the arrival rate of local

update transactions is modified, to account for the fact that, in PR, the master node serves all

such transactions:

lUP
Ltx = ltx%w.

Finally, as the master node is owner of all the locks in the system,

LO = 1.

4.2.2.3 Remote nodes involved in the distributed commit phase.

This section describes how the model computes the average number of remote nodes NR con-

tacted during the distributed commit phase, given that a transaction does not abort while ac-

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 95

quiring local locks. Such a metrics is trivial to compute for PR and 2PC in ETL because such

concurrency control scheme is only supported in full replication, i.e., the number of contacted

remote nodes is simply N�1. The derivation of NR in the CTL in partial replication is, instead,

more elaborated.

CTL-2PC. in 2PC, NR is obtained as the product of the number of remote nodes, N � 1, and

the probability (noted P(R � 1|¬AL)) that a remote node replicates at least one datum written

by the transaction, given that the transaction does not abort locally prior to starting 2PC. This

probability is obtained by marginalizing over the distribution of the number of acquired local

locks given that the transaction does not abort locally:

P(R � 1|¬AL) =
Nw

Â
i=0

P(R � 1^NL,lock = i|¬AL).

For the law of total probability, this can be rewritten as

P(R � 1|¬AL) =
Nw

Â
i=0

P(R � 1|¬AL^NL,lock = i)P(NL,lock = i|¬AL).

In this expression, P(NL,lock = i|¬AL) is the probability that a transaction has requested i local

locks given that it has reached the distributed prepare phase, i.e.:

P(NL,lock = i|¬AL) =
PLL(i)(1�Pa(i))

1�PAL
.

Note that P(R � 1|¬AL^NL,lock = i) = P(R � 1|NL,lock = i) because the fact that a node repli-

cates at least one datum is independent from the outcome of the transaction and only depends

on the number i of local locks.

Finally, the model has to compute the probability that a remote node replicates a datum

written by the local node. In the case the local node is primary owner for a datum, this prob-

ability coincides with l. If the local node is not primary owner of the datum, there are two

cases: the local node replicates the datum, which yields a probability l2, or does not replicate

it, which yields a probability (1�l)r
N�1 . P(R|¬PO) denotes the sum of these two probabilities, i.e.,

96 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

P(R|¬PO) = l2 + (1�l)r
N�1 . Overall, when the local node writes i items, for which it is primary

owner, and Nw� i remote ones, the probability that a remote node replicates at least one of such

items is

P(R|NL,lock = i) = 1� (1� l)i(1�P(R|¬PO))Nw�i. (4.9)

Thus, the expected number of remote nodes being contacted upon a prepare phase, given the

prepare phase is reached, is

NR = (N �1)
Nw

Â
i=0

P(R|NL,lock = i)P(NL,lock = i|¬AL).

CTL-PR. In PR, lock and data ownership are independent: in fact, the master node is owner of

all the locks, but not of all the data items. Therefore, when computing the probability that a

transactions writes i data items whose the master is primary owner, there is no need to condition

on the event that the transaction does not abort locally.

The expected number of remotely contacted nodes at prepare time by a transaction T is

simply (N � 1) multiplied by the probability that a remote node replicates at least one datum

written by T ; as in the 2PC case, this probability depends on whether the master node is primary

owner of a written datum or not. The probability that the master nodes writes i data items

whose it is primary owner, noted — for similarity to the previous case — P(NL,lock = i), is,

then, computed as

P(NL,lock = i) = Pi
O(1�PO)(Nw�i).

Hence, Equation 4.9 to compute P(R|NL,lock = i) still holds and

NR = (N �1)
Nw

Â
i=0

P(R|NL,lock = i)P(NL,lock = i).

4.2.2.4 CPU Model

Like in previous analytical models (Yu et al., 1993; Di Sanzo et al., 2010), the CPU of the nodes

of the platform is modeled as a M/M/K multi-class queue with FCFS discipline, where K is

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 97

the number of cores per CPU. In general, the CPU serves J classes of jobs: denoting as D j,

resp. l j, j = 1 . . .J, the service demand, resp. the arrival rate, of jobs belonging to class j, it is

possible to compute the CPU utilization, r , as

r =
J

Â
j=1

l jD j

K
. (4.10)

In particular, DTPs can serve four classes of jobs from the point of view of CPU demands:

read-only (noted LRO) and local update (LUP) transactions, requests for serving remote gets

(RRG) and remote update transactions (RUP). Therefore,

r =
l RO

L DRO
L +lUP

L DUP
L +lUP

R DUP
R +l RG

R DRG
R

K
.

Then, defining

a =
KrK

K!(1�r)
, b =

K�1

Â
i=1

Kr i

i!
, g = 1+

a
K(a +b)(1�r)

,

the CPU response time Ri corresponding to a job with demand Di, without taking into account

the latency of network-related operations, is given by

Ri = gDi.

The following discussion provides the equations employed by the model to compute arrival

rates and service demands depending on the adopted concurrency control scheme/replication

protocol.

4.2.2.4.1 Transactions’ service demand computation. The CPU service demands equa-

tions are described following the scheme adopted for the transactions’ execution times in Sec-

tion 4.2.2.1. The employed notation also follows the one used in that section.

Read-only transactions’ CPU service demand is, then, computed as the sum of the CPU

service time required to start, execute and commit a transaction, plus the service time corre-

98 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

sponding to local and remote get operations:

DRO
L = Dbeg +DRO

B +
Nr

Â
i=1

[L Dg
L +(1�L)(Dg

L +Dg
R)]+DRO

com.

The CPU demand for remote update transactions is computed as

DUP
R = Dprep

R +Dcom
R +NAR(Dprep

R +Drol
R),

where Dprep
R , Dcom

R and Drol
R are, respectively, the CPU demands of remote prepare, commit and

rollback operations.

Note that this CPU demand is computed as the sum of the cost of one successful remote

validation plus the demand corresponding to NAR failed validations.

Local update transactions’ service demand is, instead, obtained as the sum of the CPU

demands corresponding to possible transactions re-executions:

DUP = DUP
C +NAR(DUP

AR +NALDUP
AL)+NALDUP

AL +DUP
com,

with the single contributes being

DUP
C = DUP

L +Dprep
L +Dprep +Dwb +Ddec,

DUP
AR = DUP

L +Dprep
L +Dprep +Drol

L +Ddec,

and

DUP
L = Dbeg +DUP

B +NwDp +
NR

Â
i=1

[L Dg
L +(1�L)(Dg

L +Dg
R)].

Just like in Section 4.2.2.1, the equation for DUP
AL varies depending on the employed con-

currency control scheme.

DUP
AL in ETL. In ETL, the CPU service demand of an aborted update transaction T depends on

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 99

how much T has progressed in its local computation before incurring a lock conflict. Therefore,

DUP
AL =

Nw

Â
i=1

[Droll
L +(

DUP
B

Nw
i)P(AL = i|AL)].

DUP
AL in CTL. Given that a local transaction cannot abort before reaching the prepare phase, in

CTL DUP
LAL is computed as

DUP
AL = DUP

L +Dprep
L +Droll

L .

4.2.2.4.2 CPU jobs arrival rates computation. This section obtains the arrival rates for the

different CPU job classes depending on the locking scheme and replication protocol.

ETL. In computing CPU jobs arrival rates, the most important trait of the considered ETL

scheme is that it is supported for full replication and it does not encompass the concept of

primary/lock owner.

2PC. In 2PC all nodes serve the same workload. Therefore, each node serves a fraction 1
N of

local update and read-only transactions, namely,

l RO
L =

ltx(1�w)

N
, lUP

L =
ltx(w)

N
.

The arrival rate of CPU jobs corresponding to remote transactions on node n , instead, is

computed by taking into account that, upon being spawned for the first time, a transaction

will or will not contact any other node, during its NAR re-runs and final successful execution.

Therefore, lUP
R is computed as the product of the arrival rate of transactions that are generated

on other nodes and the probability that a remote transaction will try to access at least one datum

replicated by n (noted P(R � 1)):

lUP
R = (N �1)lUP

L P(R � 1).

100 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

In ETL, clearly,

P(R � 1) = 1.

Moreover, as ETL is supported only in full replication,

l G
R = 0.

PR. In PR, CPU jobs arrival rates are different for master and slaves. For the former,

lUP
L = lw, lUP

R = 0, l RO
L = 0;

for the latter ones

lUP
L = 0, lUP

R = lw, l RO
L =

l (1�w)

N �1
.

Clearly, for both

l G
R = 0.

CTL. As far as CPU jobs arrival rates are concerned, the only difference between the ETL and

the CTL cases lies in the arrival rate corresponding to remote update transactions.

Following the same rationale used to compute the number of remote nodes contacted at

commit time in Section 4.2.2.3, P(R � 1) is computed, equally for 2PC and PR, as

P(R � 1) =
Nw

Â
i=0

P(R � 1|NL,lock = i)P(NL,lock = i),

where NL,lock = i is the probability that the local node is primary owner of i written data items.

This probability corresponds to PLL(i) (Equation 4.7) and the analytical formulation for P(R �

1|NL,lock = i) has already been obtained in Equation 4.9.

Finally, the average arrival rate or remote get requests, each having a CPU demand equal to

DRG
R , is obtained, taking into account both requests coming from read-only and update transac-

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 101

tions:

l R
G =

1�L

N �1
�
l RO

L Nr +lUP
Rtx NR(NAR +NAL(NAR +1))

�
.

4.2.3 Black box modeling in the proposed DTP models

Developing a white box network communication model capable of accurately predicting the

response time of network-bound operations in complex applications, deployed over virtualized

cloud infrastructures is a very challenging task. First, in this type of infrastructures, little or

no knowledge is available about the underlying network topology, hardware infrastructure and

virtualization software overhead: this affects the possibility of measuring resource demands ac-

curately, and makes the analytical derivation of response times cumbersome (Whiteaker et al.,

2011). Moreover, complex applications’ software stack typically lies on top of group commu-

nication toolkits that provide several inter-process synchronization services (like failure detec-

tion, group membership, remote procedure calls) the configuration and the internal design of

this layer also affect performance in a way that is hard to predict (Couceiro et al., 2010).

For these reasons, the proposed models rely on ML to predict the latency of network-bound

operations, i.e., of the remote get (Rg
R), prepare (Rprep), and final decision phases (Rdec).

Specifically, the ML employed to model network-bound operations’ execution time is Cu-

bist1, a Decision Tree (DT) regressor that approximates multivariate functions by means of

piece-wise linear approximations. Analogously to classic decision tree based classifiers, such

as C4.5 and ID3 (Quinlan, 1986, 1993a), Cubist builds decision trees choosing the branching

attribute such that the resulting split maximizes the normalized information gain. However, un-

like C4.5 and ID3, which contain elements in a finite discrete domain (i.e., the predicted class)

as leaves of the decision tree, Cubist places a multivariate linear model at each leaf.

In particular, three Cubist models are generated for each target feature: each model is

trained over samples corresponding to a specific replication setting: full replication (i.e., repli-

cation degree = N), partial replication, and data partitioning (i.e., replication degree = 1). The

rational behind this choice is that the replication degree affects other input features for the ML

1https://www.rulequest.com/cubist-info.html

102 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

model in a strongly non-linear fashion. For instance, for small values of the replication degree,

small shifts of this parameter typically lead to large changes of the arrival rate of the remote

gets. Conversely, when close to full replication, the remote gets’ arrival rate drops sharply to 0.

Building separate models on the basis of the replication degree allows Cubist to isolate

samples in the parameters’ space corresponding to the case of “extreme” replication policies,

i.e., full replication and data partitioning. The three Cubist models are built and queried sepa-

rately: depending on the replication degree setting corresponding to the specific invocation, the

appropriate Cubist model is employed.

This solution is related in spirit to Ensemble Learning techniques (Mendes-Moreira et al.,

2012), in which multiple single learners are combined together to generate a stronger, more

accurate model. In this case, the single learners are trained on disjoint training sets, in order

to increase their predictive power in a reduced portion of the parameters’ space, in which the

relations between input and output are subject to more linear, and hence more easily deductible,

dynamics.

In order to build an initial knowledge base to train the machine learner, the proposed models

rely on a suite of synthetic benchmarks that generate heterogeneous transactional workloads in

terms of mean size of messages, CPU utilization and network load. The set of input features

provided as input to Cubist characterizes the workload from the point of view of network uti-

lization, as dynamics relevant to data contention are captured by the white box model that we

described in the previous section. Specifically, for each of the three predicted network latencies

we build an independent ML-based model, based on the following features: number of nodes

in the system, average number of nodes contacted during the 2PC, average size of the messages

exchanged in remote interactions (i.e., prepare and remote gets), the rate at which these inter-

actions occur, CPU utilization, number of active threads on each node. Moreover, given that

Cubist only exploits linear approximations in the leaves of the decision tree, the set of input

features is widened by providing also metrics that are obtained as product of these basic fea-

tures and that are known, from previous analytical network communication models, to be highly

correlated with the response time of network-bound operations (e.g., the throughput, in byte per

second, of sent and received messages) (Nicola & Jarke, 2000; Raghuram et al., 1992).

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 103

4.2.4 Model resolution

From the analysis carried out in previous sections, it is clear that there are some interdepen-

dencies among the CPU, network and data contention models: the CPU and network response

times are influenced by the lock contention probability, which depends on the lock hold times,

which, on their turn, depend on network and CPU response times. This cyclic dependency is

solved through a fixed point recursion on the set of abort probability values (PL,lock in the PR

case, PL,lock and PR,lock for the encounter time 2PC case and Plock for the commit time 2PC one).

On the first iteration, abort probabilities are set to 0; the value in input at iteration i is

computed by solving the model with metrics obtained at iteration i�1; this process ends when

the relative difference between values computed on two consecutive iterations falls under a

threshold (set to 1%) and typically converges in a few iterations. It is out of the scope of this

work to demonstrate the convergence of this iterative solution method, which has been adopted

to solve several previous performance models of concurrency control protocols (see, e.g, (Yu et

al., 1993; Di Sanzo et al., 2010; Menascé & Nakanishi, 1982)); as in previous studies, it has

been observed that it always converges in a few iterations, provided that the input assignment

defines a stable system.

In a similar fashion, it is clear that the analytical and ML models, built separately, are

closely intertwined. The training set of the ML, in fact, can be built by gathering measurements

of the required metrics while deploying target benchmarks using different values for the plat-

form scale, load, data replication degree, message size, etc. However, at query time, some of the

input features are not known, as they depend on the sought after performance of the application

in the target configuration. Assume, for instance, to predict the network latencies incurred for a

target configuration using 80 nodes, while observing these metric on a platform with 3 nodes.

In this case, it is necessary to predict, among other metrics, the number of nodes involved in the

distributed commit phase, or the rate at which prepare phases would be initiated in the target

configuration, which can vary drastically from the one measured in the current configuration.

The impera component of the Divide et impera gray box modeling technique materializes

in the way in which the employed white box and black box models are reconciled in such a way

to address the aforementioned issue and obtain the prediction of the system as a whole.

104 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

More specifically, given an input transactions arrival rate, set of abort probabilities and

workload characterization, the analytical model can predict metrics like CPU utilization, ex-

pected number of retries (and, hence, rate of prepare/commit/rollback operations) and number

of nodes involved in the distributed synchronization phases. Such information are exploited to

provide the ML all the inputs it needs in order to produce its forecasts about execution time of

network bound operations. The output of the ML is, finally, given back in input to the analytical

model, which can, thus, compute the full execution time of transactions.

4.2.4.1 Predicted KPIs

The discussion conducted so far has shown how the presented performance models are able to

predict transactions’ response time, abort probability and latency of network-bound operations.

This section illustrates how the model can be also exploited to obtain an approximation for the

closed-system throughput, i.e., the throughput delivered by the application when deployed over

a set of N nodes having each q active threads that process transactions with zero think time.

This metric can be computed by exploiting Little’s law (Little, 1961) in an iterative fashion:

at each iteration, the closed-system throughput is obtained starting from the average transac-

tions’ response time (Yu et al., 1993). At the first iteration, a low value of transactions arrival

rate l is provided as input to the model. Next, the open model is solved to compute RUP,RRO

and the transactions’ average response time as Ravg = %wRUP + (1�%w)RRO. The closed-

system throughput for iteration i is, then, obtained by applying Little’s law as described in the

following. In the 2PC case (for both ETL and CTL), it is noted TC(i) and it is obtained by sim-

ply computing TC(i) = Nq
Ravg . For the PR case, instead, the model computes the corresponding

metrics separately for the master T M
C (i) = q

RUP and the slaves T S
C (i) = (N�1)q

RRO ; the overall closed

system throughput is obtained as the minimum between the two.

The arrival rate for the next iteration l is obtained using a first order Newton’s method

defined as l = TC(i�1)+ (TC(i)�TC(i�1))
2 , where TC(i) is specialized according to previous def-

initions.

This process typically completes in a few iterative steps, except for high contention scenar-

ios, which may yield to convergence problems. This is a typical issue that arises when adopting

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 105

such a recursive resolution algorithm for analytical models of transactional systems (Yu et al.,

1993). To cope with such an issue, the model solving algorithm implements a fall-back solu-

tion that spans, at a given granularity (set to 10 tx/sec), all possible arrival rate values within a

configurable interval. This algorithm returns the solution which minimizes the error between

the input arrival rate an the output closed system throughput. This guarantees convergence to

the desired accuracy (set to 1%) in a bounded number of steps.

Finally, note that, when solving the open model to obtain closed system throughput, the

model explicitly takes into account the fact that a transaction generated by a given thread can-

not contend locks or physical resources with itself (similarly to the MVA algorithm (Reiser &

Lavenberg, 1980)). This is achieved by means of simple modifications to the provided equa-

tions, which are not provided for the sake of presentation; however, to give an example of such

modifications, the rate of incoming co-local transactions with which a local transaction can

contend with is scaled by a factor of q�1
q .

4.2.5 Models evaluation

This section is devoted at assessing the effectiveness of the Divide et impera approach when

applied to the problem of DTPs performance modeling, and in particular to the Infinispan DTP.

Section 4.2.5.1 describes the experimental platform and the transactional applications and work-

loads employed throughout the evaluation study; Section 4.2.5.2 evaluates the soundness of the

ACF abstraction; Section 4.2.5.3 evaluates the accuracy of the standalone black box learners;

Section 4.2.5.4 is devoted to evaluate the Divide et impera approach, by assessing the accuracy

of the hybrid proposed models; Section 4.2.5.5 compares the two models with pure off-the-shelf

black box approaches; finally, Section 4.2.5.6 discusses operational aspects of the models, like

convergence speed of the resolution algorithm described in Section 4.2.4 and the instrumen-

tation overhead incurred by Infinispan in order to collect the input parameters needed by the

models.

106 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

4.2.5.1 Experimental test-bed

Experimental platform. One of the main motivations behind the choice of employing a ML-

based model for network-bound operations in DTPs is portability: by avoiding to model via

white box techniques the network-bound interactions, the resulting Divide et impera perfor-

mance model is seamlessly applicable over heterogeneous (and possibly virtualized) infrastruc-

tures. In order to back this claim, the evaluation of the proposed models has been conducted

over different infrastructures, encompassing both virtualized and bare-metal environments and

both private and public clouds. The deployment infrastructures are hereafter described, together

with the notation employed to refer them in the following plots and discussion.

1. Bare-metal private cluster (PC-B): it is composed by 10 servers equipped with two 2.13

GHz Quad-Core Intel(R) Xeon(R) processors and 8 GB of RAM and interconnected via

a private Gigabit Ethernet. Each machine runs Ubuntu 12.04 Linux distribution with a

3.2.0 kernel.

2. Virtualized private cloud (PC-V): it is composed by 140 Virtual Machines (VM),

equipped with 1 Virtual CPU and 2GBs of RAM; each VM runs a Fedora 17 Linux

distribution with 3.3.4 kernel. The underlying physical infrastructure consists 18 servers

equipped with two 2.13 GHz Quad-Core Intel(R) Xeon(R) processors and 32 GB of RAM

and interconnected via a private Gigabit Ethernet. The employed virtualization software

is Openstack Folsom2.

3. FutureGrid Infiniband cloud (FG-I) 3: it is composed by 100 VMs, each equipped with

one virtual core and 2 GB of RAM and running a Fedora 17 Linux distribution with 3.3.4

kernel. VMs are interconnected via an Infiniband network. The employed virtualization

software is Openstack Folsom.

4. FutureGrid Ethernet cloud (FG-E): it is composed by 100 VMs, each equipped with

one virtual core and 2 GB of RAM and running a Fedora 17 Linux distribution with 3.3.4

2http://www.openstack.org/software/folsom/
3FutureGrid is a public, non commercial, cloud (Fox et al., 2012; Laszewski et al., 2010).

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 107

kernel. VMs are interconnected via an Ethernet network. The employed virtualization

software is Openstack Havana 4.

5. Amazon EC2 cloud (EC2): it is composed by 20 Extra Large Instances, which are

equipped with 15GB of RAM and 4 virtual cores with 2 EC2 Compute Units each. Each

VM runs Ubuntu 13.04.

Applications and workloads. The accuracy of the proposed models has been evaluated by

means of three benchmarks.

1. Radargun (RG) 5: a benchmarking framework specifically designed to test the perfor-

mance of distributed, transactional key-value stores. Workloads generated by Radar-

gun applications are synthetic, namely consist only of put/get operations; the employed

dataset is either composed by 100K keys (LA) or by 1K (SM).

2. TPCC6: a standard benchmark for OLTP systems, which simulates the activities of

a wholesale supplier and generates mixes of read-only and update transactions with

strongly skewed access patterns and heterogeneous durations. Two transactional mixes

are considered: a read-dominated (TPCC-R) and a write-intensive (TPCC-W) one. Note

that, given that the standard implementation of TPCC is defined over a relational database,

the benchmark has been ported to the key-value data model exposed by Infinispan.

3. YCSB (Cooper et al., 2010): it represents the de facto standard benchmark for key-value

stores. Also in this case, the benchmark represents a porting of the original one: in fact,

YCSB does not encompass transactions, but only single put/get operations issued against

a key-value store. The baseline YCSB workloads considered in this study are A, B and F:

workload A has a mix of 50/50 reads and writes; workload B contains a 95/5 reads/update

mix; in workload F records are first read and then modified within a transaction. In order

to evaluate the accuracy of the models in predicting a wider set of transactional workloads,

4http://www.openstack.org/software/havana/
5https://github.com/radargun/radargun
6http://www.tpc.org/tpcc/

108 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

also variants of the aforementioned workloads have been employed, in which the number

of performed operations varies. Finally, two data access patterns are considered: zipfian

and hot-spot. In the first one, the popularity of data items follows a zipfian distribution

(with YCSB’s zipfian constant set to 0.7); in the second one, 99% of the data requests are

issued against the 1% of the whole data set.

YCSB’s workloads will be referred to by using the notation N-D-P-I: N refers to the

original workload’s YCSB notation (Cooper et al., 2010); D is the number of distinct data

items that are read by a read-only transaction; for update transactions, it is the number

of distinct data items that are written (for the F workload, which exhibits a read-modify-

write pattern, data are both read and written); P encodes the data access pattern (Z stands

for zipfian, H for hot-spot); finally, I specifies the cloud infrastructure over which the

benchmark has been run (PC-V or FG-E). For all the experiments, the data platform is

populated with 500000 keys and data are scattered across nodes according to Infinispan’s

default consistent hash function

The Key Performance Indicators employed to evaluate the accuracy of the models are trans-

actions’ commit probability (measured as #committed xact
#total xact) and closed-system throughput (mea-

sured as transactions/second). To this end, a workload generator is deployed on each node and

consists of three threads (and TPCC) or one thread (for Radargun and YCSB) that inject re-

quests against the collocated Infinispan instance, in closed loop. The accuracy of the models in

predicting values for both these KPIs is evaluated by reporting the Mean Average Percentage

Error (MAPE), computed as Avg(|real kpi�pred kpi]
real kpi).

4.2.5.2 ACF validation

The Application Contention Factor (ACF), introduced in Section 4.2.2.2, is the abstraction em-

ployed by the proposed models to characterize, in a concise and lightweight fashion, the data

access pattern exhibited by a transactional application. This section is dedicated to validate the

soundness of the ACF abstraction as well as to provide a more formal explanation behind it;

in particular, the following evaluation shows that ACF can be considered as a workload invari-

ant, and thus used to serve what-if queries, and that is approximates a non-uniform data access

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 109

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 2 3 4 5 6 7 8 9 10

A
C

F

Number of nodes

2PC

TPCC-W-P
TPCC-W-EC2

TPCC-R-P

TPCC-R-EC2
RG-LA-P

RG-LA-EC2

RG-SM-P
RG-SM-EC2

(a) 2PC.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 2 3 4 5 6 7 8 9 10

A
C

F

Number of nodes

PB

TPCC-W-P
TPCC-W-EC2

TPCC-R-P

TPCC-R-EC2
RG-LA-P

RG-LA-EC2

RG-SM-P
RG-SM-EC2

(b) PR.

Figure 4.3: ACF using heterogeneous benchmarks and platforms.

pattern by means of an equivalent uniform one.

ACF as workload invariant. Figure 4.3 depicts the ACFs obtained when running the TPCC

and Radargun workloads on EC2 and on the bare-metal private cluster. The plot on the left

reports the ACF values obtained using the 2PC replication scheme, whereas the one on the right

reports the ACF computed using the PR scheme. The plots show that the ACF represents an

invariant of a given workload, i.e., that it is not affected by i) the scale and nature (private vs

public) of the platform on which the transactional data grid is deployed; ii) the data replication

protocol employed by the transactional data grid (2PC or PR). This confirms that the ACF can

be measured in a given configuration, and used to speculated about performance delivered by

the same workload running according to another Infinispan configuration.

ACF as equivalent uniform dataset. In Section 4.2.2.2, the ACF has been described as the

inverse of the size (Deq) of a dataset that, if uniformly accessed, would yield the same abort

probability of the actual dataset, accessed according to an arbitrary pattern.

In order to validate this statement, the following experiment has been carried out: i) the

Radargun benchmark has been set to execute transactions composed by a single write operation

on a datum selected among a set of 100K items on the basis of a non-uniform distribution; ii)

the ACF has been obtained starting from measurements collected during the experiment; iii) the

110 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1 10 100 1000 10000 100000

A
cc

e
ss

 p
ro

b
a
b
ili

ty

Items ordered by populatiy

b=0 b=8 b=15

(a) Data popularity

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2 4 6 8 10 12 14 16

E
q
u
iv

a
le

n
t
d
a
ta

b
a
se

 s
iz

e

Mask bits

Deq 1/ACF

(b) Equivalent dataset size and comparison with 1
ACF

Figure 4.4: NuRand’s data access pattern varying the bit mask.

size of the uniform equivalent dataset for the case of the target workload (Deq) is analytically

obtained; iv) the resulting value has been compared with the inverse of the measured ACF.

The employed non-uniform data access distribution is the NuRand one, which is defined as

follows:

NuRand(A,x,y) = (((random(0,A)|random(x,y)))%(y� x+1))+ x.

In the above equation, A is a all-1’s bit-mask and x,y are the extrema values that the random

variable can take. Essentially, the NuRand is based on the bitwise OR of two uniformly drawn

random values: given that the OR function between two bits evaluates to 1 in 75% of the pos-

sible inputs, the NuRand skews the drawn value according to the input bit-mask. The NuRand

choice has been motivated by two reasons: i) the NuRand distribution is employed in TPCC,

and is therefore representative of realistic data access pattern skew; ii) its relatively simple

formulation allows for the derivation of its equivalent uniform distribution, when employed to

determine the data access pattern in a transactional application.

Employing the NuRand in the aforementioned workload essentially implies that transac-

tional accesses to the dataset are split in b + 1 classes, corresponding to b + 1 disjoint and

uniformly accessed sub-datasets. Figure 4.4a shows the impact of the mask on the data access

pattern, by plotting the access probability of every datum in the dataset after having sorted them

by decreasing popularity. The picture shows both the skew growing with the size of the mask

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 111

as well as the aforementioned partition of the dataset.

Figure 4.4b, instead, compares the analytically obtained Deq with the inverse of the mea-

sured ACF. In the plot, the number of 1’s in the NuRand bitmask, b, varies between 0 (uniformly

accessed dataset) and 15 (the maximum skewness achievable by NuRand over 100K keys), and

for each value of b, the corresponding Deq is depicted. Computing Deq for b = i requires

first obtaining the probability of a transaction to belong to that class (pi) and the size of the

sub-dataset accessed by that class of transactions (di). The computation of di and pi follows

straightforwardly from the definition of NuRand7. Then, Deq is obtained as follows:

P(lock contention) =
b

Â
i=0

P(xact is o f class i ^ lock is taken by another xact o f class i)

llock ·TH

Deq
=

b

Â
i=0

pi ·
pillock ·T i

H
di

.

Given that, in the experiment, the transactions are uniform in terms of execution time (i.e.,

T i
H = TH ,8i 2 [0..b]),

1
Deq

=
b

Â
i=0

pi ·
pi

di
. (4.11)

The plots in Figure 4.4a show that, for every value of b, the analytically obtained Deq and

the inverse of the measured ACF are very close. It is noteworthy to highlight that computing Deq

analytically, as suggested by previous work (Tay et al., 1985), requires the a priori knowledge

about b, pi and di; conversely, such information is not needed to compute the ACF.

4.2.5.3 ML validation

This section is dedicated to assess the accuracy of the standalone black box components em-

ployed in the proposed models to predict latencies of network bound operations. That is, the

following accuracy results only refer to the ability of the pure ML model to forecast response

7Refer to the TPC-C specification (TPC Council, 2011) for a detailed description of NuRand and to the paper
by Leutenegger and Dias (Leutenegger & Dias, 1993) for a comprehensive analysis of its properties

112 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

time of network operations when all the correct input values are provided, and not when the ML

is coupled with the analytical model to obtain them (as described in Section 4.2.4).

The evaluation proposed in this section in split in two parts: the first focuses on the simpler

case of full replication; the second, instead, describes the additional challenges that arise when

coping with partial replication, and evaluates the accuracy of the solution proposed to tackle the

corresponding more complex prediction task.

4.2.5.3.1 Black box modeling in full replication. In full replication, black box modeling is

only applied to the problem of forecasting the latencies of network-bound operations executed

during the distributed commit phase (i.e., Rprep and Rdec).

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 1000 1500 2000 2500 3000 3500 4000

P
re

d
ic

te
d
 R

p
re

p
(µ

se
c)

Real Rprep(µsec)

(a) PC-B

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5000 10000 15000 20000 25000 30000 35000

P
re

d
ic

te
d
 R

p
re

p
(µ

se
c)

Real Rprep(µsec)

(b) EC2

Figure 4.5: Accuracy of the ML-based Rprep predictions in full replication (ETL).

The scatter-plots in Figure 4.5 report the accuracy (in 10-fold cross validation) of the Cubist

model built to predict Rprep; specifically, the plots refer to a 2PC ETL Infinispan deployment on

the PC-B and EC2 hosting infrastructures. The plots highlight that, on both the private cluster

and on EC2, the ML attains a high prediction accuracy. Specifically, the correlation factor is

around 99% in both cases, with an average absolute error equal to 500 micro-seconds for EC2

and around 60 micro-seconds for the private cluster. Note that, in practice, the relative error is

similar on both the platforms, since, on EC2, the maximum value of Rprep is around 10 times

larger than the maximum Rprep value on the private cluster.

4.2.5.3.2 Black box modeling in partial replication. In DTPs, the replication degree is

an important parameter that has a strong impact on both the contention and the CPU models.

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 113

Likewise, it also affects input features for the ML model in a strongly non-linear fashion. For

instance, for small values of the replication degree, small shifts of this parameter typically lead

to large changes of the arrival rate of the remote gets. Conversely, when close to full replication,

the remote gets’ arrival rate drops sharply to 0.

As hinted in Section 4.2.3, the proposed models tackle this increased complexity by em-

ploying separate models to forecast the network-related performance functions corresponding

to the case of “extreme” replication policies, i.e., full replication and data partitioning. As a re-

sult, for each target feature, three different black box models are built, each trained over disjoint

data sets, corresponding to the case of data partitioning (i.e., replication degree = 1), partial

replication and full replication (i.e., replication degree = N).

The effectiveness of this approach in increasing predictive accuracy has been tested using

Cubist and several other ML techniques included in the Weka (Hall et al., 2009) suite, namely

MultiLayerPerceptron (based on Neural Networks), SmoReg (based on Support Vector Ma-

chines) and M5Rules (a Decision Tree regressor like Cubist) (Bishop, 2006).

The results of the tests are shown in Figure 4.6, which reports the 10 fold cross-validation

accuracy in terms of median and 90-th percentile of the prediction for the Rprep feature of a 2PC

CTL Infinispan deployment on the PC-V infrastructure, when using the single model (S) or the

“multi-model” obtained by training the learners on disjoint data-sets (M)8. The results confirm

the effectiveness of the employed technique in increasing the accuracy, as well as its general

applicability. In fact, the multi-model consistently outperforms the single model in terms of

both median and 90-th percentile accuracy, regardless the employed learning algorithm. Finally,

Figure 4.7 shows the scatter plots contrasting the predicted vs the actual values of the Rprep

feature, on the PC-V and on FG-E test-beds obtained using 10 folds cross-validation. The plots

confirm the viability of employing black box modeling to predict the response time of network-

bound operations also in presence of highly non-linear performance functions stemming from

the adoption of partial replication.

8Results relevant to impact of this technique on the accuracy of the models for other features (e.g., Rg
R) and for

the FutureGrid infrastructure are not shown as they are similar to the presented ones.

114 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Cubist SmoReg MLP M5R

R
e
la

tiv
e
 E

rr
o
r

Median-S
Median-M

90th-S
90th-M

Figure 4.6: Single and multi-model validation for different MLs

 1

 10

 100

 1 10 100

P
re

d
ic

te
d
 R

p
re

p
 (

m
se

c)

Real Rprep (msec)

(a) PC-V

 1

 10

 100

 1 10 100

P
re

d
ic

te
d
 R

p
re

p
 (

m
se

c)

Real Rprep (msec)

(b) FG-E

Figure 4.7: Accuracy of the ML-based Rprep predictions in partial replication (CTL).

4.2.5.4 Validation of the hybrid performance models

This section evaluates the accuracy achieved by performance predictors as a whole, i.e., when

the underlying white and black box models are coupled according to the scheme described in

Section 4.2.4. Similarly to the ML validation case, also this section first focuses on the ETL

case, which encompasses full replication deployments based on both 2PC and PR, and then

reports accuracy results for the CTL case, which also entails partial replication.

4.2.5.4.1 ETL validation. The validation of the ETL models has been performed using the

PC-B, FG-I and EC2 infrastructures, and has been aimed at assessing the accuracy of the model

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 115

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
(t

x/
se

c)

Number of nodes

Private Cluster

TPCC-W-Real
TPCC-W-Pred

TPCC-R-Real
TPCC-R-Pred

(a) Throughput, 2PC

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

C
o
m

m
it

P
ro

b
a
b
ili

ty

Number of nodes

Private Cluster

TPCC-W-Real
TPCC-W-Pred

TPCC-R-Real
TPCC-R-Pred

(b) Commit Probability, 2PC

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
(t

x/
se

c)

Number of nodes

Update transactions only

TPCC-W-Real
TPCC-W-Pred

TPCC-R-Real
TPCC-R-Pred

(c) Throughput, PR

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

C
o
m

m
it

P
ro

b
a
b
ili

ty

Number of nodes

Update transactions only

TPCC-W-Real
TPCC-W-Pred

TPCC-R-Real
TPCC-R-Pred

(d) Commit Probability, PR

Figure 4.8: Validation of the ETL models using the TPC-C benchmark deployed on the PC-B
infrastructure.

to predict throughput and commit probability of transactions executed according to both the

2PC and the PB replication protocols.

Figure 4.8 compares actual and predicted performance of the two considered TPC-C work-

loads deployed over PC-B: top plots refer to 2PC and bottom ones to PR; left plots refer to

throughput and right ones to commit probability. Figure 4.9, instead, depicts the model’s pre-

diction capabilities in predicting performance of the two TPC-C workloads when deployed over

Amazon EC2, for the 2PC case.

The two sets of plots showcase the proposed models’ high accuracy in predicting perfor-

mance for heterogeneous workloads when running according to different platform configura-

tions (in terms of nodes and replication protocol) and when deployed over different infrastruc-

116 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t
(t

x/
se

c)

Number of nodes

TPCC-W-Real
TPCC-W-Pred

TPCC-R-Real
TPCC-R-Pred

(a) Throughput

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

C
o
m

m
it

P
ro

b
a
b
ili

ty

Number of nodes

TPCC-W-Real
TPCC-W-Pred

TPCC-R-Real
TPCC-R-Pred

(b) Commit probability

Figure 4.9: Validation of the ETL-2PC model using the TPC-C benchmark deployed on the
EC2 infrastructure.

tures.

Figure4.10 refers to a large scale deployment of several Radargun workloads, characterized

by different transactional mixes (w = x in the labels indicate that the workload is composed

by x% update transactions). The workloads are deployed over the FG-I infrastructure and run

transactions according to the 2PC replication protocol. In addition to the aforementioned KPIs

(throughput and commit probability, from Figure 4.10a to Figure 4.10d), the figure also depicts

(in Figure 4.10e and Figure 4.10f) the accuracy of the models in predicting the distributed

commit latency when coupling the black box learner with the white box model.

Overall, the plots confirm the accuracy of the models in predicting throughput, abort proba-

bility and distributed commit latencies of applications deployed over a large-scale data platform.

The MAPE attained for throughput, commit probability and distributed commit latency is, re-

spectively, 6%, 0.7% and 13%. Fig. 4.11 also reports the cumulative density functions (CDF)

of the absolute relative error for these KPIs, showing that the 90-th percentile for throughput

is less than 10%, the 80-th percentile for abort probability is less than 1% and that the 85-th

percentile for the distributed commit latency is less than 20%.

The proposed models also result to be highly effective in predicting whether the primary

scalability bottleneck for an application lies in the physical layer or in the level of incurred data

contention. This capability of the model is demonstrated, in particular, in Figs 4.10b, 4.10d

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 117

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
(t

x/
se

c)

Number of nodes

RG-LA w=5 real
RG-LA w=5 pred

RG-LA w=10 real
RG-LA w=10 pred

(a)

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 10 20 30 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
(t

x/
se

c)

Number of nodes

RG-LA w=50 real
RG-LA w=50 pred

RG-SM w=50 real
RG-SM w=50 pred

(b)

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 10 20 30 40 50 60 70 80 90 100

C
o

m
m

it
P

ro
b

a
b

ili
ty

Number of nodes

RG-LA w=5 real
RG-LA w=5 pred

RG-LA w=10 real
RG-LA w=10 pred

(c)

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100

C
o

m
m

it
p

ro
b

a
b

ili
ty

Number of nodes

RG-LA w=50 real
RG-LA w=50 pred

RG-SM w=50 real
RG-SM w=50 pred

(d)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 10 20 30 40 50 60 70 80 90 100

R
p
re

p

Number of nodes

RG-LA w=5 real
RG-LA w=5 pred

RG-LA w=10 real
RG-LA w=10 pred

(e)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10 20 30 40 50 60 70 80 90 100

R
p
re

p

Number of nodes

RG-LA w=50 real
RG-LA w=50 pred

RG-SM w=50 real
RG-SM w=50 pred

(f)

Figure 4.10: Validation of the ETL-2PC model using the Radargun benchmark on the FG-I
infrastructure.

and 4.10f, which report predictions for the write intensive Radargun workloads (w=50). The

plots show that the models are able to predict that, while being characterized by similar commit

latencies, the RG-SM workload scales half as much as the RG-LA workload (particularly, up to

118 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-05 0.0001 0.001 0.01 0.1 1

C
D

F

Relative Absolute Error

Rprep Throughput Commit Prob.

Figure 4.11: Absolute relative error’s CDF of the predictions produced by the ETL-2PC models.

only 40 nodes vs 80), due to its much higher level of data contention.

4.2.5.4.2 CTL validation. The validation of the CTL models has been performed on the

PC-V and the FG-E infrastructures, and has been aimed at assessing the accuracy of the model

to predict throughput and commit probability of transactions running according to the CTL

concurrency control scheme and the 2PC replication protocol. Infinispan has been configured

to employ its default consistent hash function. According to this function, primary owners and

replicas of keys are scattered uniformly at random across nodes in the system: this is captured

by setting, in the 2PC case, LO = PO
1
N in the model, with N being the number of nodes in the

system.

Specifically, this section assesses the accuracy of the CTL-2PC model in predicting the

closed-system throughput and the abort rate of various YCSB workloads while varying the

number of nodes in the system, the replication degree and the underlying cloud infrastructure.

Figure 4.12 shows the accuracy of the models in predicting the performance achieved with

workloads characterized by very different scalability trends (with a replication degree fixed

to 2). The model is able to predict that workloads A/F-1-Z-PC are network bound, and that

their abort probability is negligible: in fact, though the abort probability of update transactions

is negligible, linear scalability is hampered by the interactions needed to fetch remote data

(for workload F, since it also performs a get operation) and to atomically commit transactions.

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 119

 0

 10

 20

 30

 40

 50

 60

 20 40 60 80 100 120 140

T
h
ro

u
g
h
p
u
t
(K

tx
s/

se
c)

Number of nodes

A-1-Z-PC real
A-1-Z-PC pred
F-1-Z-PC real

F-1-Z-PC pred
B-5-H-PC real

B-5-H-PC pred
A-5-H-FG real

A-5-H-FG pred

(a) Throughput

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100 120 140

C
o
m

m
it

p
ro

b
a
b
ili

ty
 (

w
ri
te

 t
xs

)

Number of nodes

(b) Commit probability (write txs)

Figure 4.12: Accuracy of the CTL-2PC model for different workloads (r = 2)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35 40 45 50

T
h
ro

u
g
h
p
u
t
(K

tx
s/

se
c)

Number of nodes

r=1 real
r=1 pred

r=2 real
r=2 pred

r=full real
r=full pred

(a) Throughput

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
o
m

m
it

p
ro

b
a
b
ili

ty
 (

w
ri
te

 t
xs

)

Number of nodes

(b) Commit probability (write txs)

Figure 4.13: Accuracy of the CTL-2PC model while varying r (B-5-H-PC)

Analogously, the model is able to predict that data contention is what limits the scalability of

workloads B-5-H-PC and A-5-H-FG, as it leads system’s performance to degrade as the degree

of concurrency in the system grows.

Figure 4.13, instead, shows the model’s capability of predicting the performance of an

application when changing replication degree and scale. To this end, it shows the throughput

and commit probability for workload F-5-H-PC while varying the scale and the replication

degree. It is possible to see that a higher replication degree is better for small deployments (up

to 15 nodes): in fact, though it yields, on average, a higher number of nodes to be contacted

at prepare time, it reduces (or eliminates, in the case of full replication) the generation rate of

remote get operations, whose cost is dominant at small scales for this workload. As the size

120 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h
p
u
t
(t

x/
se

c)

Number of nodes

real DEI pure ML

(a) ETL-2PC model vs ML on TPC-C (EC2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 20 40 60 80

M
e
a
n
 r

e
la

tiv
e
 e

rr
o
r

Percentage of additional training set

Cubist
M5R

SMOReg
MLP
DEI

(b) CTL-2PC model vs ML on YCSB (FG-E)

Figure 4.14: Comparing the Divide et Impera models with purely ML-based predictors.

of the system grows, however, the latency of the distributed commit phase at high replication

degree becomes the dominant cost, and yields higher lock hold times that result into higher data

contention; hence, a lower replication degree yields better overall performance. As shown in the

plots, the proposed model is able to quantitatively capture the effect of the shift of replication

degree and scale on performance: this suggests the viability of the proposed model not only

for resource provisioning, but also for the self-tuning of distributed transactional in-memory

platforms.

4.2.5.5 Comparison with pure ML approaches

This section is devoted at comparing the accuracy attained by the proposed models with the one

achieved by off-the-shelf ML-based predictors, as proposed in several recent works in the area

of automatic elastic scaling for DTPs (Chen et al., 2006; Ghanbari et al., 2007).

Figure 4.14a reports the result of an experiment aimed at carrying out such a comparison

between the proposed ETL-2PC Divide et Impera model (noted DEI) and a black box perfor-

mance model based on Cubist. To this end, Cubist has been trained on the TPCC-R workload,

deployed on Amazon EC2, while varying the number of nodes from 2 to 20 and the incoming

load (in closed loop with non-zero think time) from 100 requests per second until reaching 0

think time between subsequent requests issued by the same workload injector thread. The input

features for the ML included features like the percentage of update transactions and the mean

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 121

number of locks they request, ACF, workload intensity, along with number of nodes and active

threads per node. As in the previous evaluation study, closed-system throughput (with 0 think

time) has been set as target KPI.

The test dataset, instead, is composed by TPCC-W samples, which generates a signifi-

cantly higher data contention level with respect to TPCC-R. Further, unlike TPCC-R, TPCC-W

exhibits a non-linear scalability trend. As expectable (Chen et al., 2006; Q. Zhang et al., 2007),

in these conditions, the pure ML-based approach manifests its limits in terms of reduced accu-

racy when working in extrapolation. In fact, the plots in Figure4.14a clearly highlight that the

pure ML-based solution tends to mimic the linear scalability trend that it has observed during its

training phase. As a consequence, it blunders when faced with workloads (like the TPCC-W)

that i) have previously unobserved input characteristics (e.g., in terms of ACF), and ii) exhibit

significantly different performance trends.

This problem might be tackled to come extent by increasing the coverage of the training

phase. However, achieving a good accuracy across a wide range of workloads may require a

prohibitive increase of the ML training time. In fact, data contention dynamics in a (distributed)

transactional systems are influenced by a wide range of parameters (Couceiro et al., 2015), and

it is well known that the training time of ML techniques grows exponentially with the number

of input features (the, so called, curse of dimensionality (Bishop, 2006)).

The analytical model employed by the proposed hybrid model, on the other hand, can ex-

ploit the a priori knowledge on the dynamics of data consistency mechanisms to achieve higher

accuracy when working in extrapolation. Further, it allows for narrowing the scope of (and

hence for simplifying) the problem tackled via ML techniques, reducing the dimensionality of

the ML input features’ space and, consequently, the duration of the training phase.

A similar behavior can be witnessed by analyzing the results of a comparative experiment

carried out between the Divide et Impera CTL-2PC model (noted again DEI) and pure black box

approaches, specifically, the same ML tools that have been experimented with when building

and evaluating its black box network model. In the experiment, an initial training set and test

set are defined: the former consists of the same knowledge base that has been used to build

the network predictor of the hybrid CTL-2PC model, i.e., without data contention; the latter

122 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

is composed by YCSB workloads. The accuracy of the proposed model is compared, over

all the workloads in the test set, with the accuracy of the ML techniques when progressively

trained with additional, randomly selected, portions of the training set. Specifically, samples

corresponding to the 20%, 40%, 60% and 80% of the test set are randomly selected, removed

from the test set and added to the training set of the MLs (but not of the proposed model). The

MLs are, hence, trained with the updated training set and they are evaluated over the remaining

test set.

Figure4.14b reports the result of this evaluation, where each bar is the average of ten runs.As

expectable, the mean relative error of the MLs decreases as more samples are added to the train-

ing set. However, the accuracy of the hybrid model with the original training set is still twice

as high as the one achieved by the best performing learner trained with the 80% of additional

training set (12% vs 25%).

This confirms that the hybrid modeling technique employed in the proposed models can

produce reliable predictions requiring a smaller training set (and hence a lower training time)

than pure ML-based approaches, even outperforming them in terms of accuracy.

4.2.5.6 Measurements overhead and models resolution time

To conclude the evaluation of the presented Divide et Impera DTPs performance models, this

section reports the results of the experimental evaluation carried out to assess the overhead

incurred by Infinispan to collect input parameters of the described models and their resolution

time.

Overhead analysis. The proposed models require detailed information about the target applica-

tion to forecast its performance: this information consists of CPU demands for basic operations

(e.g., puts and gets), which can be profiled only once off-line, but also of workload-dependent

characteristics (e.g., ACF), which need to be profiled at run-time to allow for the reconfiguration

of the platform in the case of workload change.

The presented models are currently integrated in the Cloud-TM data platform (Romano

4.2. DIVIDE ET IMPERA PERFORMANCE MODELS OF DTPS 123

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10 50 100

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

Number of nodes

Uninstrumented
Distributed monitoring

Distributed monitoring + probes

Figure 4.15: Monitoring overhead.

et al., 2010), and are responsible for its self-tuning (Didona & Romano, 2014c). Therefore,

they can rely on the availability of the Cloud-TM workload characterization framework, which

consists of two components: i) a set of probes that are integrated in Infinispan to collect detailed

statistics on the transactional workload and on the usage of CPU/memory/network resources;

and ii) the distributed monitoring framework used to aggregate statistics gathered from all the

nodes in the system (Palmieri et al., 2011; Ciciani et al., 2012; Didona et al., 2014; Di Sanzo et

al., 2015).

Figure 4.15 shows the throughput when activating only the distributed monitoring frame-

work, and when activating also the probes for detailed statistics collection, normalized to the

throughput achieved using a non-instrumented version. In order to evaluate the impact of these

mechanisms in platforms of heterogeneous scales, deployments encompassing 10, 50 and 100

nodes have been considered.

The plots show that the overhead of the distributed monitoring framework remains unaltered

(about 2%) as the size of the data platform varies; conversely, the one introduced by the probes

grows with the number of nodes running the application, achieving a maximum of 12% for

100 nodes. Overall, the results show that the monitoring overheads remain largely acceptable

even in very large scale systems. However, it should be noted that these overheads represent

indeed an upper bound on the actual performance loss that would be introduced in case the

probing system avoided tracing every transaction, and implemented a more efficient/optimized

sampling strategy that collected statistics at a lower frequency (e.g., tracing only a percentage

124 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

C
D

F

Model resolution time (msec)

(a) ETL-2PC.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

C
D

F

Model resolution time (msec)

(b) CTL-2PC.

Figure 4.16: Model resolution time.

of the transactions (Trushkowsky et al., 2011)).

Models resolution time. To evaluate the resolutive algorithm presented in Section 4.2.4, this

section reports experimental data corresponding to the time it takes to query the proposed mod-

els. For the sake of symmetry with previous sections, this evaluation is performed separately on

two case studies: i) query time of the ETL-2PC model to predict Infinispan performance for the

Radargun benchmark deployed over the FG-E infrastructure and ii) query time of the CTL-2PC

model to predict YCSB performance on the PC-V infrastructure. In both cases the convergence

thresholds on abort probabilities and on closed-system throughput computation has been set to

0.01; the minimum/maximum arrival rates have been set, respectively, to 10/100K tx/sec, and

the fall-back exhaustive search algorithm has been set to operate at the granularity of 10 tx/sec.

The models have been queried on a machine equipped with a 2.7 GHz Intel Core i7, 8GB of

1333 MhZ DDR3 RAM and running Mac OS X 10.7.5.

Figure 4.16 reports the results of this evaluation, by depicting the Cumulative Density Func-

tion of the resolution time of the models. The plots show that, in both cases, the 90-th percentile

is less than 250 msec. The heavy tail in the CDFs is due to the resolution times of the model

for scenarios characterized by performance degradation caused by excessive contention on data

and high network latencies: solving the model for such scenarios, in fact, requires the employ-

ment of the exhaustive search algorithm introduced in Section 4.2.4, which is naturally more

4.3. CONCLUSION 125

computationally demanding.

Overall, the presented results confirm the viability of the proposed models not only to per-

form off-line capacity planning but also on-line self-tuning, by being able to quickly serve

what-if queries.

4.3 Conclusion

This chapter has presented the Divide et impera gray box modeling technique, which enables

the joint usage of white and black models targeting the performance prediction of distinct, but

possibly inter-related, modules of the system being modeled.

Such technique has been applied to model the performance of applications deployed over

DTPs, by implementing the following white/black box modeling dichotomy. On one side, white

box modeling has been employed to capture the effects of CPU utilization and of the concur-

rency/replication protocol; black box modeling, on the other side, has been exploited to obtain

a performance model of the network-related dynamics of the target platform.

The rationale underlying this design choice is that, by knowing the implementation of the

internals of the DTP, it is possible to explicitly model how the deployed application interacts

with processing resources and with the implemented protocols. On the other side, the virtual-

ization layer adopted in Cloud environments and the complexity of the communication toolkits

hide most of the details about the interactions between the application and the networking layer,

thus making it cumbersome to derive a detailed white box model.

The performed experimental evaluation has confirmed the viability of the approach, and has

shown that a Divide et impera-based performance model may be instantiated with less training

samples than a pure black box learner, while also delivering higher accuracy.

126 CHAPTER 4. THE DIVIDE ET IMPERA APPROACH

5The Hybrid Ensemble Approach

This chapter is devoted at describing and evaluating the Hybrid Ensemble performance model-

ing technique, which is based on the idea of combining the output of a set (i.e., an ensemble)

of white and black box models with the purpose of generating a single model with a higher

predictive accuracy than any of its constituent parts.

Specifically, a Hybrid Ensemble performance predictor relies on the availability of one or

more base white box performance models for the target application and envisages to comple-

ment them with one or more black box models. The ultimate goal of this ensemble of models it

to enhance the accuracy of the base predictors, correcting their possible inaccuracies by training

black box models over samples gathered from the operational system.

In general, as discussed in Section 3.1.3, such a correction can be implemented according to

different principles: this dissertation explores two of them, namely Selection and Patching. The

former consists in employing the performance model (either white or black) that is expected

to maximize accuracy depending on the configuration/workload whose performance is being

predicted; the latter entails progressively learning how to improve the predictions generated

by the white box models by correcting the errors of such models in various regions of their

parameter space.

This dissertation presents two Hybrid Ensemble techniques that implement the Selection

principle, namely Hybrid KNN and Probing, and two that embody the Patching principle,

namely Bootstrapping and Hybrid Boosting.

The proposed performance modeling techniques are applied to the problem of DTPs perfor-

mance forecasting by employing, as base white box predictors, the DTPs models proposed in

the previous Chapter. Note that, despite the gray nature of these models, they can be used in the

same guise of pure white box models to build Hybrid Ensemble predictors. Additional details

128 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

on how the Divide et impera DTPs performance predictors are employed as building blocks in

Hybrid Ensemble performance models are going to be provided in Section 5.4.1.3.

In addition, this chapter also provides and evaluation of the proposed Hybrid Ensemble

techniques using an additional case study, namely a Total Order Broadcast (TOB) primitive.

TOB primitives incarnate a fundamental problem in distributed computing, namely the consen-

sus one (Cachin et al., 2011), and represent a key building block in a number of DTPs (Couceiro

et al., 2009; Pedone et al., 2003). This additional evaluation is performed using a pure white box

predictor as base model in the ensemble, and allows for assessing the effectiveness of the pro-

posed techniques when applied to two very different performance prediction tasks (as described

in Section 5.4.1.3).

The remainder of this chapter is organized as follows: Section 5.1 introduces the notation

employed in the description of the proposed techniques; next, the Hybrid Ensemble method-

ologies are described: first, in Section 5.2, the techniques implementing the Patching principle

are presented, namely Bootstrapping and Hybrid Boosting; then, in Section 5.3, the Selection-

based approaches are described, namely Hybrid KNN and Probing; Section 5.4 is dedicated

to evaluating the four proposed techniques over the two aforementioned case studies; finally,

Section 5.5 concludes the chapter.

5.1 Notation

This section presents the notation employed throughout the discussion to describe the proposed

Hybrid Ensemble techniques. The Greek letter G represents, in general, a performance predic-

tor: the i�th white, resp. black, box performance predictor in a hybrid ensemble is noted Gi
WB,

resp. Gi
BB.

In the case that a specific hybrid ensemble method does not encompass the simultaneous

co-existence of more than one white or black box model, then the single instance of the given

modeling methodology will be referred to without the need of the indexing superscript.

Moreover, performance models regarded as white box are treated as immutable, i.e., the

function they encode is not dependent on any amount of available training data. On the other

5.2. PATCHING-BASED HYBRID ENSEMBLE TECHNIQUES 129

Analytical !
model!

Boostrapping"
training set!

Machine
learning!
!

Gray box "
model!

Sampling of"
the Parameter Space!

Model construction!

(a) Initialization phase.

Current
training set!

Machine
learning!

Gray box "
model!

New data"
come in!

(b) Updating

Figure 5.1: Main phases of the Bootstrapping technique.

hand, black box predictors are trained starting from available data and a learning algorithm: the

learning algorithm corresponding to a Gi
BB is noted g i

BB.

Finally, sets of elements, which can be either models or learning algorithms, are noted with

the letter W: whenever necessary, the subscript WB, resp. BB, is used to indicate that the set

refers to a collection of white, resp. black, box models; if needed, additional superscripts are

used to discriminate between a set of black box predictors and the set of corresponding learning

algorithms that are used to train them. The superscript G is employed in the former case, and g

in the latter.

Additional, technique-specific, notation needed to simplify the presentation will be em-

ployed, and properly introduced, whenever necessary.

5.2 Patching-based Hybrid Ensemble Techniques

This section describes the proposed Hybrid Ensemble techniques that embody the Patching

principle: according to this principle, black box techniques are applied on the output of a base

white box predictor so as to detect and ultimately correct its prediction inaccuracies.

Specifically, Section 5.2.1 presents the Bootstrapping technique, which initially trains a

black box learner over the output of a base white box one and then incorporates in the training

set factual knowledge about the actual performance of the target system; Section 5.2.2, instead,

describes the Hybrid Boosting technique, which employs black box techniques to learn the error

distribution of the provided white box model in order to generate a complementary function that

compensates for its inaccuracies.

130 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

Algorithm 1 Bootstrapping main loop
1: Algorithm g . Black box learning algorithm
2: Model GBB . Black box model ultimately used predict performance
3: Model GWB . White box model used to bootstrap the black box one
4: function MAIN(Algorithm g , Model GWB, int initSize, double e)
5: DataSet ST = initKB(g,GWB, initSize,e) . Generate the synthetic training set
6: GBB = g(ST) . Train the ML over the synthetic training set
7: while true do
8: DataSet D = collectSamples() . Collect samples at runtime
9: updateKB(ST,D) . Incorporate the new samples in the knowledge base
10: GammaBB = g(ST) . Re-train the ML over the updated training set
11: end while
12: end function

13: function QUERY(Configuration x)
14: return GBB(x)
15: end function

5.2.1 Bootstrapping

This section describes the Bootstrapping technique in a top-down fashion: first, a specification

of the technique is presented, in which several relevant building blocks are encapsulated into

abstract primitives. Next, Sections 5.2.1.1 and 5.2.1.2 shall discuss in detail the key parametric

and algorithmic trade-offs associated with each of these primitives.

As reported in the pseudo-code of Algorithm 1, the Bootstrapping technique consists of two

main phases: the initialization of the black box model based on the predictions of the analytical

one (Lines 5-6), and its update, which is performed every time that new samples from the

running application become available (Lines 7-11).

The initialization phase, depicted in Figure 5.1a and detailed in Section 5.2.1.1, is com-

posed, in its turn, of two steps:

i) generation of the synthetic training set (Line 5): a subset T of the white box’s parameter

space (PS) is generated and is used to bootstrap the knowledge base of a black box learning

algorithm. As already mentioned, the number of samples in PS that are necessary to charac-

terize an arbitrary function defined over such space grow, in the worst case, exponentially with

the dimensionality of PS. A first challenge addressed in this step is, thus, to determine which

samples to include in the initial synthetic training set in order to have a sufficient coverage of

the whole parameter space.

Once T has been obtained, the white box model is queried to compute a prediction of the

performance of the application for each of its elements. The output of this phase is a new set

5.2. PATCHING-BASED HYBRID ENSEMBLE TECHNIQUES 131

Algorithm 2 Initialization phase
1: function INITKB(Algorithm g , Model GWB, int initSize, double e)
2: double error . Fitting error of ml over GWB’s function
3: int currSize = initSize . Current size of the synth. training set
4: do
5: Set T = SampleCon f igSpace(currSize) . Training configurations
6: DataSet ST = /0 . AM-based training set
7: for all x 2 T do
8: ST = ST [{x,GWB.query(x)} . Query the analytical model
9: end for
10: error = estimateFittingError(ST,g) . Evaluate g’s fitting error over GWB
11: currSize = nextSize() . Select a new value for the size of T
12: while (!isAccurate(error,e)) . Ensure ml has learnt am’s function
13: return ST
14: end function

ST , whose elements are tuples of the form < x,GWB.query(x)>, where x 2 T and GWB.query(x)

is the corresponding prediction computed by the white box predictor. This step will be detailed

in Section 5.2.1.1;

iii) black box model construction (Line 6): the black box algorithm is trained on ST and pro-

duces a statistical model of the application’s performance; note that the training process can be

based on alternative algorithms, e.g., Decision Trees (DT), Artificial Neural Networks (ANN)

and Support Vector Machines (SVM) (Bishop, 2006).

The update phase, shown in Figure 5.1b, consists of 3 steps:

i) collection of real samples (Line 8): a new dataset D of < x, per f (x) > tuples is collected,

where x is a configuration/workload of the target application, and per f (x) is the real perfor-

mance, i.e., measured on the live system, corresponding to x. Such factual knowledge can either

be spontaneously originated by the on-line production system (e.g., corresponding to workloads

that are generated by end users), or can be collected during a dedicated off-line training phase,

thus steering the workloads and configurations to experiment with;

ii) update of the training set (Line 9): the ST set is updated in order to incorporate knowledge

represented by the samples in D. In general, this operation can be performed in several ways,

which will be discussed in Section 5.2.1.2;

iii) black box model update (Line 10): the black box learning algorithm is trained on the updated

ST and outputs a new application performance model.

132 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

5.2.1.1 Synthetic Knowledge Base Initialization

The first step of the Bootstrapping technique is embodied by the INITKB function, whose

pseudo-code is reported in Algorithm 2. This function iteratively performs two main opera-

tions. The first one consists in selecting a subset T of samples from the whole space of possible

configurations for the application. The second one consists in generating a “synthetic” training

set ST by exploiting the predictions output by the white box model for each of the elements in

T . The goal of the function is to output a synthetic training set ST that is representative of the

target performance function to be modeled, i.e., such that the black box learner trained over it is

able to accurately represent the performance function embedded in the base white box model.

The initKB function takes as input a white box model of the target application (GWB), a

black box learning algorithm (g), an initial value for the size of the synthetic training set (init)

and a threshold value (e). Then, proceeding iteratively, it aims to find a value x such that training

g over a synthetic training set of size x produces a black box model which well approximates

GWB.

To this end, the initKB function relies on 4 primitives. Their high-level functionalities are

described in the following: their implementation is, instead, provided in Section 5.4.2.1, which

presents the evaluation study.

•SAMPLECONFIGSPACE: it determines which samples of the feature space to include in the

synthetic training set, given its size. This function can embody arbitrary sampling strategies,

based, e.g., on random sampling or Active Learning (Settles, 2009).

•ESTIMATEFITTINGERROR: it estimates how much the performance model obtained by train-

ing g over T is similar to the one embedded by GWB. Also this primitive lends itself to several

possible instantiations, e.g., leave-one-out or cross-validation (Arlot & Celisse, 2010).

•ISACCURATE: it returns true if the model obtained from g approximates GWB sufficiently well;

false otherwise.

•NEXTSIZE: it determines the size of the set to sample from the whole parameter space at the

next iteration. The initKB function basically aims at minimizing the difference between GWB’s

and the black box model’s predictions as a function of ST ’s size. Therefore, this primitive can

5.2. PATCHING-BASED HYBRID ENSEMBLE TECHNIQUES 133

Algorithm 3 Update phase
1: function UPDATEKB(DataSet D)
2: setWeight(D,w) . Set the weight to the new samples
3: function update = any function in {MERGE,RNN,RNR,RNR2}
4: update(D);
5: GBB = g(ST) . Retrain the ML with the new dataset
6: end function

7: function MERGE(DataSet D)
8: ST = ST [D . Add the real samples
9: end function

10: function RNN(DataSet D)
11: for all (x,y) 2 D do
12: (xr,yr) = argmin

(x0 ,y0)2ST
{dist(x0,x)} . Find the NN

13: ST = ST \{(xr,yr)} . Remove the NN
14: ST = ST [{(x,y)} . Insert the real sample
15: end for
16: end function

17: function RNR(DataSet D, double c)
18: DataSet D NR = /0 . Temporary NN set
19: for all (x,y) 2 D do
20: D NR = {(xt ,yt) 2 ST : dist(x,xt) c^ isSynthetic(xt ,yt)}
21: ST = ST \D NR . Remove the NNs
22: for all (x,y) 2 D do
23: ST = ST [{(x,y)} . Add real samples
24: end for
25: end for
26: end function

27: function RNR2(DataSet D, double c)
28: DataSet D0 = D . Temporary set of real samples still unmatched
29: for all (xt ,yt) 2 ST do
30: (xr,yr) = argmin

(x,y)2D
{dist(xt ,x)} . Find the NN

31: if dist(xr,xt) c^ isSynthetic(xt ,yt) then
32: ST = ST \{(xt ,yt)} . Remove the NN
33: ST = ST [{(xt ,yr)} . Add NN with modified output
34: D0 = D0 \ (xt ,yt) . Remove the real sample from the temp. set
35: end if
36: end for
37: for all (x,y) 2 D0 do
38: ST = ST [{(x,y)} . Add unmatched samples
39: end for
40: end function

implement different search techniques to identify a cardinality of ST such that, under the pro-

vided sampling algorithm, the obtained black box model is similar to the provided white box

one, e.g., iterative or binary search.

These primitives are employed in the initKB function as follows: i) sample the parameter

space via the sampleConfigSpace primitive, to obtain a set T of cardinality currSize (Line 5);

ii) for each element in T , query GWB to obtain the corresponding performance prediction, and

generate the synthetic set ST (Lines 6-9); iii) train g over ST and evaluate its accuracy in

predicting the performance function encoded by GWB, by means of the isAccurate primitive

134 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

(Line 10); iv) if the fitting error is less than a given threshold e , then return ST ; else determine

the next value for currSize and go to step i) (Lines 11-13)1.

Note that, given a sampling algorithm, the cardinality of ST plays a role of paramount

importance in determining the effectiveness of the Bootstrapping methodology. It represents,

in fact, a key trade-off between the accuracy with which the function encoded by the white box

model can be approximated by the black box learner, and the effectiveness with which the latter

can incorporate new knowledge deriving from the availability of samples collected from the

operational system.

Reducing the number of samples can, in general, yield several benefits. These include

reducing the duration of the initial training phase of the black box learner; also, it may favor

the subsequent update phase of the training set: the lower the number of synthetic samples, the

higher the relative density of the real samples in the updated training set. This can reduce the

time it takes for the real samples to outweigh the synthetic ones, and correct possible errors of

the white box model.

However, using a lower number of synthetic samples also yields the black box model to

approximate more coarsely the original white box one, which may degrade accuracy. On the

other hand, a very large training set provides more detailed information to the black box learner

on the function embodied by the white box model, and can favor a better approximation of such

function. However, it comes with the downside of an increased training time and may induce a

longer transient phase before runtime samples can take over synthetic ones.

Note that the initial training phase of the black box model is performed over the output of

GWB on a sampling of the whole parameter space PS of the target application. Hence, even if

provided only with a set R of real samples corresponding to narrow regions of PS, the boot-

strapped learner still inherits the predictive power of the base white box model when working

in extrapolation with respect to R (as evaluated in Section 5.4.2.3).

1For simplicity, we do not show how to handle cases in which the fitting error never goes below the e . Coping
with this case could simply entail returning the ST that minimizes the error after a given number of attempts.

5.2. PATCHING-BASED HYBRID ENSEMBLE TECHNIQUES 135

5.2.1.2 Update of the Knowledge Base

The UPDATEKB function, reported in Algorithm 3, is the core of the Bootstrapping methodol-

ogy, as it allows for the incremental refinement of the initial performance model. This function

is responsible for incorporating real samples coming from the running application into the ini-

tial synthetic training set, thus allowing the black box model to gradually correct inaccurate

performance predictions by the white box model.

The UPDATEKB function takes as input the dataset D containing new samples and injects

them into the current training set. The key issue here is that the new samples contained in D

may contradict the synthetic samples generated by the AM that are in the training set. This

happens whenever D contains samples belonging to regions of the feature space in which the

AM achieves unsatisfactory accuracy: in such a case, in fact, the AM generates outputs (i.e.,

performance predictions) that may differ significantly from the corresponding values in D (i.e.,

having similar or identical input mapped to different output). In this work, we consider two

techniques that aim at reconciling possible divergences between synthetic and actual samples:

weighting and replacing.

Weighting is a well-known and widely employed technique in the ML area (Cost &

Salzberg, 1993): the higher the weight for a sample, the more the ML will try to minimize the

fitting error around it when building the statistical model. In the Bootstrapping case, weight-

ing can be used to suggest the ML to give more relevance and trust to real samples than to

synthetic ones. The replacing approach consists in removing preexisting “close enough” (syn-

thetic) samples from the training set, whenever new real samples are incorporated. We consider

four implementations of the UPDATEKB function, which incorporate new knowledge according

to different principles.

1) Merge. This is the simplest considered variant, and it consists in adding the new samples

to the existing set ST (lines 7-9). This implies the possible co-existence of real and synthetic

samples that map very similar (or equal) input features to very different performance. Hence,

the use of weights is the only means to induce the ML to give more importance to real samples

over (possibly contradicting) synthetic ones.

2) Replace based on Nearest Neighbor (RNN). This variant consists of two steps, which are

136 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

repeated for each element (x,y) in D: i) find the element (xr,yr) that is closest (according to a

distance function) to (x,y) in ST (line 12) and ii) replace (xr,yr) with (x,y) (lines 13-14). Also

in this case the newly injected sample is given a weight w. Note that, once an element from D

is inserted in ST , it becomes eligible to be evicted from the set, even in favor of another sample

contained in D itself. This algorithm aims at progressively replacing all the synthetic samples

from ST with real ones; by switching a real sample with its nearest neighbor in ST , moreover,

this algorithm aims at keeping unchanged the density of samples in ST .

3) Replace based on Nearest Region (RNR). This algorithm represents a variant of RNN. A

first difference is that, in order to avoid “losing” knowledge gathered from the running system,

RNR policy only evicts synthetic samples from the training set. Moreover, instead of replacing

a single sample in ST , a sample in D replaces all the ones in ST whose distance from it is less

than a given cut-off value c. If a sample in D does not replace any sample in ST , it is added to

ST , as it is considered representative of a portion of the feature space that is not covered by pre-

existing elements in ST . On one side, this implementation speeds up the process of replacement

of synthetic samples with real ones; on the other side, depending on the density of the samples

in ST and on the cut-off value, it may cause imbalances in the density of samples present in the

various regions of the feature space for which T contains information. In fact, a single sample

from D may potentially take the place of many others in ST .

4) Replace based on Nearest Region (RNR2). This algorithm represents a variant of RNR.

Also RNR2 policy, in fact, only evicts synthetic samples from the training set; however, it dif-

fers from RNR in the way samples corresponding to actual measurements are incorporated in

the training set. For each element (x,y) 2 ST , the closest neighbor (xr,yr) 2 D is found (line

29): if the distance between the two is less than a cut-off value c (line 30), then the output

relevant to x is changed from y to yr (lines 31-32). Like in RNR, if a sample in D does not

match any sample in ST , it is added to ST . This implementation inherits from RNR the speed in

replacing samples in ST with real, new ones, but avoids its downside of changing the density of

samples in ST : instead of removing samples from ST , for each element (xr,yr) in D, the target

value of all the points in the training set for which it is nearest neighbor and within distance c is

approximated with yr.

5.2. PATCHING-BASED HYBRID ENSEMBLE TECHNIQUES 137

Algorithm 4 Hybrid Boosting
1: Set Wg

BB,R = {g1
R, . . . ,gM

R } . ML regressors for residue prediction
2: Set WG

BB,R = {G1
BB,R, . . . ,GM

BB,R} . Black box models for residue prediction.
3: Set WG

P = {G0
P, . . . ,GM

P } . Models for overall performance prediction
4:
5: function INIT(White Box model GWB, Data Set Dtr)
6: G0

P = GWB . Set GWB as the first predictor in the chain.
7: for m = 1 ! M do
8: Dm = /0
9: for each <xn,yn >2 Dtr

10: ym,n = yn �Gm�1
P (xn) . Compute the residual error of the previous performance predictor

11: Dm = Dm [< xn,ym,n >
12: end for each
13: Gm

BB,R = gm
R (Dm) . Train on the residuals.

14: Gm
P = Gm�1

BB,R +Gm
BB,P . Set the m-th predictor

15: end for
16: end function

17: function FORECAST(xs)
18: return G0

P(xs)+ÂM
m=1 bmGm

BB,R(xs)
19: end function

5.2.2 Hybrid Boosting

The Hybrid Boosting (HyBoost) is based on a well-known technique from the literature on

ensembles of black box learners, known as Boosting (Bishop, 2006), ad adapts it in order to

support the joint usage of white and black box models. In a nutshell, the Boosting technique

aims at building one strong learner by training a set of weak learners in an iterative fashion,

i.e., having each of such learners to compensate for the prediction error of its predecessor. In

particular, the starting point for such hybrid methodology is the Adaptive Logistic Regression

technique.

The HyBoost technique, as reported in Algorithm 4, exploits the availability of a single

white box model GWB and a set of M black box ones. The possibility of exploiting only a single

white box model stems from the fact that, as hinted, the Boosting paradigm entails a learner to

be trained according to the error of the previous one. Since a white box model is immutable by

definition, it is not possible to change the function that is encodes depending on the behavior of

other models. Black box regressors, conversely, can compensate for the error of another model,

by being trained over the error exhibited by another one (called residue) instead of targeting the

prediction of the target performance function.

138 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

The key intuition at the basis of Boosting, when applied to black box learners, is that it may

be easier to learn the prediction error of a given ML algorithm trained on a target function, than

learning the target function itself. The HyBoost extends this concept also to the case of white

box models, entailing the iterative refinement of the predictions of a white box model by means

of sequential black box corrections.

More in detail, HyBoost uses two (ordered) sets of predictive models, noted WG
BB,R and WG

P,

composed by, respectively, m and m + 1 models. The single white box model GWB is set to be

the model with index 0 in WG
P (Line 6). The model with index 1 in WG

P, instead, is obtained by

training the first regressor g1
R with the residual training set D0, which characterizes the absolute

prediction error of GWB for each point in the original training set Dtr. Any other model Gi
BB,R,

with i 2 [2,M], is trained over the residual prediction errors of the model GBB,Pi�1, which

incorporates the knowledge of the white box model and of the first i�1 ML-based learners by

means of the following recurrence equation (Line 14) 2:

Gm
P = Gm�1

P +Gm
BB,R. (5.1)

Note that, analogously to Bootstrapping, also Hybrid Boosting can exploit black box mod-

els based on different learning algorithms. Moreover, it may be further extended and optimized

using well-known techniques in the literature on boosting ML algorithms, such as adaptively

weighting the elements in the training set of the i-th learner in order to focus it on minimizing

its fitting error on samples over which the i�1-th learner incurred the largest errors (Schapire,

1999).

5.3 Selection-based Hybrid Ensemble Techniques

This section presents the proposed Hybrid Ensemble techniques that implement the Selection

principle: unlike the Patching one, according to this principle, several white and black box

2In another work (Didona et al., 2013b) we also explore a multiplication-based variant of HyBoost: the residual
error of a model over a sample is not the absolute difference between the real value r and the predicted one p, but
the ratio r

p . In that case, Equation 5.1 takes the form Gm
P = Gm�1

P ·Gm
BB,R

5.3. SELECTION-BASED HYBRID ENSEMBLE TECHNIQUES 139

Algorithm 5 Hybrid K Nearest Neighbors
1: Set W = /0 . Set of models to use
2: Set WWB = G1

WB, . . . ,GN
WB . Set of white box models

3: Set Wg
BB = {g1, ...,gM} . Set of ML regressors

4: Set Dval = /0 . Validation set
5:
6: function INIT(Set WWB, Training Set Dtr)
7: W = {WWB} . Initialize with white box models
8: Set Dregr = RandomSampling(Dtr) . Build the training set for ML regressors
9: Dval = D\Dtb . Build a validation set (disjoint w.r.t. Dregr)

10: for m = 1 ! M do
11: Gm

BB = gm(Dtb) . Train m-th regressor
12: W = W[{Gm

BB}
13: end for
14: end function

15: function FORECAST(xs)
16: Set Dk={<xi,yi >2KNN(xs,Dval) s.t. ||xi,xs||< c}
17: for each Gi 2 W do
18: ERR[i] = compute prediction error of model Gi on set Dk
19: end for each
20: µ = argmin

i=1...M+N
ERR[i] . Find learner with lowest RMSE

21: return Gµ .query(xs)
22: end function

performance models are maintained in parallel and, depending on the input sample, only the

model that is supposed to minimize the predictive error is employed.

More in detail, Section 5.3.1 presents the Hybrid KNN technique, in which the expected

most accurate predictor is determined by evaluating the accuracy of the available models on

training samples that are similar to the input one; Section Section 5.2.2, instead, describes the

Probing technique, in which the predictor to employ is determined by relying on an arbitrary

classifier.

5.3.1 Hybrid K Nearest Neighbors

The key idea at the basis of the Hybrid K Nearest Neighbor (KNN) ensemble technique is to

train several models independently and to use, depending on the incoming query, the one with

the lowest expected predictive error. In particular, in order to estimate the error in predicting the

performance for a new sample x, this technique evaluates the accuracy of the available models

on a set of samples Dk that are as similar as possible to x.

140 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

As detailed in the pseudo-code in Algorithm 5, the KNN technique encompasses the pres-

ence of an arbitrary number of both white and black box performance predictors. Such predic-

tors can be selected according to different principles, but in general their choice should promote

model diversity (Dietterich, 2000). On the black box side, this can be accomplished, for exam-

ple, by considering different ML algorithms and corresponding parameterization; similarly, on

the white box side, diversity can be achieved by encompassing predictors relying on different

methodologies, e.g., Analytical Modeling and Simulation.

The KNN algorithm is initialized via the INIT function, by providing the set of initial white

box models and a set of data samples, Dtr =< xi,yi >, which convey information on the perfor-

mance yi 2C of the target system over a set of observed configurations xi 2 F . The data set Dtr

is not entirely used to train the set WG
BB of regressors: conversely, Dtr is split into two disjoint

data sets, namely a training and a validation set, noted, respectively, Dregr and Dval .

Dregr is used as training set for the learning algorithms in Wg
BB, and is obtained by extracting

a random subset amounting to a percentage pregr of Dtr. Dval is obtained as the complementary

subset of Dregr 2 Dtr, which ensures the disjointness of the two sets Dregr and Dval by con-

struction. The role of Dval and the importance of having disjoint training and validation set is

explained in the following.

The Dval set is used at query time (function FORECAST), when the Hybrid Ensemble model

is queried to predict the expected performance of the target system, noted ys, in the configura-

tion xs. To this end, it is first computed the set Dk that contains the k nearest training samples

{x1,. . .,xk }2 Dval within distance c from point xs. The samples in Dk, for which the corre-

sponding actual performance is known, are then used to compute the average accuracy of each

of the models in the set W (Line 18). This allows for identifying the model, noted Gµ in the

pseudo-code (Line 20), which is expected to maximize prediction accuracy in the region sur-

rounding xs. Based on this geometric interpretation, the c parameter can be interpreted as a

cut-off threshold, which allows for discarding samples of the validation set that are considered

too far away from xs and which, thus, may not be representative of the target configuration xs.

The relevance of ensuring the disjointness of Dval and Dtr is now clear: estimating the ac-

curacy of a black box performance model Gi
BB using samples that were used during its training

5.3. SELECTION-BASED HYBRID ENSEMBLE TECHNIQUES 141

phase could potentially lead to a significant overestimation of its accuracy. On the other hand,

by ensuring Dval ^Dtr = /0, evaluating the accuracy of Gi
BB over any subset of Dval corresponds

to assess the generalization error of Gi
BB for previously unseen inputs. Therefore, the expected

prediction error for a new sample x can be inferred by evaluating the accuracy of Gi
BB in pre-

dicting performance corresponding to previously unknown sample in Dval that are similar to x,

i.e., Dk.

5.3.2 Probing

Similarly to the KNN case, the last of the proposed hybrid ensemble technique, named Probing,

aims at serving a specific query with the model that is expected to minimize the prediction error.

However, Probing presents two main distinctive features with respect to KNN. First, Probing

encompasses the combination of a set of white box models with only one black box regressor,

which is intended to be highly specialized in predicting the target performance function in

the specific regions of the inputs space where none of the available white box models proves

to be sufficiently accurate. Second, Probing relies on a generic classifier to determine which

underlying model is going to be used depending on the query, instead of estimating models’

accuracy over a set of neighbors.

More specifically, as detailed in Algorithm 6, the Probing technique uses a set WWB of white

box learners, that are built independently; a classification algorithm, noted gcls, to learn where

(i.e., in which regions of the feature space) the provided white box models are not sufficiently

accurate (based on a parametric threshold c over the absolute percentage error); a regression

algorithm, noted greg which is trained to learn the performance function of the target systems

exclusively in the regions in which the white box models do not achieve adequate accuracy.

The initialization phase of a Probing-based predictor, summarized by the INIT function in

Algorithm 6, encompasses the labeling of each sample xi in the training set depending on the

accuracy achieved by the white box models in predicting its corresponding performance. A

sample xi is labeled as belonging to class k if the k�th white box model in WWB is the one

achieving the lowest relative prediction error for xi and such error is lower than the c threshold

(Lines 11-12). If no such white box model in WWB exists, then xi is labeled as belonging to the

142 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

special class 0, corresponding to the black box learner; at the same time, the tuple < xi,yi > is

added to the training set of the black box learning algorithm greg (Lines 14-15 of the pseudo-

code). At the end of the initialization phase, both the classification and the regression algorithm

are executed on their respective training sets. As a result, a classifier Gcls and a regressor Greg

are built: the former determines which is the predictive model to be used to serve a specific

query; the latter is intended to predict performance for configurations similar to the ones for

which no white box models has proven to be sufficiently accurate.

The prediction phase corresponding to an input xs, is summarized in the xx function of Al-

gorithm 6: first, Gcls identifies the predictor that is expected to be the most accurate in predicting

performance corresponding to xs (Line 22); then, such predictor is invoked to serve the query

(Lines 23-26).

The intuition underlying the Probing technique is that, if the errors of the available white

box learners are concentrated in restricted and easily identifiable regions of the input space (via

Gcls), it is, then, possible to specialize the training phase of a black box learner exclusively on

those regions. As a result of narrowing the domain of the performance function to be learnt by

greg, the accuracy of the resulting Greg may be increased.

5.4 Evaluation

This section is devoted to assess the effectiveness of the four proposed Hybrid Ensemble tech-

niques by means of an extensive experimental evaluation based on the two selected case studies,

namely the Infinispan DTP and the Total Order Broadcast primitive of the Appia Group Com-

munication Toolkit.

In particular, this section is organized as follows: Section 5.4.1 provides details about the

experimental test bed; in addition, Section 5.4.1.3 provides some additional details about the

aim and the execution of the evaluation process; Section 5.4.2 to Section 5.4.3 evaluate the four

techniques alone, focusing on assessing their sensitivity to the amount of available training data

and settings of internal parameters; finally, Section 5.4.6 provides a mutual comparison of the

techniques.

5.4. EVALUATION 143

Algorithm 6 Probing
1: Set WWB . Set of white box models
2: Classification algorithm gcls . Detects when no white box model in WWB is accurate enough
3: Classifier Gcls . Built by training gcls
4: Regression algorithm greg . Learns the performance function in areas where models in WWB are inaccurate
5: Regressor Greg . Built by training greg
6: Set Dreg,Dcls = /0 . Initialize training data sets
7:
8: function INIT(Set WWB, Data Set Dtr)
9: for each <xn,yn >2 Dtr

10: k = argmini=1...|WWB|{AV G ERR(Gi
WB,< xn,yn >)} . Find white box model with lowest predictive error

11: if |(yn �Gi
WB(xn))/yn| c then . The k�th white box model is accurate enough for the sample

12: Dcls = Dcls [{< xn,k >}
13: else . None of the white box models is accurate enough for the sample
14: Dcls = Dcls [{< xn,0 >} . 0 is the index corresponding to Greg
15: Dred = Dreg [{< xn,yn >}
16: end if
17: end for each
18: Gcls = gcls(Dcls) . Train the classifier
19: Greg = greg(Dbad) . Train the regressor
20: end function

21: function FORECAST(xs)
22: k = Gcls(xs) . Identify the predictor with lowest expected predictive error
23: if k == 0 then
24: return Greg(xs)
25: else
26: return Gk

WB(xs)
27: end if
28: end function

5.4.1 Experimental test-bed

This section is devoted at describing the experimental test-bed used to validate the effectiveness

of the proposed Hybrid Ensemble techniques. As already mentioned, the empirical assessment

of such techniques is performed using two case studies: throughput prediction of applications

deployed over the Infinispan DTP and message delivery time in a Total Order Broadcast (TOB)

primitive.

The DTP case study has been introduced in Chapter 2, and has been widely discussed

in Chapter 4. The following section is, thus, dedicated to introducing the TOB case study;

Section 5.4.1.2, instead, provides additional information on the performance models employed

as base predictors integrated into Hybrid Ensemble models; finally, Section 5.4.1.3 discusses

the relevance of the two employed case studies. This last section especially highlights why they

144 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

can be considered as representative of a broad class of applications and, thus, ideal candidate to

validate the effectiveness of the proposed Hybrid Ensemble techniques in different scenarios.

5.4.1.1 Total Order Broadcast Overview

TOB introduction. The TOB primitive allows a group of distributed processes to reach agree-

ment on a common order of delivery of messages in presence of concurrent broadcasts by

any process of the group. TOB represents a key building block at the basis of a number of

fault-tolerant replication mechanisms for databases (Pedone et al., 2003), transactional mem-

ory (Couceiro et al., 2009) and highly-available objects (Meling et al., 2008) and several solu-

tions to model and self-tune its performance have been proposed in literature, based on white

box (Santos & Schiper, 2013), black box (Couceiro et al., 2011; Didona, Carnevale, et al.,

2012) and even gray box techniques —specifically, on-line Bootstrapping (Romano & Leonetti,

2012).

The case study considered in this thesis, particularly, is a Sequencer-based implementa-

tion of TOB (STOB) (Cachin et al., 2011), implemented in the Appia Group Communication

toolkit (Miranda et al., 2001); STOB algorithms represent a particularly attractive class of con-

sensus protocols as they achieve the minimum bound on message latency for these types of

problem (Lamport, 2003).

The message patterns generated by STOB algorithms to reach consensus is similar to the

one of the Paxos algorithm (Lamport, 1998). This class of algorithms, in fact, relies on a special

node, called sequencer, to impose a total order on the stream of messages broadcast by the group

of processes. A total order broadcast of a message starts with the execution of a plain broadcast

of the message by the sender process; when a process receives a message from the network,

however, it cannot immediately deliver it to the application: in order to guarantee group-wide

agreement on the final delivery order, in fact, it has first to wait to receive from the sequencer

the corresponding sequencing message, and to ensure that all previously ordered messages have

been delivered.

STOB algorithms have their key strength point in that they are optimal in terms of the

number of communication steps necessary to establish the total order. On the down side, their

5.4. EVALUATION 145

main limitation is that their maximum throughput is upper bounded by the capacity of the

sequencer to generate sequencing messages. In fact, in Local Area Networks, or in typical

data centers, which represent the use case for this thesis, the bottleneck is typically represented

by the sequencer’s CPU (Santos & Schiper, 2013).

Batching, also known as message packing (T. Friedman & Renesse, 1997), is a well-known

optimization technique that aims at coping precisely with this issue: by buffering messages,

the sequencer can amortize the sequencing cost and achieve higher throughput; the message

delivery latency, however, can be negatively affected at low load, due to the additional time

spent by the sequencer waiting (uselessly) for the arrival of additional messages. Therefore, the

effectiveness of the batching technique strongly depends on identifying a good batching level b

depending on the workload. The optimal batching level b⇤ is the one that maximizes achievable

throughput while minimizing total-ordered messages delivery latency.

The modeling task corresponding to this case study consists in predicting the total-ordered

messages delivery latency at the sequencer node depending on the global arrival rate of mes-

sages in the system, l , and a given batching rate b. Such a model can be, then, exploited to

derive in closed form the optimal batching value for a given workload (Romano & Leonetti,

2012).

Figure 5.2 depicts the surface of the function corresponding to the total-order messages

delivery latency at the sequencer. Clearly, the function exhibits a strong non-linear behavior,

and its projections over single dimensions are characterized by very steep curves: this is typical

of queuing systems, whose response time quickly grows to infinite when the message arrival rate

approaches the maximum service rate sustainable by the sequencer (given the current batching

level b) (Kleinrock, 1975). These strong non-linear trends make it challenging to model this

performance function by either white box or black box techniques alone.

5.4.1.2 Introduction on the Employed Base Models

TOB. The white box performance model for the TOB case study is an analytical model, origi-

nally proposed by Romano and Leonetti (Romano & Leonetti, 2012). The target performance

function represents the self-delivery time of a batch of totally-ordered messages and is defined

146 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

0500010 000

l Hmsgs ê secL

0

20

40

60

b

20 000

40 000

60 000

80 000

100 000

Latency HmsecL

Figure 5.2: Messages delivery time of the STOB service as a function of l and b

over a two dimensions, corresponding to the rate of messages generation to be totally-order

delivered and the batching level at the sequencer side.

In a nutshell, in the considered analytical model the sequencer node is represented as a

M/M/1 queue, for which each job corresponds to a batch of messages of size b. The message

delivery latency is computed as the response time for a queue that is subject to an arrival rate

l corresponding to the frequency of arrival of a batch of messages of size b and whose service

time µ accounts both for the CPU time spent for sequencing a message of size b and for the

average time waited by a message to see its own batch completed (Romano & Leonetti, 2012).

This analytical model takes as input the CPU costs of processing the first and subsequent

messages in a batch. In this study, the estimation of these costs has been performed by finding

the values that minimize the analytical model’s prediction error over all the samples in the

available data-set. Therefore, this baseline allows for assessing the effectiveness of the proposed

Hybrid Ensemble techniques in improving the accuracy also of parameter estimation-based

gray box models, introduced in Section 3.1.3.2. Since the fitting has been performed over

the whole set of available measurements, the accuracy of this baseline already represents an

upper-bound of the one achievable by the parameter estimation technique in this use case. The

following evaluation, therefore, shows that Bootstrapping can also improve over this other gray

box modeling technique.

The dataset corresponding to hinput,out puti tuples, which is used for both training and

testing purposes, comprises nearly 500 samples, collected on a cluster of 10 machines equipped

5.4. EVALUATION 147

with two Intel Quad-Core XEON at 2.0 GHz, 8 GB of RAM, running Linux 2.6.32-26 server

and interconnected via a private Gigabit Ethernet. During experimentation, the batching level

has been varied between 1 and 64, and 512-byte messages were injected at arrival rates ranging

from 200 msgs/sec to 13K msgs/sec.

DTP. The reference model employed as base predictor for the DTP case study is the Divide et

impera CTL-2PC model described in the previous chapter, and the target performance function

is the closed-system throughput of the system. As already discussed in the previous chapter,

this model represents by itself an instance of gray box modeling: in this experimental study,

the black box predictor embedded in the gray box model is static, and coincides with the one

employed in the evaluation study described in Section 4.2.5. The exploitation of a gray box

predictor, and specifically a Divide et impera- based one, as building block for proposed hybrid

ensemble techniques showcases how different gray box techniques can be further combined

together, with the objective of delivering superior accuracy.

The dataset corresponding to hinput,out puti tuples is composed by approximately nine

hundred samples, collected by deploying Infinispan on a cloud infrastructure composed by 140

Virtual Machines (VM) equipped with 1 Virtual CPU and 2GBs of RAM; each VM runs a Fe-

dora 17 Linux distribution with kernel 3.3.4- 5.fc17.x86 64. The physical infrastructure hosting

the cloud is composed by 18 physical servers equipped with two 2.13 GHz Quad-Core Intel(R)

Xeon(R) processors and 32 GB of RAM and interconnected via a private Gigabit Ethernet; the

employed virtualization software is Openstack Folsom.

The considered application is a porting of YCSB (Cooper et al., 2010), the de facto standard

benchmark for key-value stores, which has been modified in order to support transactions. The

generated workloads are based on the A, B and F original YCSB profiles: workload A has a

mix of 50/50 reads and writes, and models a session store recording recent actions; workload

B is the one of a photo tagging application, which contains a 95/5 reads/update mix; workload

F models a user database, in which records are first read and modified within a transaction.

In order to generate a wider set of workloads, the number of reads and writes performed by

transactions vary between 1 and 5. Finally, two different data access patterns are considered:

148 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

Zipfian, i.e., the popularity of data items follows the zipf distribution (with zipfian constant

0.7), and Hot Spot, according to which the x% of the data accesses are biased towards the y%

of the data items (with x = 99 and y = 1 in our case); the data set is always composed of 500K

keys. One YCSB workload generator is collocated with each Infinispan instance, and it consists

in a single thread that injects requests in closed loop. The samples relevant to the application’s

throughput are collected while varying workloads and the data platform configuration, deployed

on a number of nodes, noted N, ranging from 2 to 140 and set up with a replication factor in the

set {1,2,3, N
2 ,N}.

Note that the samples collected for this evaluation are a superset of the ones used to vali-

date the Divide et impera performance modeling approach in the previous chapter. In particular,

this set includes samples corresponding to configurations in which the assumptions and approx-

imations at the basis of the proposed models are challenged, even strongly. For example, the

workloads characterized by a zipfian data access pattern and by more than one put operation per

transaction do not match the assumption of independent access to data items; moreover, given

the high abort rate they induce, such workloads also challenge the employment of the M/G/1

queue as abstraction to model a lock. This challenging workloads, for which the devised Divide

et impera performance models are not able to provide accurate predictions, have been added in

order to evaluate the effectiveness of the proposed Hybrid Ensemble techniques in building a

more robust performance predictor.

5.4.1.3 Preliminary considerations on the evaluation

This section has the twofold aim of i) providing evidence of the relevance of the chosen case

study, by highlighting the differences not only between the target performance functions, but

also between the white and black box models that serve as baseline to evaluate the gray box

ones; and ii) discussing important methodological aspects about the evaluation study, in par-

ticular regarding the choice of the ML algorithms employed to build the hybrid ensembles and

used as baseline competitor.

Relevance and heterogeneity of the case studies. The DTP and TOB case studies are repre-

5.4. EVALUATION 149

(a) TOB (b) DTP

Figure 5.3: Error distribution of the base white box models of the two case studies.

sentative of a wide set of different performance functions, modeling approaches and learning

problems.

The first characteristic that differentiates one case study from the other is the dimensionality

of the target performance function: the messages delivery latency in the TOB case is expressed

as a function of only two input parameters (namely, size of the batch and messages arrival

rate); conversely, the closed-loop throughput of DTP applications is predicted by the proposed

Divide et impera models requiring 7 input parameters. This translates into very diverse learning

problems to be tackled by a ML algorithm. In particular, as explicitly shown in the next sections,

in the TOB case the reference black box model is able to outperform its white box competitor

already with 40% of the total available training samples. On the other hand, in the DTP case, the

baseline black box predictor’s accuracy only approaches the one of the white box counterpart

at 90% of the total available training samples.

Moreover, as depicted in Figure 5.3, also the error distribution of the base performance

models greatly varies depending on the case study. In particular, Figure 5.3a shows the error

distribution of the analytical model of the considered TOB primitive; Figure 5.3b, instead, de-

picts a projection of the error distribution of the DTP model over two dimensions, namely the

number of nodes in the platform and the percentage of write transactions. In both cases, the

error is evaluated over all the available training observations). The two error distributions are

150 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

sensibly different: in the TOB case, the highest errors are concentrated in a narrow portion of the

inputs space, whereas the accuracy of the DTP model sharply decreases as the number of nodes

and the transactions’ write percentage increase. As detailed in the next sections, this hetero-

geneity plays a role of paramount importance in determining the effectiveness of the proposed

Hybrid Ensemble techniques.

Finally, the base analytical model for the TOB case describes the system performance at a

high level of detail by means of a simple M/M/1. The DTP model, conversely, goes to great

lengths to capture the complex dynamics of a number of internal components of the system

(e.g., concurrency control, data locality and replication). Hence, the selected case studies allow

for assessing the effectiveness of the proposed Hybrid Ensemble techniques when using base

white box models that differ significantly in terms of design complexity and level of detail at

which they capture the dynamics of the target system.

Choice and parameterization of the employed ML algorithms. As already mentioned, the

proposed Hybrid Ensemble techniques may employ more than one black box learner to compose

the ensemble, either based on the same ML algorithm or on different ones. Indeed, the literature

on pure black box ensemble learning indicates that the diversity of employed ML algorithms

and corresponding parameterizations is an important means to achieve high predictive accuracy;

moreover, it shows that the choice of which and how many black box learners to employ and

their parameterization can significantly affect the delivered accuracy (Dietterich, 2000; Mendes-

Moreira et al., 2012).

The evaluation carried out in the scope of this study, however, is based on a single black

box learner, namely Cubist, a DT regressor that approximates non-linear multivariate func-

tions by means of piece-wise linear approximations (a so-called rule-based model) (Quinlan,

2012). In particular, a single instance of Cubist is employed as baseline black box predictor

and, similarly, only one Cubist model is employed to complement the base white box predic-

tor. Moreover, Cubist encompasses some tuning parameters, namely the possibility to generate

mixed rule-based/nearest neighbor models or committee models made up of several rule-based

models (Quinlan, 2012). Throughout the evaluation, every Cubist learner is trained with the

5.4. EVALUATION 151

default parameters, which correspond to building a single rule-based model. The choice of us-

ing Cubist over other available ML algorithms is motivated by the fact that it resulted to deliver

the highest accuracy, when compared, during a preliminary experimentation, to alternative ML

algorithms —specifically the Weka (Hall et al., 2009) implementation of ANN and SVM.

The rationale behind this choice is to allow the evaluation to focus only on assessing the

effectiveness of the Hybrid Ensemble techniques in combining white and black box model-

ing. Therefore, this choice allows for purely evaluating the impact that the parameters of the

proposed hybrid techniques have on accuracy, rather than the impact of the composition and

parameterization of the black box part of the ensemble.

Indeed, the problem of finding the ML algorithms composition and parameterization that

maximizes accuracy given a training set is a general problem, which falls beyond the sole

boundaries of the Hybrid Ensemble techniques, and that can be addressed with standard tech-

niques based on cross-validation, e.g., random search or Bayesian Optimization (Bergstra et al.,

2011; Thornton et al., 2013).

Finally, it is important to stress that the evaluation conducted with Cubist as unique black

box learner is still fair, in the sense that, when comparing an Hybrid Ensemble-based learner

with a pure black box one, the same data-set and the default parameterization is used to train

the Cubist model.

5.4.2 Bootstrapping

The assessment of the Bootstrapping technique consists of three part: Section 5.4.2.1 de-

scribes and evaluates the proposed initKB implementation to build the synthetic training set;

Section 5.4.2.2 is devoted at assessing the accuracy achievable by using the different update

algorithms; finally, Section 5.4.2.3 discusses and evaluates the predictive capabilities of a boot-

strapped learner in extrapolation.

152 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 3000 6000 9000 12000 15000
 0.01

 0.1

 1

 10

 100

 1000

 10000

M
A

P
E

T
ra

in
in

g
 t
im

e
 (

se
c,

 lo
g
sc

a
le

)

Training set size

DTP-MAPE
DTP-time

TOB-MAPE
TOB-time

Figure 5.4: Fitting the white box model via ML: training time vs MAPE.

5.4.2.1 Initialization

The evaluation study begins by evaluating the gray model’s capabilities of approximating a base

white box learner and construction time depending on the number of samples of the feature

space used to populate the initial synthetic training set.

For this study, the implementations of the primitives invoked in the initKB function, used

to create the initial synthetic training set ST are the following:

• SAMPLECONFIGSPACE is based on a uniform random sampling of the parameter space: the

rationale behind this choice is that a random policy is the most simple sampling strategy to

implement, yet it has been shown to be very effective (Bergstra et al., 2011).

• ESTIMATEFITTINGERROR implements 10-fold cross-validation, i.e, it i) partitions ST into

10 bins ST1 . . .ST10; ii) iteratively 8i = 1 . . .10, trains the black box learner over ST \ Si and

evaluates its accuracy against Si and iii) returns the average accuracy.

• ISACCURATE is based on a simple predicate that returns true if the accuracy of the black box

model has not increased enough (i.e., more than e in relative value) over the last n iterations

(with e = 0.01 and n = 3 in this evaluation).

• NEXTSIZE returns the size of ST at the current iteration plus a fixed value (set to 500 in this

5.4. EVALUATION 153

evaluation).

Therefore, the implemented initKB evolves by increasing the size of ST by a fixed step and

randomly sampling the parameter space to build the new ST ; it terminates when the accuracy

on the black box learner trained over ST plateaus.

Figure 5.4 reports, for both case studies, the gray box model building time and the Mean

Average Percentage Error (MAPE), computed as Avg.(|real�pred|
pred), of the gray box model with

respect to the predictions produced by the base predictor evaluated by means of ten-fold cross

validation. On the x-axis there is the number of initial synthetic samples included in the training

set of the gray box model. For both case studies, the initKB function returns a synthetic training

set of 10K samples, as it detects no noticeable improvements in the black box model’s fitting

accuracy. Indeed, Figure 5.4 shows that even proceeding up to 15K samples the accuracy gain

is negligible.

The model building time portrayed in the plots corresponds to the sum of the time needed

to query the base predictor in order to generate the synthetic data set of a given cardinality plus

the time needed to train the black box model over such set. In this study, in which Cubist is

used as black box learning algorithm, the training time for both the target application has been

less than half a second; the gray box model building time in the plots is, thus, largely dominated

by the cost needed to query the base predictor. As shown by Figure 5.4, in the DTP case this

cost is much higher than in the TOB one, as the corresponding base predictor is solved through

multiple iterations (Didona & Romano, 2014b) (as discussed in Section 4.2.4. However, it

should be noted that the cost to query the base model has to be paid only once, upon initializing

the bootstrapped learner, as the update phase only requires to re-train the black box learner.

Figure 5.4 shows that, by fitting the base predictor using black box techniques, a loss of

accuracy is unavoidable. The actual extent of this accuracy degradation depends on factors

such as the number of samples used to construct the initial synthetic training set and the intrinsic

capability of the learner to approximate the target function. The plot shows that, as expectable,

larger training sets yield a lower approximation error, at the cost of a longer training time; it also

shows that Cubist is able to fit the TOB response time function encoded in the base predictor

very well (3% of MAPE with a 10K samples training set) but it is unable to achieve similar

154 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000
Weight (log)

Merge 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000
Weight (log)

Merge 70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM70

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

WBM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(a) TOB: 1K synthetic samples

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(b) TOB: 10K synthetic samples

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(c) DTP: 1K synthetic samples

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(d) DTP: 10K synthetic samples

Figure 5.5: Impact of the weight parameter for the Merge updating policy, using 1K and 10K
synthetic samples.

accuracy for the DTP case. This arguably depends on the fact that Cubist approximates non-

linear functions by means of piece-wise linear approximation in the leaves of the decision tree

that it builds. Such model may be unable to properly approximate the performance function of

the base DTP performance model, which is defined over a multi-dimensional space and exhibits

strongly non-linear behaviors.

5.4.2.2 Updating

This section evaluates the alternative algorithms for the updating of the knowledge base, that

have been presented in Section 5.2.1.2: it first assesses the sensitivity of each algorithm to its key

parameters and finally compares their accuracy assuming an optimal tuning of such parameters.

5.4. EVALUATION 155

Figure 5.5 reports the results of a study aimed at assessing the impact of the weight param-

eter on the resulting accuracy of the bootstrapped model, while considering synthetic training

sets of different initial sizes, namely 1K (Figure 5.5c and 5.5a) and 10K samples (Figure 5.5d

and 5.5b).

Two scenarios are considered, which correspond to relying on the availability of 20% and

70% of the entire data set composed of collected, real samples; these are fed as input to both

the Merge algorithm and to the plain black box model (noted BBM in the plots), which serves

as first baseline. As a second reference, the plots also show the accuracy achieved by using

the based predictor (noted WBM in the plots), which incurs a MAPE that is independent of the

initial size of the synthetic training set. On the x-axis there is the weight parameter of the Merge

algorithm, and y-axis reports the MAPE computed with respect the whole set of actual samples

(i.e., unlike in the previous section, here the MAPE is not computed with respect to the output

of the analytical models).

The first finding revealed by the plots is that employing 10K synthetic samples is benefi-

cial for the accuracy achieved by the bootstrapped learner. This happens because, as already

discussed, larger synthetic training sets allow the black box learning algorithm to encode better

the base predictor’s function; this, in turn, yields to inherits a predictive accuracy that is closer

to the one exhibited by the base model itself.

The other very evident finding highlighted by the plots is the relevance of correctly tuning

the weighting parameter, regardless of the size of the initial synthetic training set. However, it is

possible to observe, by comparing Figures 5.5c and 5.5d, that the best setting of this parameter

may be relatively larger in the case of larger synthetic training set than for the case of smaller

one. This can be explained by considering that, by increasing the size of the initial training set,

the ratio of real vs synthetic samples correspondingly decreases. From the ML perspective this

translate into decreasing the relevance of the real samples with respect to that of the “surround-

ing” synthetic samples. In fact, the Merge update method never evicts synthetic samples from

the knowledge base: if the initial synthetic training set is significantly larger than the number of

available real samples, these are always surrounded by a large number of synthetic ones, which

end up obfuscating the information conveyed by the real ones. By increasing the weight of

156 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

the samples gathered from the running system, the statistical learner is guided to minimize the

fitting error on these points. On the other hand, using excessively large weight values can be

detrimental, as it makes the learner more prone to over-fitting.

Overall, the experimental data show that both with large and small initial synthetic training

set, Merge achieves significantly higher accuracy than both Cubist and the base model, when

provided with 70% of the data in their training set. When the training set percentage is equal

to 20%, the scenario is rather different. In both scenarios, the gray box model still achieves a

higher accuracy than a pure ML-based technique. However, the gray box is only marginally

better than the base predictor with the large initial synthetic training set, and slightly worse

than then the base model with small initial synthetic training set. This can be explained by

considering that the gain achievable using the 20% training set is relatively small, and can be

even outweighed by the loss of accuracy introduced by the learning of the initial base model

(see Section 5.4.2.1). This is also confirmed by the fact that the MAPE with respect to the base

model of the bootstrapped one using a synthetic training set of 10K samples is significantly

lower than with 1K samples, as shown in Figure 5.4.

The plots in Figure 5.6 focus the comparison on the updating policies RNN, RNR, and

RNR2. Unlike Merge, these techniques aim at avoiding the coexistence in the training set of

“neighboring” synthetic and real samples, by removing or replacing synthetic samples close

enough to the real ones. The intuition underlying these approaches is that the information

conveyed by the base predictor may be erroneous, and can hence contradict the real samples,

therefore introducing noise in the black box learning process. With the exception of the RNN

method, which uses exclusively the weight parameter, RNR and RNR2 also use a cut-off param-

eter, which defines the relative amplitude (normalized over a maximum distance) of the radius

that is used to determine which synthetic points are to be removed (RNR) or updated (RNR2),

whenever a new real sample is incorporated in the training set. For the sake of presentation,

only two cut-off values are considered, namely 1% and 5%, and the weight parameter is treated

as the independent variable. The choice of reporting results with these cut-off values is moti-

vated by the fact that they suffice into illustrating the main dynamic related to the setting of this

parameter: the higher is the cut-off, the more the training set is composed by only real samples,

5.4. EVALUATION 157

 0.2

 0.3

 0.4

1 2 5 10 100 1000

M
A

P
E

Weight (log)

RNN

 0.2

 0.3

 0.4

1 2 5 10 100 1000

M
A

P
E

Weight (log)

RNR-0.01

 0.2

 0.3

 0.4

1 2 5 10 100 1000

M
A

P
E

Weight (log)

RNR-0.05

 0.2

 0.3

 0.4

1 2 5 10 100 1000
M

A
P

E

Weight (log)

RNR2-0.01

 0.2

 0.3

 0.4

1 2 5 10 100 1000

M
A

P
E

Weight (log)

RNR2-0.05

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

WBM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(a) TOB: 20% of real samples.

 0.1

 0.2

 0.3

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(b) TOB: 70% of real samples.

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(c) DTP: 20% of real samples.

 0.1

 0.2

 0.3

 0.4

1 2 5 10 100 1000

M
A

P
E

Weight (log)

(d) DTP: 70% of real samples.

Figure 5.6: Impact of the weight and cut-off parameters for RNN, RNR, and RNR2, using 10K
synthetic samples.

thus making the bootstrapped model eventually collapse to the pure black box one.

In all the performed experiments, the employed distance function is the Euclidean one, but

any could be used. Before computing the distance between two samples, a feature normalization

process is performed, i.e., the value of every feature is normalized so as to lie in the range [0,1].

When using scale-sensitive distance functions like the Euclidean one, this avoids features that

naturally assume higher values (e.g., the messages arrival rate in the case of TOB) to have more

weight in determining the distance than other ones (e.g., the batching value in the TOB case

study).

Figure 5.6c and 5.6a, resp. Figure 5.6d and 5.6b, report the MAPE achieved when using

20%, resp. 70%, of the real data set as training set, reporting, as before, the reference values

158 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

achieved by the base model and by Cubist (non-bootstrapped). The first result highlighted by

these plots is that, also in the replace-based update variants, the weight parameter plays a role

of paramount importance. Also the cut-off parameter has a huge impact on the final accuracy

of the hybrid model, when implementing RNR and RNR2.

Overall, the cut-off based update policies are more effective into increasing predictive accu-

racy in the two considered case studies. The improvement with respect to RNN is more evident

in the DTP case: this is because RNN entails the possibility of evicting real samples from the

training set, whereas RNR and RNR2 do not. As a result, RNN discards some of the information

conveyed by real samples, thus losing some of its corrective power.

Note that this effect is tightly related to the characteristics of the target performance function

and of the distribution of the corrective samples. For the TOB case, in fact, both real and

synthetic samples are drawn uniformly at random from the whole space of possible arrival rate

and batching level configurations. Moreover, the 10K synthetic samples are very cluttered in

the two-dimensional space in which they lie, thus reducing the probability that RNN evicts

a real sample instead of a synthetic one. Conversely, for the DTP case, the samples in the

synthetic training set are drawn uniformly at random but the real ones are not as they are,

instead, representative of typical configurations and workloads for that kind of platforms. For

example, the density of the points characterized by a number of nodes smaller than 25 is higher

than the one relevant to points corresponding to more than 100 nodes in the platform; in the same

guise, as already said, the replication degree for data items is defined over the set {1,2,3, N
2 ,N},

being N the number of nodes. This, together with the relative sparseness of the 10K synthetic

samples in the seven-dimensional space in which they lie, induce RNN to evict, in some cases,

real samples.

Finally, Figure 5.7 compares the accuracy achieved by the two best performing updating

heuristics, Merge and RNR2, with that achieved by a pure white and black box approach. Also

in this case the size of the initial synthetic training is 10K, and the parameters used by Merge

are the ones that resulted in the best performance in the evaluation cases considered so far. The

accuracy of the various predictors is evaluated while varying the size of the available training

set from 10% to 90%.

5.4. EVALUATION 159

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training set

Merge

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training set

RNR2-0.01

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

WBM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training set

(a) TOB

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training set

(b) DTP

Figure 5.7: Comparison between Merge and Replace-based Bootstrapping

The plot in Figure 5.7 clearly highlights the advantages that the Bootstrapping technique can

provide, eventually outperforming both the base model and the reference ML-based predictor.

It also shows that, in the considered case studies, and for the considered parameters’ values,

there is no clear winner between the two updating variants. In fact, the conducted evaluation

suggests —maybe surprisingly— that the weighting parameter results to be the one that affects

accuracy the most, up to the point that its careful tuning allows the Merge updating policy to

perform similarly to the —relatively more complex— RNR2.

5.4.2.3 Bootstrapping in extrapolation

So far, the Bootstrapping technique has been evaluated by drawing the additional training set Dt

for the black box learner uniformly at random from a real data set D, and assessing its accuracy

over D\Dt . This means that the learned performance function has been corrected by benefiting

from an unbiased sampling of the whole space over which its accuracy is then assessed. This

section serves the purpose of assessing the Bootstrapping technique’s robustness against biased

sampling strategies: even if provided only with a set R of real samples corresponding to narrow

regions of the parameters’ space, the bootstrapped learner still inherits the predictive power of

the base base predictor when working in extrapolation with respect to R.

A realistic use case for such a scenario would be if the real samples were not to be collected

160 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

(a) TOB: Cubist with real samples (b) TOB: Cubist with synthetic samples (c) TOB: Bootstrapping (Merge)

Figure 5.8: Assessing Bootstrapping’s effectiveness when working in extrapolation.

during a dedicated and controlled training phase, but, rather, directly from the in-production

system. In this case, in fact, there would not be the possibility to steer a training phase that

guarantees a reasonable coverage of the whole configurations’ space of the target performance

function. As a result, the bootstrapped learner might not be corrected at all in some portions

of the configurations space, thus completely relying on the underlying base model’s predictive

capabilities to serve performance predictions queries regarding such regions.

To simulate such a biased sampling scenario, the following experiment has been performed.

A dataset DT has been drawn from a specific portion of the whole set of available real samples,

instead that uniformly at random from it. This dataset is used as training set for a pure black box

learner and as additional training set for a bootstrapped leaner. Then, the predictive capabilities

of the two learners have been compared, by evaluating their accuracy over the whole set of

available real samples.

The results hereby presented refer to TOB case only, as its two-dimensional nature allows

for easily visualizing the outcome of the aforementioned comparison (Figure 5.8). Similar

results have, however, been obtained for the DTP case study.

The set of real samples is drawn from the region of the parameters’ space corresponding

to the right portion of the heat maps in Figure 5.8 (that is [6500,13000]⇥ [1,24]). Figure 5.8a

shows the accuracy achieved by Cubist when trained only over samples from this region and

queried over the whole test set. It is easy to see that it attains a very high accuracy in the

parameters’ space that has been included in its training set; conversely, it blunders when asked

to provide a performance forecast for samples belonging to a previously unseen parameters’

5.4. EVALUATION 161

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

WBM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000
M

A
P

E
Weight (log)

BBM

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training Set

HyBoost

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training Set

(a) TOB

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40 50 60 70 80 90

M
A

P
E

% Training Set

(b) DTP

Figure 5.9: Evaluating the accuracy of HyBoost.

region.

Figure 5.8c, instead, shows the accuracy achieved by a bootstrapped learner trained over a

combination of synthetic samples and the same set of real samples used in the previous case.

Clearly, the accuracy in the right part of the plot is similar to the one in Figure 5.8b; the left part,

instead, which corresponds to the performance queries in extrapolation, portrays a significant

enhancement in accuracy. These improved predictive capabilities in extrapolation stem from the

availability of a synthetic training set provided by the embedded base model. This claim can be

verified by analyzing Figure 5.8a, which reports the accuracy of a Cubist learner trained only

over synthetic data samples: it is easy to see that the left side of the plot is very similar to the

left side of the plot in Figure 5.8b, demonstrating how a bootstrapped learner is able to leverage

the knowledge provided by the base model about the performance of the target application in

unexplored regions of the parameters’ space.

5.4.3 Hybrid Boosting

The conducted evaluation study on the HyBoost technique, described in this section, only fo-

cuses on analyzing the effectiveness of this technique depending on the characteristics of the

white and black box models for two considered case studies. The only tuning parameter of

this technique, in fact, would be the size and the composition of the chain, i.e., the number of

162 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

employed corrective black box models, their learning algorithms and corresponding parameter-

ization. As already specified in Section 5.4.1.3, however, the evaluation study presented in this

work only focuses on hybrid models using Cubist as only black box learner; therefore, the plots

in Figure 5.9 only report the accuracy of the HyBoost-based models while varying the available

training set.

As depicted in Figure 5.9a, the HyBoost technique is not effective in the TOB case study.

The hybrid predictor is, in fact, able to leverage the availability of a base model to reduce

error with respect to the black box learner alone when low training data is available, but it is

never able to deliver higher accuracy than the best of the two baseline predictors. Arguably,

this depends on the fact that the error distribution of the base model is not easy to be learnt by

Cubist, which, when provided with enough training data, achieves higher accuracy by directly

learning the target performance function rather than the analytical model’s residuals.

The landscape changes dramatically in the DTP case study. As shown in Figure 5.9b,

the HyBoost-based learner outperforms in terms of accuracy both the underlying white and

the black box models, at any of the considered percentages of available training data. On the

other hand, the accuracy only marginally increases as more training data becomes available:

this suggests that Cubist is effective into identifying a proper corrective function for the base

model with a small amount of training data, but it is unable to sensibly improve over it as more

information become available.

5.4.4 Hybrid KNN

The evaluation of the KNN Hybrid Ensemble technique is focused on analyzing how its ac-

curacy is affected by the tuning of the cutoff value, which determines the maximum distance

between two samples to be considered “neighbors”. Figure 5.10 and Figure 5.11 show the accu-

racy achieved by KNN while varying the cut-off parameter c for the case, respectively, of TOB

and the target DTP, namely Infinispan; for the sake of the results’ presentation and usability,

KNN has been configured to use at most k = 10 neighbors. Each plot reports results obtained

by letting KNN and Cubist observe two percentages of the training set, namely: 20% and 40%

in Figures 5.10a and 5.11a; 60% and 80% in Figures 5.10b and 5.11b.

5.4. EVALUATION 163

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

WBM

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

KNN 60

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

KNN 80

 0.1

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

KNN 40

 0.1

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

KNN 20

 0.1

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

BBM 40

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

BBM 60 BBM 80

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

BBM 60 BBM 80

 0.1

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

(a) Training set 20% and 40%

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1
M

A
P

E
Cutoff

(b) Training set 60% and 80%

Figure 5.10: Sensitivity analysis of KNN w.r.t. the c parameter (TOB)

 0.1

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

(a) Training set 20% and 40%

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

(b) Training set 60% and 80%

Figure 5.11: Sensitivity analysis of KNN w.r.t. the c parameter (DTP)

The plots highlight that the optimal settings of the c parameter is quite different not only

depending on the case study, but also on the available amount of training data. It is, in fact,

possibly to identify two different dynamics, depending on the target case study. In the TOB case,

the KNN-based predictor is able to outperform both the base model and the black box one with

a low amount of additional training data and using a small cut-off value (Figure 5.10a). On the

other hand, at higher percentages of training set, it is unable to outperform the black box learner

for any cut-off value (Figure 5.10b). The first phenomenon can be explained by noting that, for

164 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

this case study, it is relatively easy to determine which is the best model to use depending on

the incoming query: as confirmed by the heat-map presented in Section 5.4.1.3 (Figure 5.3a),

in fact, the region in which the base white box learner is more inaccurate is well defined and,

thus, identifiable by means of a neighbors-based approach. The second phenomenon can be

explained by noting that, at high training set percentages, the black box learner is sensibly more

accurate than the white box one, and, thus, it is more likely to be ultimately chosen as predictor.

In the KNN case, however, only a subset of the available training data is used as training set

for the black box learner (80% in this experiment), as part of it constitutes the validation set

to estimate the accuracy of the models. Therefore, even if the KNN predictor mostly relies on

the black box model to serve queries, the regressor it embeds is trained with less data than its

“pure” counterpart, thus delivering a lower accuracy.

In the DTP case study, conversely, it is harder for the KNN learner to determine when it

is better to rely on the base model or the black box one. This can be explained both by the

high dimensionality of the inputs parameters and by the fact that the base predictor’s error heat-

map does not present spikes, unlike its TOB counterpart (see Section 5.4.1.3, Figure 5.3b). As

a result, when the available training set is small, and by using high cut-off values, the KNN

predictor manages to achieve an accuracy that is only to be as good as the best (on average) of

the two models, namely the white box one. When the training set increases, the predictor can

rely both on more samples to use as neighbors and on a more reliable black box predictor: given

that there is no clear winner between the black box model and the base predictor in this case,

the KNN predictor manages to achieve an accuracy that is better than theirs. The cut-off value

at which the gain is more sensible is higher than in the TOB case: arguably, this depends on the

higher dimensionality of the inputs space, which demands higher threshold values to gather a

representative neighborhood.

5.4.5 Probing

This section describes the results of the experimental evaluation aimed at assessing how the

accuracy of the Probing technique is affected by training set’s size and setting of the cut-off

parameter c, which determines the maximum tolerable error to regard a white box model’s

5.4. EVALUATION 165

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

PROB 60

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

PROB 80 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

PROB 40

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

PROB 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

BBM 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 5 10 100 1000

M
A

P
E

Weight (log)

WBM

 0.1

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

BBM 40

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

BBM 60 BBM 80

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

BBM 60 BBM 80

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

(a) 20% and 40% of training set

 0.1

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

(b) 60% and 80% of training set

Figure 5.12: Sensitivity analysis of Probing w.r.t. the c parameter (TOB)

prediction as accurate. The classification algorithm employed to train the classifier responsible

for estimating the best model for a given query is the Weka implementation of the C.45 Decision

Tree (Quinlan, 1993b).

Figure 5.12 and Figure 5.13 report the results of such sensitivity analysis. The first phe-

nomenon that comes evident for both the case studies is that the accuracy does not vary, as a

function of c, as smoothly as in the KNN case, which is the other considered Selection-based

Hybrid Ensemble technique that relies on a cutoff parameter. This is because c directly affects

both the training set of the classifier used and of the black box performance predictor. The

resulting behavior of these two components affects in an intertwined and complex fashion that

ultimately results in the portrayed accuracy trends.

Also, as expectable, for both case studies, the lower the employed cut-off value the more

the accuracy is similar to the one attained by the black box model. This happens because the

underlying white box model is considered to be accurate and, thus, to be reliable, only if it

attains a correspondingly low error. In a dual fashion, as c moves towards higher values, the

accuracy delivered by the Probing-based predictor resembles the underlying base model’s one.

Regarding the specific case studies, the characteristics of the corresponding base predic-

tors and black box models play again a fundamental role to determine the effectiveness of the

166 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

 0.2

 0.3

 0.4

 0.5

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

(a) 20% and 40% of training set

 0.2

 0.3

0.01 0.2 0.4 0.6 0.8 1

M
A

P
E

Cutoff

(b) 60% and 80% of training set

Figure 5.13: Sensitivity analysis of Probing w.r.t. the c parameter (DTP)

Probing technique. In the TOB case, in fact, Probing only slightly enhances the accuracy with

respect to the best between the pure white and black approaches at a medium training set (Fig-

ure 5.12a). With lower training set, the classifier cannot distinguish when it is better to rely

on the white or the black box. At higher training sets, the accuracy of the black box model

alone is generally better than its white box counterpart’s (Figure 5.12b). As a result, even if the

accuracy of the white box model is below the desired threshold, it is likely that the black box

learner alone could still reach a higher accuracy, if trained with the proper data-set. Ultimately,

this leads the Probing-based predictor to rely on the white box model even when it should not,

and in removing samples from the black box learner’s training set, thus reducing its accuracy.

The plots in Figure 5.13, instead, reveal slightly different dynamics for what concerns the

DTP case study. On one side, in fact, just like the TOB case, the classifier does not help, or only

marginally helps, in increasing accuracy when there is low amount of training data available

(Figure 5.13a. Conversely, as training data become more abundant, Probing is able to deliver

higher accuracy than the two underlying models alone (Figure 5.13b) this is because, as already

highlighted during the KNN discussion, there is no clear winner between the white and the

black box model. Therefore, provided that the classifier is able to distinguish when to prefer

one over the other, it is possible to take selectively advantage of both with beneficial effects on

accuracy.

5.4. EVALUATION 167

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

BBM

WBM

Bootstrapping

HyBoost

Probing

KNN

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

BBM

WBM

Bootstrapping

HyBoost

Probing

KNN

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

BBM
WBM

Bootstrapping
HyBoost

Probing
KNN

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

BBM

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

BBM
WBM

Bootstrapping
HyBoost

Probing
KNN

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

WBM
Bootstrapping

HyBoost
Probing

KNN

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

(a) TOB

 0.1

 0.2

 0.3

 0.4

20 40 60 80

M
A

P
E

% Training Set

(b) DTP

Figure 5.14: Comparing the performance of the 4 proposed gray box techniques.

5.4.6 Comparison among the approaches

This section concludes the experimental evaluation and is dedicated to comparing the accuracy

achieved by the four proposed hybrid ensemble techniques in the two considered case studies.

In particular, the comparison is performed assuming a proper tuning of the internal parameters

of the compared ensemble algorithms. Specifically, the reported data are obtained using 10-fold

cross validation to determine appropriate values for the internal parameters of the compared

ensemble algorithms.

As already hinted in Section 5.4.1.3, identifying the best gray box model and correspond-

ing parameterization given some training data is a problem that falls beyond the scope of the

proposed Hybrid Ensemble techniques: it is, indeed, a common trait shared with pure black box

modeling techniques. Therefore, it can be tackled by means of standard techniques developed

for the selection and tuning of Machine Learning algorithms, such as Bayesian Optimization or

grid/random search (Bergstra et al., 2011).

The following evaluation aims at showing how the characteristics of the target performance

function and of a hybrid predictor affect accuracy in the most favorable case, i.e., excluding

the cases in which a given predictor performs poorly only because of a correspondingly poor

setting of its internal parameters.

Figure 5.14 reports the accuracy attained by the four proposed gray box models, as well as

168 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

by their underlying pure white and black box ones (noted, respectively, WBM and BBM), while

varying the amount of available training data. The first result highlighted by analyzing the plots

is that there is always one instance of a gray box predictor that performs better —accuracy-

wise— than the pure white and black box models that it combines. This result is particularly

important, as it showcases the effectiveness of the proposed approaches in reconciling the white

and black box modeling paradigm with the aim of increasing accuracy.

Moreover, Figure 5.14 also shows that each of the proposed hybrid techniques succeeds

in outperforming the baselines in at least one case study and for a given amount of training

data. Given that, for the DTP case, the baseline model is actually a Divide et impera-based

model, this plot showcases that the gray box modeling techniques presented in this work can be

combined to further increase accuracy. In a dual fashion, Figure 5.14 also shows that none of

the considered Hybrid Ensemble models is able to consistently outperform the white and black

box baselines.

On one side, these results demonstrate the potentialities of the described modeling tech-

niques; on the other, they highlight the key role played by the technique employed to couple a

white and black box model to determining the final achieved accuracy.

In particular, Figure 5.14a shows that Bootstrapping is the best hybrid modeling technique

in the TOB case study. This is because the employed ML algorithm is able to encode the original

performance function of the white model without loss of accuracy, thus being able to fully taking

advantage of the available performance measurements data for “corrective” purposes. On the

other hand, Probing, KNN and HyBoost prove to be less effective, as their internal dynamics do

not couple well with the characteristics of the distribution error of the base model.

In a dual fashion, Figure 5.14b shows that Bootstrapping is never the best performing gray

box modeling technique, because of the loss of accuracy incurred by the ML algorithm when

learning the performance function encoded by the base model. Probing, KNN and Hyboost,

conversely, perform better, with the latter being the solution that better spouse the characteristics

of the underlying base model.

Overall, the final take-away message conveyed by Figure 5.14, is that no one-size-fits-all

Hybrid Ensemble model exists, among the proposed ones, that outperforms all the others in

5.5. CONCLUSIONS 169

every scenario. Given that all the proposed hybrid techniques rely on a black box component,

this conclusion is closely related a very well known result in the ML field, namely the no

free lunch theorem for Supervised Learning, formulated by Wolpert (Wolpert, 1996). This

theorem, roughly speaking, states that no learning algorithm is universally superior to every

other; similarly, the performed evaluation shows, experimentally, that also the effectiveness of

a gray box modeling technique ultimately depends on the characteristics of the use case, of the

target performance function, and of the available data.

5.5 Conclusions

This chapter has described four Hybrid Ensemble modeling techniques that rely on exploiting

in synergy white and black box modeling with the purpose of achieving a higher accuracy than

a predictor based on a pure white or black box method alone.

In particular, two of the proposed techniques implement the Patching principle, according to

which black box modeling is employed to correct the predictions produced by a base white box

model. Specifically, the first of such techniques, named Bootstrapping, consists in generating

the training set for a black box algorithm by relying on the predictions of a complementary white

box model; information conveyed by samples corresponding to real performance measurements

are incrementally integrated into the prediction model. The second Patching-base techniques,

namely Hybrid Boosting, instead relies on the idea that it may be easier to learn how to correct

the prediction of a baseline model, rather than learning directly the target performance function.

Therefore, it organizes a white box predictor and a set of black box predictors as a chain, in

which the goal of each model is to iteratively correct the prediction error of the previous ones.

The other two proposed technique implement the Selection principle, which consists in

building several white and black box performance models in parallel and, at query time, in

employing only the one that is expected to maximize accuracy depending on the configuration/-

workload whose performance is being predicted. The first such technique, named Hybrid KNN,

evaluates the accuracy of the available models on a set of samples Dk that are as similar as pos-

sible to a new sample x, in order to estimate the most suitable model to use for predicting the

performance for x. The second Selection-based technique, named Probing, aims at specializing

170 CHAPTER 5. THE HYBRID ENSEMBLE APPROACH

a single black box model in predicting the target performance function in the specific regions

of the inputs space where none of the available white box models proves to be sufficiently ac-

curate. This technique relies on a generic classifier to determine which among the available

models is going to be used depending on the query, instead of estimating models’ accuracy over

a set of neighbors.

The effectiveness of the four proposed techniques have been investigated using two case

studies, namely a Total Order Broadcast primitive and the Infinispan DTP. An analytical model

is used as base white box predictor for the first case study, and some of its internal parameters

are obtained by means of a black box fitting algorithm; on the other hand, the base predictor

for the DTP case is one of the Divide et impera models proposed in Chapter 4. This showcases

how the proposed Hybrid Ensemble techniques can be implemented in conjunction with other

gray box modeling techniques.

An extensive experimental evaluation has shown that these techniques can achieve higher

accuracy than the white, black and gray box models used to compose the ensemble of predictors.

At the same time, it has also revealed an important result, namely that none of such technique

outperforms all the others in all the cases: a thorough analysis of the experimental results has

highlighted how the effectiveness of any of the proposed approaches depends, in fact, on the

characteristics of the target performance function and of the baseline predictors that compose

the ensemble.

6Conclusions and Future Work

Performance modeling of applications and computer systems is a fundamental building block to

implement important tasks like capacity planning, automatic resource provisioning and anomaly

detection. White and black box modeling are the two most prominent techniques applied to

tackle this important issue: the former exploits a priori knowledge about the internals of the

target application/system to predict its performance; the latter infers a statistical performance

model by means of a so-called training phase.

Unfortunately, the increasing complexity of modern applications is challenging the effec-

tiveness of the two most prominent approaches to performance modeling, namely white box

and black box modeling: on one side, white box solutions rely on assumptions and approxima-

tions which may not hold in realistic scenarios; on the other one, black box models are typically

accurate only in regions of the configuration space that have been experimented with during the

training phase.

This dissertation has proposed several contributions in the field of gray box performance

modeling, a methodology that aims aims at reconciling the white and the black box techniques

into a hybrid paradigm, with the purpose of achieving the best of the two worlds: reduced

training time, increased robustness in extrapolation, and ability to correct initial inaccuracies by

incorporating new factual knowledge when available.

In particular, this dissertation has proposed and investigated two box modeling techniques,

which complement white and black box modeling according to different principles.

• Divide et impera: this approach allows for the joint usage of white and black box mod-

eling techniques, each capturing the performance of distinct, yet possibly inter-related,

modules of the target system. The key advantage of this technique is that it allows for

decomposing the problem of predicting the performance of a complex system into a set

172 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of simpler sub-models, which can exploit the modeling methodology (i.e., white box or

black box) that better fits the characteristics of the considered system’s module.

• Hybrid Ensemble: this approach is based on the idea of combining the output of a set of

white and black box models with the purpose of generating a single model with a higher

predictive accuracy than any of its constituent parts. In particular, the role of the black

box components is to complement the predictions provided by one or more base white

box models by correcting their possible inaccuracies. This dissertation has investigated

two principles implementing this approach: i) Patching, which progressively learns how

to correct the predictions generated by the white box models. Such a goal is pursued by

accumulating knowledge on the errors of such models in various regions of their parame-

ter space; and ii) Selection, which employs the performance model (either white or black)

that is expected to maximize accuracy depending on the configuration/workload whose

performance is being predicted.

The Hybrid Ensemble hybrid methodology has been instantiated in four approaches,

namely Bootstrapping, Hybrid Boosting, Hybrid KNN and Probing: the first two em-

body the Patching principle; the other two implement the Selection principle.

The viability and effectiveness of Divide et impera approach have been evaluated by apply-

ing it to model the performance of Distributed Transactional Platforms. This kind of applica-

tions, in fact, represents the archetype of complex application, as it embodies several among the

functional (e.g., distribution and replication) and business (e.g., virtualization) requirements of

modern systems.

In this dissertation the Divide et impera approach is employed in the context of DTP mod-

eling as follows. Analytical models are employed to capture the performance of transactional

consistency protocols, whose algorithmic dynamics are fully specified and are thus amenable

to be described via white box approaches. The white box models proposed in this dissertation

target a wide region of the design space of DTP systems, encompassing different protocols em-

ployed to regulate concurrency and replications. Black box modeling is used to predict response

173

time of operations that require distributed synchronization, which would be hard to predict ac-

curately in environments, such as the Cloud, in which little or no knowledge is provided on the

underlying physical (e.g., networking) infrastructure.

Hybrid Ensemble methods, instead, have been applied not only to the problem of DTP

performance modeling, but also to predict performance of a Total Order Broadcast primitive,

which is a fundamental building block of many distributed transactional systems.

A thorough experimental evaluation on the two case studies has shown that the proposed

gray box modeling techniques are capable of delivering higher predictive accuracy than pure

white and black box counterparts, while requiring less training data. On the other hand, it has

also revealed the sensitivity of the proposed Hybrid Ensemble approaches to different aspects

of the target performance prediction problem, such as the error distribution of the models that

compose the ensemble. This has led to the conclusion that no one-size-fits-all Hybrid Ensemble

technique exists that performs the best across all possible cases and that, therefore, selecting the

right hybrid modeling technique is an important step to achieve high predictive accuracy.

The investigation on gray box modeling can be extended in a number of directions. The ex-

perimental evaluation has already shown that the Divide et impera and the Hybrid Ensemble

approaches can be leveraged in synergy: a first research avenue would be, therefore, to explore

the possibility to further combine gray box ensemble models, so as to build a hybrid, more

accurate meta-ensemble.

A second issue that deserves further investigation is devising ad-hoc heuristics or algorithms

to efficiently determine which among the proposed gray box modeling techniques fits better

the characteristics of the target performance function, of the available white box models and

training data at hand. Indeed, an important finding of this work is that none among the proposed

techniques consistently outperforms all the others in all scenarios.

Finally, an interesting extension to this work would be implementing efficient active learn-

ing algorithms in which white box models are not only used as starting point to be comple-

mented by black box learners, but are also exploited to drive the training phase of the black box

models, with the purpose of increasing the representativeness of the collected samples.

174 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

Aerospike. (2014). Aerospike. http://www.aerospike.com.

Agrawal, R., Carey, M. J., & McVoy, L. W. (1987). The performance of alternative strategies for

dealing with deadlocks in database management systems. Software Engineering, IEEE

Transactions on(12), 1348–1363.

Alonso, R., Barbara, D., & Garcia-Molina, H. (1990, September). Data caching issues in an

information retrieval system. ACM Trans. Database Syst., 15(3), 359–384. Available

from http://doi.acm.org/10.1145/88636.87848

Amazon. (2013). Amazon S3. http://aws.amazon.com/s3/.

Amazon. (2015a). Amazon Autoscaling. http://aws.amazon.com/it/

autoscaling/.

Amazon. (2015b). SimpleDB. http://aws.amazon.com/it/simpledb/.

Apache Software Foundation. (2015). CouchDB. http://www.couchdb.apache.org.

Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection.

Statistics Surveys, 4, 40–79. Available from https://hal.archives-ouvertes

.fr/hal-00407906 (Published in Statistics Surveys (2010) 4, 40-79)

Astrom, K. J., & Eykhoff, P. (1971, March). System identification-a survey. Automatica, 7(2),

123–162.

Att, K. L., & Leung, K. K. (1997). An update algorithm for replicated signaling databases in

wireless and advanced intelligent networks. IEEE Transactions on Computers.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit

problem. Machine Learning.

175

http://www.aerospike.com
http://doi.acm.org/10.1145/88636.87848
http://aws.amazon.com/s3/
http://aws.amazon.com/it/autoscaling/
http://aws.amazon.com/it/autoscaling/
http://aws.amazon.com/it/simpledb/
http://www.couchdb.apache.org
https://hal.archives-ouvertes.fr/hal-00407906
https://hal.archives-ouvertes.fr/hal-00407906

176 BIBLIOGRAPHY

Bailis, P., Fekete, A., Hellerstein, J. M., Ghodsi, A., & Stoica, I. (2014). Scalable atomic vis-

ibility with ramp transactions. In Proceedings of the 2014 acm sigmod international

conference on management of data (pp. 27–38). New York, NY, USA: ACM. Available

from http://doi.acm.org/10.1145/2588555.2588562

Baker, J., et al. (2011). Megastore: Providing scalable, highly available storage for interactive

services. In Proc. of cidr.

Ban, B. (2012). JGroups - A Toolkit for Reliable Multicast Communication.

http://www.jgroups.org.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., et al. (2003, October). Xen

and the art of virtualization. SIGOPS Oper. Syst. Rev., 37(5), 164–177. Available from

http://doi.acm.org/10.1145/1165389.945462

Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., & O’Neil, P. (1995). A critique of ansi

sql isolation levels. In Proceedings of the 1995 acm sigmod international conference on

management of data (pp. 1–10). New York, NY, USA: ACM. Available from http://

doi.acm.org/10.1145/223784.223785

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011, December). Algorithms for Hyper-

Parameter Optimization. In 25th Annual Conference on Neural Information Processing

Systems (NIPS 2011) (Vol. 24). Granada, Spain: Neural Information Processing Systems

Foundation.

Bernstein, P. A. e. a. (1986). Concurrency control and recovery in database systems. Addison-

Wesley Longman Publishing Co., Inc.

Bishop, C. M. (2006). Pattern recognition and machine learning (information science and statis-

tics). Springer-Verlag New York, Inc.

Breiman, L. (1996, August). Bagging predictors. Mach. Learn., 24(2), 123–140. Available from

http://dx.doi.org/10.1023/A:1018054314350

http://doi.acm.org/10.1145/2588555.2588562
http://doi.acm.org/10.1145/1165389.945462
http://doi.acm.org/10.1145/223784.223785
http://doi.acm.org/10.1145/223784.223785
http://dx.doi.org/10.1023/A:1018054314350

BIBLIOGRAPHY 177

Budhiraja, N., Marzullo, K., Schneider, F. B., & Toueg, S. (1993). Distributed systems (2nd

ed.). In S. Mullender (Ed.), (pp. 199–216). New York, NY, USA: ACM Press/Addison-

Wesley Publishing Co. Available from http://dl.acm.org/citation.cfm

?id=302430.302438

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009, June). Cloud computing

and emerging it platforms: Vision, hype, and reality for delivering computing as the

5th utility. Future Gener. Comput. Syst., 25(6), 599–616. Available from http://

dx.doi.org/10.1016/j.future.2008.12.001

Cachin, C., Guerraoui, R., & Rodrigues, L. (2011). Introduction to reliable and secure distributed

programming (2. ed.). Springer.

Carey, M. J., & Livny, M. (1988). Distributed concurrency control performance: A study of algo-

rithms, distribution, and replication. In Proceedings of the 14th international conference

on very large data bases (pp. 13–25). San Francisco, CA, USA: Morgan Kaufmann Pub-

lishers Inc. Available from http://dl.acm.org/citation.cfm?id=645915

.671801

Carey, M. J., & Livny, M. (1991, December). Conflict detection tradeoffs for replicated data.

ACM Trans. Database Syst., 16(4), 703–746. Available from http://doi.acm.org/

10.1145/115302.115289

Caruana, R., et al. (2004). Ensemble selection from libraries of models. In Proc. of icml.

Charron-Bost, B., Pedone, F., & Schiper, A. (Eds.). (2010). Replication: Theory and practice.

Berlin, Heidelberg: Springer-Verlag.

Chen, J., Soundararajan, G., & Amza, C. (2006). Autonomic provisioning of backend databases

in dynamic content web servers. In Proceedings of the 2006 ieee international conference

on autonomic computing (pp. 231–242). Washington, DC, USA: IEEE Computer Society.

Available from http://dx.doi.org/10.1109/ICAC.2006.1662403

Chen, J., Soundararajan, G., Ghanbari, S., & Amza, C. (2013, April). Model ensemble tools for

self-management in data centers. , 36-43.

http://dl.acm.org/citation.cfm?id=302430.302438
http://dl.acm.org/citation.cfm?id=302430.302438
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dl.acm.org/citation.cfm?id=645915.671801
http://dl.acm.org/citation.cfm?id=645915.671801
http://doi.acm.org/10.1145/115302.115289
http://doi.acm.org/10.1145/115302.115289
http://dx.doi.org/10.1109/ICAC.2006.1662403

178 BIBLIOGRAPHY

Ciciani, B., Dias, D. M., & Yu, P. S. (1990, June). Analysis of replication in distributed

database systems. IEEE Trans. on Knowl. and Data Eng., 2(2), 247–261. Available

from http://dx.doi.org/10.1109/69.54723

Ciciani, B., Dias, D. M., & Yu, P. S. (1992, October). Analysis of concurrency-coherency

control protocols for distributed transaction processing systems with regional locality.

IEEE Trans. Softw. Eng., 18(10), 899–914. Available from http://dx.doi.org/

10.1109/32.163606

Ciciani, B., Didona, D., Di Sanzo, P., Palmieri, R., Peluso, S., Quaglia, F., et al. (2012). Auto-

mated workload characterization in cloud-based transactional data grids. In Proceedings

of the 2012 ieee 26th international parallel and distributed processing symposium work-

shops and phd forum (pp. 1525–1533). Washington, DC, USA: IEEE Computer Society.

Available from http://dx.doi.org/10.1109/IPDPSW.2012.192

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., & Sears, R. (2010). Benchmarking

cloud serving systems with ycsb. In Proceedings of the 1st acm symposium on cloud

computing (pp. 143–154). New York, NY, USA: ACM. Available from http://doi

.acm.org/10.1145/1807128.1807152

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning.

Cost, S., & Salzberg, S. (1993, January). A weighted nearest neighbor algorithm for learning

with symbolic features. Mach. Learn., 10(1), 57–78.

Couceiro, M., Didona, D., Rodrigues, L., & Romano, P. (2015). Self-tuning in distributed trans-

actional memory. In R. Guerraoui & P. Romano (Eds.), Transactional memory. founda-

tions, algorithms, tools, and applications (Vol. 8913, p. 418-448). Springer International

Publishing.

Couceiro, M., Romano, P., Carvalho, N., & Rodrigues, L. (2009). D2stm: Dependable dis-

tributed software transactional memory. In Proceedings of the 2009 15th ieee pacific

rim international symposium on dependable computing (pp. 307–313). Washington, DC,

http://dx.doi.org/10.1109/69.54723
http://dx.doi.org/10.1109/32.163606
http://dx.doi.org/10.1109/32.163606
http://dx.doi.org/10.1109/IPDPSW.2012.192
http://doi.acm.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1807128.1807152

BIBLIOGRAPHY 179

USA: IEEE Computer Society. Available from http://dx.doi.org/10.1109/

PRDC.2009.55

Couceiro, M., Romano, P., & Rodrigues, L. (2010). A machine learning approach to performance

prediction of total order broadcast protocols. In Self-adaptive and self-organizing systems

(saso), 2010 4th ieee international conference on (p. 184-193).

Couceiro, M., Romano, P., & Rodrigues, L. (2011). Polycert: Polymorphic self-optimizing

replication for in-memory transactional grids. In Proceedings of the 12th acm/ifip/usenix

international conference on middleware (pp. 309–328). Berlin, Heidelberg: Springer-

Verlag. Available from http://dx.doi.org/10.1007/978-3-642-25821-3

16

Couceiro, M., Ruivo, P., Romano, P., & Rodrigues, L. (2013). Chasing the optimum in replicated

in-memory transactional platforms via protocol adaptation. In Proceedings of the 2013

43rd annual ieee/ifip international conference on dependable systems and networks (dsn)

(pp. 1–12). Washington, DC, USA: IEEE Computer Society. Available from http://

dx.doi.org/10.1109/DSN.2013.6575311

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. Information Theory.

Cruz, F., Maia, F., Matos, M., Oliveira, R., Paulo, J. a., Pereira, J., et al. (2013). Met:

Workload aware elasticity for nosql. In Proceedings of the 8th acm european confer-

ence on computer systems (pp. 183–196). New York, NY, USA: ACM. Available from

http://doi.acm.org/10.1145/2465351.2465370

Curino, C., Jones, E., Zhang, Y., & Madden, S. (2010, September). Schism: A workload-driven

approach to database replication and partitioning. Proc. VLDB Endow., 3(1-2), 48–57.

Available from http://dx.doi.org/10.14778/1920841.1920853

Das, S., Agrawal, D., & El Abbadi, A. (2010). G-store: A scalable data store for trans-

actional multi key access in the cloud. In Proceedings of the 1st acm symposium

on cloud computing (pp. 163–174). New York, NY, USA: ACM. Available from

http://doi.acm.org/10.1145/1807128.1807157

http://dx.doi.org/10.1109/PRDC.2009.55
http://dx.doi.org/10.1109/PRDC.2009.55
http://dx.doi.org/10.1007/978-3-642-25821-3_16
http://dx.doi.org/10.1007/978-3-642-25821-3_16
http://dx.doi.org/10.1109/DSN.2013.6575311
http://dx.doi.org/10.1109/DSN.2013.6575311
http://doi.acm.org/10.1145/2465351.2465370
http://dx.doi.org/10.14778/1920841.1920853
http://doi.acm.org/10.1145/1807128.1807157

180 BIBLIOGRAPHY

Dean, J., & Ghemawat, S. (2008). Mapreduce: simplified data processing on large clusters.

Commun. ACM.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., et

al. (2007). Dynamo: Amazon’s highly available key-value store. In Proceedings

of twenty-first acm sigops symposium on operating systems principles (pp. 205–220).

New York, NY, USA: ACM. Available from http://doi.acm.org/10.1145/

1294261.1294281

Dejun, J., Pierre, G., & Chi, C.-H. (2009). Ec2 performance analysis for resource provisioning

of service-oriented applications. In Proceedings of the 2009 international conference on

service-oriented computing (pp. 197–207). Berlin, Heidelberg: Springer-Verlag. Avail-

able from http://dl.acm.org/citation.cfm?id=1926618.1926641

Dejun, J., Pierre, G., & Chi, C.-H. (2010). Autonomous resource provisioning for multi-service

web applications. In Proceedings of the 19th international conference on world wide web

(pp. 471–480). New York, NY, USA: ACM. Available from http://doi.acm.org/

10.1145/1772690.1772739

Dejun, J., Pierre, G., & Chi, C.-H. (2011). Resource provisioning of web applications in het-

erogeneous clouds. In Proceedings of the 2nd usenix conference on web application

development (pp. 5–5). Berkeley, CA, USA: USENIX Association. Available from

http://dl.acm.org/citation.cfm?id=2002168.2002173

Delimitrou, C., & Kozyrakis, C. (2013, March). Paragon: Qos-aware scheduling for hetero-

geneous datacenters. SIGARCH Comput. Archit. News, 41(1), 77–88. Available from

http://doi.acm.org/10.1145/2490301.2451125

Di Sanzo, P., Ciciani, B., Quaglia, F., & Romano, P. (2008, Sept). A performance model of

multi-version concurrency control. In Modeling, analysis and simulation of computers

and telecommunication systems, 2008. mascots 2008. ieee international symposium on

(p. 1-10).

Di Sanzo, P., Del Re, F., Rughetti, D., Ciciani, B., & Quaglia, F. (2013, Sept). Regulating

http://doi.acm.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281
http://dl.acm.org/citation.cfm?id=1926618.1926641
http://doi.acm.org/10.1145/1772690.1772739
http://doi.acm.org/10.1145/1772690.1772739
http://dl.acm.org/citation.cfm?id=2002168.2002173
http://doi.acm.org/10.1145/2490301.2451125

BIBLIOGRAPHY 181

concurrency in software transactional memory: An effective model-based approach. In

Self-adaptive and self-organizing systems (saso), 2013 ieee 7th international conference

on (p. 31-40).

Di Sanzo, P., Molfese, F., Rughetti, D., & Ciciani, B. (2014). Providing transaction class-

based qos in in-memory data grids via machine learning. In Proceedings of the 2014

ieee 3rd symposium on network cloud computing and applications (ncca 2014) (pp. 46–

53). Washington, DC, USA: IEEE Computer Society. Available from http://dx.doi

.org/10.1109/NCCA.2014.16

Di Sanzo, P., Palmieri, R., Ciciani, B., Quaglia, F., & Romano, P. (2010). Analytical modeling

of lock-based concurrency control with arbitrary transaction data access patterns. In Pro-

ceedings of the first joint wosp/sipew international conference on performance engineer-

ing (pp. 69–78). New York, NY, USA: ACM. Available from http://doi.acm.org/

10.1145/1712605.1712619

Di Sanzo, P., Quaglia, F., Ciciani, B., Pellegrini, A., Didona, D., Romano, P., et al. (2015). A

flexible framework for accurate simulation of cloud in-memory data stores. Simulation

Modelling Practice and Theory(0), -. Available from http://www.sciencedirect

.com/science/article/pii/S1569190X15000945

Di Sanzo, P., Rughetti, D., Ciciani, B., & Quaglia, F. (2012). Auto-tuning of cloud-based in-

memory transactional data grids via machine learning. In Proceedings of the 2012 second

symposium on network cloud computing and applications (pp. 9–16). Washington, DC,

USA: IEEE Computer Society. Available from http://dx.doi.org/10.1109/

NCCA.2012.20

Didona, D., Carnevale, D., Galeani, S., & Romano, P. (2012). An extremum seeking algo-

rithm for message batching in total order protocols. In Proceedings of the 2012 ieee sixth

international conference on self-adaptive and self-organizing systems (pp. 89–98). Wash-

ington, DC, USA: IEEE Computer Society. Available from http://dx.doi.org/

10.1109/SASO.2012.33

http://dx.doi.org/10.1109/NCCA.2014.16
http://dx.doi.org/10.1109/NCCA.2014.16
http://doi.acm.org/10.1145/1712605.1712619
http://doi.acm.org/10.1145/1712605.1712619
http://www.sciencedirect.com/science/article/pii/S1569190X15000945
http://www.sciencedirect.com/science/article/pii/S1569190X15000945
http://dx.doi.org/10.1109/NCCA.2012.20
http://dx.doi.org/10.1109/NCCA.2012.20
http://dx.doi.org/10.1109/SASO.2012.33
http://dx.doi.org/10.1109/SASO.2012.33

182 BIBLIOGRAPHY

Didona, D., Felber, P., Harmanci, D., Romano, P., & Schenker, J. (2013a). Identifying the optimal

level of parallelism in transactional memory applications. In International conference on

networked systems (p. 233-247).

Didona, D., Felber, P., Harmanci, D., Romano, P., & Schenker, J. (2013b). Identifying the optimal

level of parallelism in transactional memory applications. Springer Computing, 1-21.

Didona, D., Quaglia, F., Romano, P., & Torre, E. (2015). Enhancing performance prediction

robustness by combining analytical modeling and machine learning. In Proceedings of

the 6th acm/spec international conference on performance engineering (pp. 145–156).

New York, NY, USA: ACM. Available from http://doi.acm.org/10.1145/

2668930.2688047

Didona, D., & Romano, P. (2014a). On Bootstrapping Machine Learning Performance Predictors

via Analytical Models. ArXiv e-prints.

Didona, D., & Romano, P. (2014b). Performance modelling of partially replicated in-memory

transactional stores. In Modelling, analysis simulation of computer and telecommunica-

tion systems (mascots), 2014 ieee 22nd international symposium on (p. 265-274).

Didona, D., & Romano, P. (2014c). Self-tuning transactional data grids: The cloud-tm approach.

In Proceedings of the symposium on network cloud computing and applications, (ncca)

(p. 113-120). IEEE.

Didona, D., & Romano, P. (2015). Hybrid machine learning/analytical models for performance

prediction: A tutorial. In Proceedings of the 6th acm/spec international conference on

performance engineering (pp. 341–344). New York, NY, USA: ACM. Available from

http://doi.acm.org/10.1145/2668930.2688823

Didona, D., Romano, P., Peluso, S., & Quaglia, F. (2012). Transactional auto scaler: Elastic

scaling of in-memory transactional data grids. In Proceedings of the 9th international

conference on autonomic computing (pp. 125–134). New York, NY, USA: ACM. Avail-

able from http://doi.acm.org/10.1145/2371536.2371559

http://doi.acm.org/10.1145/2668930.2688047
http://doi.acm.org/10.1145/2668930.2688047
http://doi.acm.org/10.1145/2668930.2688823
http://doi.acm.org/10.1145/2371536.2371559

BIBLIOGRAPHY 183

Didona, D., Romano, P., Peluso, S., & Quaglia, F. (2014, July). Transactional auto scaler: Elastic

scaling of replicated in-memory transactional data grids. ACM Trans. Auton. Adapt. Syst.,

9(2), 11:1–11:32.

Diegues, N., & Romano, P. (2015). Bumper: Sheltering distributed transactions from conflicts.

Future Generation Computer Systems, 51(0), 20 - 35.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Proceedings of the first inter-

national workshop on multiple classifier systems (pp. 1–15). London, UK, UK: Springer-

Verlag.

Elnikety, S., Dropsho, S., Cecchet, E., & Zwaenepoel, W. (2009). Predicting replicated database

scalability from standalone database profiling. In Proceedings of the 4th acm european

conference on computer systems (pp. 303–316). New York, NY, USA: ACM. Available

from http://doi.acm.org/10.1145/1519065.1519098

eXistdb. (2014). eXistdb. http://exist-db.org.

Eyerman, S., Hoste, K., & Eeckhout, L. (2011). Mechanistic-empirical processor performance

modeling for constructing cpi stacks on real hardware. In Proceedings of the ieee interna-

tional symposium on performance analysis of systems and software (pp. 216–226). Wash-

ington, DC, USA: IEEE Computer Society. Available from http://dx.doi.org/

10.1109/ISPASS.2011.5762738

Faleiro, J. M., Thomson, A., & Abadi, D. J. (2014). Lazy evaluation of transactions in

database systems. In Proceedings of the 2014 acm sigmod international conference

on management of data (pp. 15–26). New York, NY, USA: ACM. Available from

http://doi.acm.org/10.1145/2588555.2610529

Fox, G. C., Laszewski, G. von, Diaz, J., Keahey, K., Fortes, J., Figueiredo, R., et al. (2012).

Futuregrid: A reconfigurable testbed for cloud, hpc and grid computing. Chapman &

Hall.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view

of boosting. Annals of Statistics, 95(2), 337-407.

http://doi.acm.org/10.1145/1519065.1519098
http://exist-db.org
http://dx.doi.org/10.1109/ISPASS.2011.5762738
http://dx.doi.org/10.1109/ISPASS.2011.5762738
http://doi.acm.org/10.1145/2588555.2610529

184 BIBLIOGRAPHY

Friedman, T., & Renesse, R. V. (1997). Packing messages as a tool for boosting the perfor-

mance of total ordering protocls. In Proceedings of the 6th ieee international sympo-

sium on high performance distributed computing (pp. 233–). Washington, DC, USA:

IEEE Computer Society. Available from http://dl.acm.org/citation.cfm

?id=822082.823140

Fujimoto, R. M. (1990, October). Parallel discrete event simulation. Commun. ACM, 33(10),

30–53. Available from http://doi.acm.org/10.1145/84537.84545

Galante, G., & Bona, L. C. E. d. (2012). A survey on cloud computing elasticity. In Proceedings

of the 2012 ieee/acm fifth international conference on utility and cloud computing (pp.

263–270). Washington, DC, USA: IEEE Computer Society. Available from http://

dx.doi.org/10.1109/UCC.2012.30

Gallersdörfer, R., & Nicola, M. (1995). Improving performance in replicated databases through

relaxed coherency. In Proceedings of the 21th international conference on very large

data bases (pp. 445–456). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Available from http://dl.acm.org/citation.cfm?id=645921.673130

Ganapathi, A., Kuno, H., Dayal, U., Wiener, J. L., Fox, A., Jordan, M., et al. (2009). Predicting

multiple metrics for queries: Better decisions enabled by machine learning. In Proceed-

ings of the 2009 ieee international conference on data engineering (pp. 592–603). Wash-

ington, DC, USA: IEEE Computer Society. Available from http://dx.doi.org/

10.1109/ICDE.2009.130

Garcia-Molina, H. (1979). Performance of update algorithms for replicated data in a distributed

database. Unpublished doctoral dissertation, Stanford, CA, USA. (AAI8001920)

Ghahramani, Z. (2004). Unsupervised learning. In Advanced lectures on machine learning.

Ghanbari, S., Soundararajan, G., Chen, J., & Amza, C. (2007). Adaptive learning of metric

correlations for temperature-aware database provisioning. In Proceedings of the fourth

international conference on autonomic computing (pp. 26–). Washington, DC, USA:

http://dl.acm.org/citation.cfm?id=822082.823140
http://dl.acm.org/citation.cfm?id=822082.823140
http://doi.acm.org/10.1145/84537.84545
http://dx.doi.org/10.1109/UCC.2012.30
http://dx.doi.org/10.1109/UCC.2012.30
http://dl.acm.org/citation.cfm?id=645921.673130
http://dx.doi.org/10.1109/ICDE.2009.130
http://dx.doi.org/10.1109/ICDE.2009.130

BIBLIOGRAPHY 185

IEEE Computer Society. Available from http://dx.doi.org/10.1109/ICAC

.2007.3

Google. (2015a). Cloud Datastore. https://cloud.google.com/datastore/.

Google. (2015b). Google Cloud Platform Autoscaler. https://cloud.google.com/

compute/docs/autoscaler/.

Gray, J., Helland, P., O’Neil, P., & Shasha, D. (1996, June). The dangers of replication and a

solution. SIGMOD Rec., 25(2), 173–182. Available from http://doi.acm.org/

10.1145/235968.233330

Guerraoui, R., & Schiper, A. (1997, April). Software-based replication for fault tolerance. Com-

puter, 30(4), 68–74. Available from http://dx.doi.org/10.1109/2.585156

Hall, M., et al. (2009, November). The weka data mining software: An update. SIGKDD Explor.

Newsl., 11(1), 10–18.

Han, J., Haihong, E., Le, G., & Du, J. (2011). Survey on nosql database. In Pervasive computing

and applications (icpca), 2011 6th international conference on (pp. 363–366).

Harchol-Balter, M. (2013). Performance modeling and design of computer systems: Queueing

theory in action (1st ed.). New York, NY, USA: Cambridge University Press.

Harizopoulos, S., Abadi, D. J., Madden, S., & Stonebraker, M. (2008). Oltp through the looking

glass, and what we found there. In Proceedings of the 2008 acm sigmod international

conference on management of data (pp. 981–992). New York, NY, USA: ACM. Available

from http://doi.acm.org/10.1145/1376616.1376713

Haykin, S. (1998). Neural networks: A comprehensive foundation (2nd ed.). Upper Saddle River,

NJ, USA: Prentice Hall PTR.

Heiss, H.-U., & Wagner, R. (1991). Adaptive load control in transaction processing systems. In

Proceedings of the 17th international conference on very large data bases (pp. 47–54).

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Available from http://

dl.acm.org/citation.cfm?id=645917.672321

http://dx.doi.org/10.1109/ICAC.2007.3
http://dx.doi.org/10.1109/ICAC.2007.3
https://cloud.google.com/datastore/
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/compute/docs/autoscaler/
http://doi.acm.org/10.1145/235968.233330
http://doi.acm.org/10.1145/235968.233330
http://dx.doi.org/10.1109/2.585156
http://doi.acm.org/10.1145/1376616.1376713
http://dl.acm.org/citation.cfm?id=645917.672321
http://dl.acm.org/citation.cfm?id=645917.672321

186 BIBLIOGRAPHY

Herlihy, M., & Moss, J. E. B. (1993). Transactional memory: architectural support for lock-free

data structures. SIGARCH Comput. Archit. News.

Herodotou, H., Dong, F., & Babu, S. (2011). No one (cluster) size fits all: automatic cluster

sizing for data-intensive analytics. In Proc. of the acm symposium on cloud computing

(socc).

Hong, S., & Kim, H. (2009). An analytical model for a gpu architecture with memory-level and

thread-level parallelism awareness. In Proceedings of the 36th annual international sym-

posium on computer architecture (pp. 152–163). New York, NY, USA: ACM. Available

from http://doi.acm.org/10.1145/1555754.1555775

Hwang, S.-Y., Lee, K. K. S., & Chin, Y. H. (1996). Data replication in a distributed system: A

performance study. In Proceedings of the 7th international conference on database and

expert systems applications (pp. 708–717). London, UK, UK: Springer-Verlag. Available

from http://dl.acm.org/citation.cfm?id=648309.754404

IBM Corp. (2004). An architectural blueprint for autonomic computing. USA: IBM Corp. Avail-

able from www-3.ibm.com/autonomic/pdfs/ACBP2 2004-10-04.pdf

IEEE. (2014). 400 Gb/s Ethernet Study Group. http://www.ieee802.org/3/400GSG/.

Jiménez-Peris, R., Patiño-Martı́nez, M., Magoutis, K., Bilas, A., & Brondino, I. (2012). Cu-

mulonimbo: A highly-scalable transaction processing platform as a service. ERCIM

News, 2012(89). Available from http://dblp.uni-trier.de/db/journals/

ercim/ercim2012.html#Jimenez-PerisPMBB12

Juan, D.-C. (2014). A learning-based framework incorporating domain knowledge for perfor-

mance modeling. Unpublished doctoral dissertation, CARNEGIE MELLON UNIVER-

SITY.

Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S., et al. (2008). H-

Store: a high-performance, distributed main memory transaction processing system.

Proc. VLDB Endow., 1(2), 1496–1499. Available from http://hstore.cs.brown

.edu/papers/hstore-demo.pdf

http://doi.acm.org/10.1145/1555754.1555775
http://dl.acm.org/citation.cfm?id=648309.754404
www-3.ibm.com/autonomic/pdfs/ACBP2_2004-10-04.pdf
http://www.ieee802.org/3/400GSG/
http://dblp.uni-trier.de/db/journals/ercim/ercim2012.html#Jimenez-PerisPMBB12
http://dblp.uni-trier.de/db/journals/ercim/ercim2012.html#Jimenez-PerisPMBB12
http://hstore.cs.brown.edu/papers/hstore-demo.pdf
http://hstore.cs.brown.edu/papers/hstore-demo.pdf

BIBLIOGRAPHY 187

Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., & Lewin, D. (1997). Consistent

hashing and random trees: Distributed caching protocols for relieving hot spots on the

world wide web. In Proceedings of the twenty-ninth annual acm symposium on theory

of computing (pp. 654–663). New York, NY, USA: ACM. Available from http://

doi.acm.org/10.1145/258533.258660

Kleinrock, L. (1975). Queueing systems (Vol. I: Theory). Wiley Interscience.

Kleinrock, L. (1976). Queueing systems, vol. 2. New York, NY: Wiley.

Knottenbelt, W., Zertal, S., & Harrison, P. (2001, Jul). Performance analysis of three implementa-

tion strategies for distributed lock management. Computers and Digital Techniques, IEE

Proceedings -, 148(45), 176-187.

Kobrix Software. (2014). HypergraphDB. http://www.hypergraphdb.org/index.

Kobus, T., Kokocinski, M., & Wojciechowski, P. T. (2013). Hybrid replication: State-machine-

based and deferred-update replication schemes combined. In Proc. of the 2013 ieee

33rd international conference on distributed computing systems (pp. 286–296). Wash-

ington, DC, USA: IEEE Computer Society. Available from http://dx.doi.org/

10.1109/ICDCS.2013.30

Kotselidis, C., Ansari, M., Jarvis, K., Luján, M., Kirkham, C., & Watson, I. (2008). Distm: A

software transactional memory framework for clusters. In Proceedings of the 2008 37th

international conference on parallel processing (pp. 51–58). Washington, DC, USA:

IEEE Computer Society. Available from http://dx.doi.org/10.1109/ICPP

.2008.59

Kristensen, N. R., Madsen, H., & Jørgensen, S. B. (2004). Parameter estimation in stochastic

grey-box models. Automatica, 40(2), 225–237.

Kuang, Y., & Mukkamala, R. (1991, Apr). Performance analysis of static locking in repli-

cated distributed database systems. In Southeastcon ’91., ieee proceedings of (p. 698-701

vol.2).

http://doi.acm.org/10.1145/258533.258660
http://doi.acm.org/10.1145/258533.258660
http://www.hypergraphdb.org/index
http://dx.doi.org/10.1109/ICDCS.2013.30
http://dx.doi.org/10.1109/ICDCS.2013.30
http://dx.doi.org/10.1109/ICPP.2008.59
http://dx.doi.org/10.1109/ICPP.2008.59

188 BIBLIOGRAPHY

Lakshman, A., & Malik, P. (2010, April). Cassandra: A decentralized structured storage system.

SIGOPS Oper. Syst. Rev., 44(2), 35–40. Available from http://doi.acm.org/10

.1145/1773912.1773922

Lamport, L. (1998, May). The part-time parliament. ACM Trans. Comput. Syst., 16(2), 133–169.

Available from http://doi.acm.org/10.1145/279227.279229

Lamport, L. (2003). Future directions in distributed computing. In A. Schiper, A. A. Shvarts-

man, H. Weatherspoon, & B. Y. Zhao (Eds.), (pp. 22–23). Berlin, Heidelberg: Springer-

Verlag. Available from http://dl.acm.org/citation.cfm?id=1809315

.1809321

Laszewski, G. von, Fox, G. C., Wang, F., Younge, A. J., Kulshrestha, A., Pike, G. G., et al. (2010,

11/2010). Design of the futuregrid experiment management framework. In Gce2010 at

sc10. New Orleans: IEEE.

Leutenegger, S. T., & Dias, D. (1993). A modeling study of the tpc-c benchmark. In Sigmod

record.

Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., & Rodrigues, R. (2012). Making geo-

replicated systems fast as possible, consistent when necessary. In Proceedings of the

10th usenix conference on operating systems design and implementation (pp. 265–278).

Berkeley, CA, USA: USENIX Association. Available from http://dl.acm.org/

citation.cfm?id=2387880.2387906

Little, J. D. (1961). A proof for the queuing formula: L= l w. Operations research, 9(3),

383–387.

Little, J. D. (2011). Or forum-little’s law as viewed on its 50th anniversary. Operations Research,

59(3), 536–549.

Liu, H., Hussain, F., Tan, C., & Dash, M. (2002). Discretization: An enabling technique. Data

Mining and Knowledge Discovery, 6(4), 393-423. Available from http://dx.doi

.org/10.1023/A%3A1016304305535

http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/279227.279229
http://dl.acm.org/citation.cfm?id=1809315.1809321
http://dl.acm.org/citation.cfm?id=1809315.1809321
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dx.doi.org/10.1023/A%3A1016304305535
http://dx.doi.org/10.1023/A%3A1016304305535

BIBLIOGRAPHY 189

Ljung, L. (Ed.). (1999). System identification (2nd ed.): Theory for the user. Upper Saddle River,

NJ, USA: Prentice Hall PTR.

Marchioni, F., & Surtani, M. (2012). Infinispan data grid platform. Packt Publishing.

Martı́nez-Bazan, N., Muntés-Mulero, V., Gómez-Villamor, S., Nin, J., Sánchez-Martı́nez, M.-A.,

& Larriba-Pey, J.-L. (2007). Dex: High-performance exploration on large graphs for

information retrieval. In Proceedings of the sixteenth acm conference on conference on

information and knowledge management (pp. 573–582). New York, NY, USA: ACM.

Available from http://doi.acm.org/10.1145/1321440.1321521

McDermott, J. P., & Mukkamala, R. (1994). Performance analysis of transaction management

algorithms for the sintra replicated-architecture database system. In Proceedings of the

ifip wg11.3 working conference on database security vii (pp. 215–234). Amsterdam, The

Netherlands, The Netherlands: North-Holland Publishing Co. Available from http://

dl.acm.org/citation.cfm?id=646113.679758

Meling, H., Montresor, A., Helvik, B. E., & Babaoglu, O. (2008, July). Jgroup-arm: A distributed

object group platform with autonomous replication management. Softw. Pract. Exper.,

38(9), 885–923.

Menasce, D. A., & Almeida, V. (2001). Capacity planning for web services: Metrics, models,

and methods (1st ed.). Upper Saddle River, NJ, USA: Prentice Hall PTR.

Menasce, D. A., Dowdy, L. W., & Almeida, V. A. F. (2004). Performance by design: Computer

capacity planning by example. Upper Saddle River, NJ, USA: Prentice Hall PTR.

Menascé, D. A., & Nakanishi, T. (1982). Performance evaluation of a two-phase commit based

protocol for ddbs. In Proceedings of the 1st acm sigact-sigmod symposium on princi-

ples of database systems (pp. 247–255). New York, NY, USA: ACM. Available from

http://doi.acm.org/10.1145/588111.588152

Mendes-Moreira, J. a., Soares, C., Jorge, A. M., & Sousa, J. F. D. (2012, December). Ensemble

approaches for regression: A survey. ACM Comput. Surv., 45(1), 10:1–10:40. Available

from http://doi.acm.org/10.1145/2379776.2379786

http://doi.acm.org/10.1145/1321440.1321521
http://dl.acm.org/citation.cfm?id=646113.679758
http://dl.acm.org/citation.cfm?id=646113.679758
http://doi.acm.org/10.1145/588111.588152
http://doi.acm.org/10.1145/2379776.2379786

190 BIBLIOGRAPHY

Microsoft. (2015a). Microsoft Azure: How to Scale an Application. https://

azure.microsoft.com/en-gb/documentation/articles/cloud

-services-how-to-scale/#automatically-scale-an-application

-running-web-roles-worker-roles-or-virtual-machines.

Microsoft. (2015b). Microsoft Azure SQL Database. http://azure.microsoft.com/

en-us/services/sql-database/.

Miranda, H., Pinto, A., & Rodrigues, L. (2001, Apr). Appia, a flexible protocol kernel supporting

multiple coordinated channels. In Distributed computing systems, 2001. 21st interna-

tional conference on. (p. 707-710).

mongoDB inc. (2015). mongoDB. http://www.mongodb.org.

Mozafari, B., Curino, C., Jindal, A., & Madden, S. (2013). Performance and resource modeling in

highly-concurrent oltp workloads. In Proceedings of the 2013 acm sigmod international

conference on management of data (pp. 301–312). New York, NY, USA: ACM. Available

from http://doi.acm.org/10.1145/2463676.2467800

Mukkamala, R., & Bruell, S. C. (1990). Efficient schemes to evaluate transaction performance

in distributed database systems. The Computer Journal, 33(1), 79-89. Available from

http://comjnl.oxfordjournals.org/content/33/1/79.abstract

Neo4j. (2015). Neo4j. http://www.neo4j.org.

Nicola, M., & Jarke, M. (2000). Performance modeling of distributed and replicated databases.

IEEE Trans. on Knowl. and Data Eng..

Objectivity. (2015). InfiniteGraph. http://www.objectivity.com.

Ogata, K. (2001). Modern control engineering (4th ed.). Upper Saddle River, NJ, USA: Prentice

Hall PTR.

Oracle. (2011). Oracle Coherence. http://www.oracle.com/technetwork/

middleware/coherence/overview/index.html.

https://azure.microsoft.com/en-gb/documentation/articles/cloud-services-how-to-scale/#automatically-scale-an-application-running-web-roles-worker-roles-or-virtual-machines
https://azure.microsoft.com/en-gb/documentation/articles/cloud-services-how-to-scale/#automatically-scale-an-application-running-web-roles-worker-roles-or-virtual-machines
https://azure.microsoft.com/en-gb/documentation/articles/cloud-services-how-to-scale/#automatically-scale-an-application-running-web-roles-worker-roles-or-virtual-machines
https://azure.microsoft.com/en-gb/documentation/articles/cloud-services-how-to-scale/#automatically-scale-an-application-running-web-roles-worker-roles-or-virtual-machines
http://azure.microsoft.com/en-us/services/sql-database/
http://azure.microsoft.com/en-us/services/sql-database/
http://www.mongodb.org
http://doi.acm.org/10.1145/2463676.2467800
http://comjnl.oxfordjournals.org/content/33/1/79.abstract
http://www.neo4j.org
http://www.objectivity.com
http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://www.oracle.com/technetwork/middleware/coherence/overview/index.html

BIBLIOGRAPHY 191

Orientechnologies. (2014). OrientDB. http://www.orientechnologies.com/

orientdb/.

Owen, S., Anil, R., Dunning, T., & Friedman, E. (2011). Mahout in action. Greenwich, CT,

USA: Manning Publications Co.

Padhye, J., Firoiu, V., Towsley, D., & Kurose, J. (1998, October). Modeling tcp throughput: A

simple model and its empirical validation. SIGCOMM Comput. Commun. Rev., 28(4),

303–314. Available from http://doi.acm.org/10.1145/285243.285291

Paiva, J. a., Ruivo, P., Romano, P., & Rodrigues, L. (2014, December). Autoplacer: Scalable self-

tuning data placement in distributed key-value stores. ACM Trans. Auton. Adapt. Syst.,

9(4), 19:1–19:30. Available from http://doi.acm.org/10.1145/2641573

Palmieri, R., Sanzo, P. di, Quaglia, F., Romano, P., Peluso, S., & Didona, D. (2011). Integrated

monitoring of infrastructures and applications in cloud environments. In Proc. of the 2011

international conference on parallel processing.

Palmieri, R., Sanzo, P. di, Quaglia, F., Romano, P., Peluso, S., & Didona, D. (2012). Integrated

monitoring of infrastructures and applications in cloud environments. In Proceedings of

the 2011 international conference on parallel processing (pp. 45–53). Berlin, Heidelberg:

Springer-Verlag.

Papoulis, A. (1991). Probability, random variables and stochastic processes (3rd ed.). McGraw-

Hill.

Pedone, F., Guerraoui, R., & Schiper, A. (2003, July). The database state machine approach.

Distrib. Parallel Databases, 14(1), 71–98. Available from http://dx.doi.org/

10.1023/A:1022887812188

Peluso, S., Ruivo, P., Romano, P., Quaglia, F., & Rodrigues, L. (2012, June). When scalabil-

ity meets consistency: Genuine multiversion update-serializable partial data replication.

In Distributed computing systems (icdcs), 2012 ieee 32nd international conference on

(p. 455-465).

http://www.orientechnologies.com/orientdb/
http://www.orientechnologies.com/orientdb/
http://doi.acm.org/10.1145/285243.285291
http://doi.acm.org/10.1145/2641573
http://dx.doi.org/10.1023/A:1022887812188
http://dx.doi.org/10.1023/A:1022887812188

192 BIBLIOGRAPHY

Perez-Sorrosal, F., Martinez, M. Patiño, Jimenez-Peris, R., & Kemme, B. (2011, December).

Elastic si-cache: Consistent and scalable caching in multi-tier architectures. The VLDB

Journal, 20(6), 841–865. Available from http://dx.doi.org/10.1007/s00778

-011-0228-8

Petri, C. A. (1966). Communication with automata. Unpublished doctoral dissertation, Univer-

sität Hamburg.

Pfister, G. F. (2001). An introduction to the infiniband architecture. High Performance Mass

Storage and Parallel I/O, 42, 617–632.

Plattner, H., & Zeier, A. (2011). In-memory data management: An inflection point for enterprise

applications (1st ed.). Springer Publishing Company, Incorporated.

Project Voldemort. (2015). Voldemort. http://www.project-voldemort.com/

voldemort/.

Quinlan, J. R. (1986, March). Induction of decision trees. Mach. Learn., 1(1), 81–106. Available

from http://dx.doi.org/10.1023/A:1022643204877

Quinlan, J. R. (1993a). C4.5: Programs for machine learning. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc.

Quinlan, J. R. (1993b). C4.5: Programs for machine learning. Morgan Kaufmann Publishers

Inc.

Quinlan, J. R. (1996, March). Improved use of continuous attributes in c4.5. J. Artif. Int.

Res., 4(1), 77–90. Available from http://dl.acm.org/citation.cfm?id=

1622737.1622742

Quinlan, J. R. (2012). Rulequest Cubist. http://www.rulequest.com/cubist-info.html.

Raghuram, A., Morgan, T. W., Rajaraman, B., & Ronen, Y. (1992, May). Approximation for

the mean value performance of locking algorithms for distributed database systems: A

partitioned database. Ann. Oper. Res., 36(1-4), 299–346. Available from http://

dx.doi.org/10.1007/BF02094335

http://dx.doi.org/10.1007/s00778-011-0228-8
http://dx.doi.org/10.1007/s00778-011-0228-8
http://www.project-voldemort.com/voldemort/
http://www.project-voldemort.com/voldemort/
http://dx.doi.org/10.1023/A:1022643204877
http://dl.acm.org/citation.cfm?id=1622737.1622742
http://dl.acm.org/citation.cfm?id=1622737.1622742
http://dx.doi.org/10.1007/BF02094335
http://dx.doi.org/10.1007/BF02094335

BIBLIOGRAPHY 193

Redis. (2014). Redis. http://www.basho.com/riak/.

Reiser, M., & Lavenberg, S. S. (1980, April). Mean-value analysis of closed multichain queu-

ing networks. J. ACM, 27(2), 313–322. Available from http://doi.acm.org/

10.1145/322186.322195

Ren, J. F., Tokahashi, Y., & Hasegawa, T. (1996, July). Analysis of impact of network delay on

multiversion conservative timestamp algorithms in ddbs. Perform. Eval., 26(1), 21–50.

Available from http://dx.doi.org/10.1016/0166-5316(95)00019-4

Robbins, H. (1985). Some aspects of the sequential design of experiments. , 169-177. Available

from http://dx.doi.org/10.1007/978-1-4612-5110-1 13

Romano, P., & Leonetti, M. (2012, Jan). Self-tuning batching in total order broadcast proto-

cols via analytical modelling and reinforcement learning. In Computing, networking and

communications (icnc), 2012 international conference on (p. 786-792).

Romano, P., Rodrigues, L., Carvalho, N., & Cachopo, J. (2010). Cloud-tm: harnessing the cloud

with distributed transactional memories. SIGOPS Operating Systems Review, 44.

Rughetti, D., Di Sanzo, P., Ciciani, B., & Quaglia, F. (2014, May). Analytical/ml mixed approach

for concurrency regulation in software transactional memory. In Cluster, cloud and grid

computing (ccgrid), 2014 14th ieee/acm international symposium on (p. 81-91).

Ruivo, P., Couceiro, M., Romano, P., & Rodrigues, L. (2011). Exploiting total order multicast

in weakly consistent transactional caches. In Proceedings of the 2011 ieee 17th pacific

rim international symposium on dependable computing (pp. 99–108). Washington, DC,

USA: IEEE Computer Society. Available from http://dx.doi.org/10.1109/

PRDC.2011.21

Russell, S. J., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.). Pearson

Education.

Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (1998, June). Density-based clustering in spatial

databases: The algorithm gdbscan and its applications. Data Min. Knowl. Discov., 2(2),

169–194. Available from http://dx.doi.org/10.1023/A:1009745219419

http://www.basho.com/riak/
http://doi.acm.org/10.1145/322186.322195
http://doi.acm.org/10.1145/322186.322195
http://dx.doi.org/10.1016/0166-5316(95)00019-4
http://dx.doi.org/10.1007/978-1-4612-5110-1_13
http://dx.doi.org/10.1109/PRDC.2011.21
http://dx.doi.org/10.1109/PRDC.2011.21
http://dx.doi.org/10.1023/A:1009745219419

194 BIBLIOGRAPHY

Santos, N., & Schiper, A. (2013, July). Optimizing paxos with batching and pipelining. Theor.

Comput. Sci., 496, 170–183. Available from http://dx.doi.org/10.1016/j

.tcs.2012.10.002

Schapire, R. E. (1999). A brief introduction to boosting. In Proceedings of the 16th international

joint conference on artificial intelligence - volume 2 (pp. 1401–1406). San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc. Available from http://dl.acm.org/

citation.cfm?id=1624312.1624417

Schroeder, B., Harchol-Balter, M., Iyengar, A., Nahum, E., & Wierman, A. (2006, April). How to

determine a good multi-programming level for external scheduling. In Data engineering,

2006. icde ’06. proceedings of the 22nd international conference on (p. 60-60).

Settles, B. (2009). Active learning literature survey (Computer Sciences Technical Report No.

1648). University of Wisconsin–Madison.

Sharma, U., Shenoy, P., & Towsley, D. F. (2012). Provisioning multi-tier cloud applications using

statistical bounds on sojourn time. In Proceedings of the 9th international conference

on autonomic computing (pp. 43–52). New York, NY, USA: ACM. Available from

http://doi.acm.org/10.1145/2371536.2371545

Sheth, A. P., Singhal, A., & Liu, M. T. (1985, October). An analysis of the effect of network

parameters on the performance of distributed database systems. IEEE Trans. Softw. Eng.,

11(10), 1174–1184. Available from http://dx.doi.org/10.1109/TSE.1985

.231865

Shyu, S.-C., & Li, V. O. K. (1990, June). Performance analysis of static locking in distributed

database systems. IEEE Trans. Comput., 39(6), 741–751. Available from http://

dx.doi.org/10.1109/12.53595

Simha, R., & Majumdar, A. (1997). An urn model with applications to database

performance evaluation. Computers and Operations Research, 24(4), 289 -

300. Available from http://www.sciencedirect.com/science/article/

pii/S0305054896000639

http://dx.doi.org/10.1016/j.tcs.2012.10.002
http://dx.doi.org/10.1016/j.tcs.2012.10.002
http://dl.acm.org/citation.cfm?id=1624312.1624417
http://dl.acm.org/citation.cfm?id=1624312.1624417
http://doi.acm.org/10.1145/2371536.2371545
http://dx.doi.org/10.1109/TSE.1985.231865
http://dx.doi.org/10.1109/TSE.1985.231865
http://dx.doi.org/10.1109/12.53595
http://dx.doi.org/10.1109/12.53595
http://www.sciencedirect.com/science/article/pii/S0305054896000639
http://www.sciencedirect.com/science/article/pii/S0305054896000639

BIBLIOGRAPHY 195

Singh, R., Sharma, U., Cecchet, E., & Shenoy, P. (2010). Autonomic mix-aware provisioning for

non-stationary data center workloads. In Proceedings of the 7th international conference

on autonomic computing (pp. 21–30). New York, NY, USA: ACM. Available from

http://doi.acm.org/10.1145/1809049.1809053

Singhal, M. (1989, November). Deadlock detection in distributed systems. Computer, 22(11),

37–48. Available from http://dx.doi.org/10.1109/2.43525

Son, S. H., & Haghighi, N. (1990). Performance evaluation of multiversion database systems.

In Proceedings of the sixth international conference on data engineering (pp. 129–136).

Washington, DC, USA: IEEE Computer Society. Available from http://dl.acm

.org/citation.cfm?id=645475.654019

Soundararajan, G., Lupei, D., Ghanbari, S., Popescu, A. D., Chen, J., & Amza, C. (2009).

Dynamic resource allocation for database servers running on virtual storage. In Proc-

cedings of the 7th conference on file and storage technologies (pp. 71–84). Berkeley,

CA, USA: USENIX Association. Available from http://dl.acm.org/citation

.cfm?id=1525908.1525914

Sovran, Y., Power, R., Aguilera, M. K., & Li, J. (2011). Transactional storage for geo-

replicated systems. In Proceedings of the twenty-third acm symposium on operat-

ing systems principles (pp. 385–400). New York, NY, USA: ACM. Available from

http://doi.acm.org/10.1145/2043556.2043592

Stewart, C., Chakrabarti, A., & Griffith, R. (2013). Zoolander: Efficiently meet-

ing very strict, low-latency slos. In Proceedings of the 10th international con-

ference on autonomic computing (icac 13) (pp. 265–277). San Jose, CA:

USENIX. Available from https://www.usenix.org/conference/icac13/

technical-sessions/presentation/stewart

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001, August). Chord:

A scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.

Commun. Rev., 31(4), 149–160. Available from http://doi.acm.org/10.1145/

964723.383071

http://doi.acm.org/10.1145/1809049.1809053
http://dx.doi.org/10.1109/2.43525
http://dl.acm.org/citation.cfm?id=645475.654019
http://dl.acm.org/citation.cfm?id=645475.654019
http://dl.acm.org/citation.cfm?id=1525908.1525914
http://dl.acm.org/citation.cfm?id=1525908.1525914
http://doi.acm.org/10.1145/2043556.2043592
https://www.usenix.org/conference/icac13/technical-sessions/presentation/stewart
https://www.usenix.org/conference/icac13/technical-sessions/presentation/stewart
http://doi.acm.org/10.1145/964723.383071
http://doi.acm.org/10.1145/964723.383071

196 BIBLIOGRAPHY

Taft, R., Mansour, E., Serafini, M., Duggan, J., Elmore, A. J., Aboulnaga, A., et al. (2014, Novem-

ber). E-store: Fine-grained elastic partitioning for distributed transaction processing sys-

tems. Proc. VLDB Endow., 8(3), 245–256. Available from http://dx.doi.org/

10.14778/2735508.2735514

Tay, Y. C. (2013). Analytical performance modeling for computer systems, second edition.

Morgan & Claypool Publishers.

Tay, Y. C., Goodman, N., & Suri, R. (1985, December). Locking performance in centralized

databases. ACM Trans. Database Syst., 10(4), 415–462. Available from http://doi

.acm.org/10.1145/4879.4880

Tesauro, G., Jong, N. K., Das, R., & Bennani, M. N. (2006). A hybrid reinforcement learning

approach to autonomic resource allocation. In Proceedings of the 2006 ieee interna-

tional conference on autonomic computing (pp. 65–73). Washington, DC, USA: IEEE

Computer Society. Available from http://dx.doi.org/10.1109/ICAC.2006

.1662383

Tesauro, G., Jong, N. K., Das, R., & Bennani, M. N. (2007). On the use of hybrid reinforcement

learning for autonomic resource allocation. Cluster Computing.

Thereska, E., & Ganger, G. R. (2008). Ironmodel: Robust performance models in the wild. , 253–

264. Available from http://doi.acm.org/10.1145/1375457.1375486

Thomasian, A. (1993, January). Determining the number of remote sites accessed in distributed

transaction processing. IEEE Trans. Parallel Distrib. Syst., 4(1), 99–103. Available from

http://dx.doi.org/10.1109/71.205656

Thomasian, A. (1994). On a more realistic lock contention model and its analysis. In Proceedings

of the tenth international conference on data engineering (pp. 2–9). Washington, DC,

USA: IEEE Computer Society. Available from http://dl.acm.org/citation

.cfm?id=645479.655131

Thomasian, A. (1998, March). Concurrency control: Methods, performance, and analysis. ACM

Comput. Surv., 30(1), 70–119. Available from http://doi.acm.org/10.1145/

http://dx.doi.org/10.14778/2735508.2735514
http://dx.doi.org/10.14778/2735508.2735514
http://doi.acm.org/10.1145/4879.4880
http://doi.acm.org/10.1145/4879.4880
http://dx.doi.org/10.1109/ICAC.2006.1662383
http://dx.doi.org/10.1109/ICAC.2006.1662383
http://doi.acm.org/10.1145/1375457.1375486
http://dx.doi.org/10.1109/71.205656
http://dl.acm.org/citation.cfm?id=645479.655131
http://dl.acm.org/citation.cfm?id=645479.655131
http://doi.acm.org/10.1145/274440.274443

BIBLIOGRAPHY 197

274440.274443

Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). Auto-weka: Combined

selection and hyperparameter optimization of classification algorithms. In Proc. of the

19th acm sigkdd international conference on knowledge discovery and data mining (pp.

847–855).

TPC Council. (2011). TPC-C Benchmark. http://www.tpc.org/tpcc.

Trushkowsky, B., Bodı́k, P., Fox, A., Franklin, M. J., Jordan, M. I., & Patterson, D. A. (2011).

The scads director: Scaling a distributed storage system under stringent performance

requirements. In Proceedings of the 9th usenix conference on file and stroage technologies

(pp. 12–12). Berkeley, CA, USA: USENIX Association. Available from http://dl

.acm.org/citation.cfm?id=1960475.1960487

Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., & Koziris, N. (2013). Automated,

elastic resource provisioning for nosql clusters using tiramola. In (Vol. 0, p. 34-41). Los

Alamitos, CA, USA: IEEE Computer Society.

Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., & Tantawi, A. (2005). An analytical

model for multi-tier internet services and its applications. In Proceedings of the 2005 acm

sigmetrics international conference on measurement and modeling of computer systems

(pp. 291–302). New York, NY, USA: ACM. Available from http://doi.acm.org/

10.1145/1064212.1064252

Wada, H., Fekete, A., Zhao, L., Lee, K., & Liu, A. (2011). Data consistency properties and the

trade-offs in commercial cloud storage: the consumers’ perspective. In CIDR 2011, fifth

biennial conference on innovative data systems research, asilomar, ca, usa, january 9-12,

2011, online proceedings (pp. 134–143).

Watkins, C., & Dayan, P. (1992). Technical note: Q-learning. Machine Learning, 8(3-4), 279-

292. Available from http://dx.doi.org/10.1023/A%3A1022676722315

Welch, G., & Bishop, G. (1995). An introduction to the kalman filter (Tech. Rep. No. 95-041).

Department of Computer Science University of North Carolina at Chapel Hill.

198 BIBLIOGRAPHY

Whiteaker, J., et al. (2011, January). Explaining packet delays under virtualization. SIGCOMM

Comput. Commun. Rev., 41(1), 38–44.

Wojciechowski, P. T., Kobus, T., & Kokocinski, M. (2012). Model-driven comparison of state-

machine-based and deferred-update replication schemes. In Proceedings of the 2012

ieee 31st symposium on reliable distributed systems (pp. 101–110). Washington, DC,

USA: IEEE Computer Society. Available from http://dx.doi.org/10.1109/

SRDS.2012.44

Wolpert, D. H. (1992, February). Original contribution: Stacked generalization. Neural

Netw., 5(2), 241–259. Available from http://dx.doi.org/10.1016/S0893

-6080(05)80023-1

Wolpert, D. H. (1996, October). The lack of a priori distinctions between learning algo-

rithms. Neural Comput., 8(7), 1341–1390. Available from http://dx.doi.org/

10.1162/neco.1996.8.7.1341

Woodside, C. M., Zheng, T., & Litoiu, M. (2008). Performance model estimation and tracking

using optimal filters. IEEE Transactions on Software Engineering, 34(3), 391-406.

You, G.-w., Hwang, S.-w., & Jain, N. (2011). Scalable load balancing in cluster storage sys-

tems. In Proceedings of the 12th acm/ifip/usenix international conference on middle-

ware (pp. 101–122). Berlin, Heidelberg: Springer-Verlag. Available from http://

dx.doi.org/10.1007/978-3-642-25821-3 6

Yu, P. S., Dias, D. M., & Lavenberg, S. S. (1993, September). On the analytical modeling

of database concurrency control. J. ACM, 40(4), 831–872. Available from http://

doi.acm.org/10.1145/153724.153733

Zhang, B., & Hsu, M. (1995). Performance of concurrency control mechanisms in centralized

database systems. (chapter ”modeling performance impact of hot spots)” (V. Kumar,

Ed.). Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Zhang, Q., Cherkasova, L., & Smirni, E. (2007). A regression-based analytic model for dynamic

resource provisioning of multi-tier applications. In Proceedings of the fourth interna-

BIBLIOGRAPHY 199

tional conference on autonomic computing (pp. 27–). Washington, DC, USA: IEEE Com-

puter Society. Available from http://dx.doi.org/10.1109/ICAC.2007.1

Zhu, B., Li, K., & Patterson, H. (2008). Avoiding the disk bottleneck in the data domain dedu-

plication file system. In Proceedings of the 6th usenix conference on file and storage

technologies (pp. 18:1–18:14). Berkeley, CA, USA: USENIX Association. Available

from http://dl.acm.org/citation.cfm?id=1364813.1364831

	Introduction
	Context
	The evolution of Performance Modeling
	Thesis statement and Outline of the Contributions

	Background on Distributed Transactional Platforms
	Overview on Distributed Transactional Platforms
	Consistency, Atomicity and isolation in DTPs
	Durability in DTPs
	Data models in DTPs

	The Infinispan case study
	Complexity of the Infinispan Case Study

	Related Work
	Performance Modeling Methodologies
	White Box Performance Modeling
	Black Box Performance Modeling
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Ensemble Learning

	Gray Box Performance Modeling
	Divide et Impera
	Parameter Estimation
	Hybrid Ensemble.

	Performance Modeling and Self-tuning of DTPs
	Transactions-unaware Performance Modeling for DTPs
	Transactions-aware Performance Modeling for DTPs
	Black box models
	White box models
	System model.
	Data Management Scheme.
	Physical resources.
	Workload characterization.

	Critique to state of the art DTP performance modeling and thesis contributions

	The Divide et Impera Approach
	The Divide et impera performance modeling technique
	Design of the Divide et impera performance modeling technique
	Overview of DTPs Divide et impera performance modeling

	Divide et impera performance models of DTPs
	System overview and model
	System overview
	Concurrency control scheme.
	Replication Protocol.

	System model

	White box modeling in the proposed DTP models
	Transactions' response time computation
	Read only transactions response time.
	Update transactions response time.

	Contention model
	Locking model.
	Conflict probabilities.

	Remote nodes involved in the distributed commit phase.
	CPU Model
	Transactions' service demand computation.
	CPU jobs arrival rates computation.

	Black box modeling in the proposed DTP models
	Model resolution
	Predicted KPIs

	Models evaluation
	Experimental test-bed
	ACF validation
	ML validation
	Black box modeling in full replication.
	Black box modeling in partial replication.

	Validation of the hybrid performance models
	ETL validation.
	CTL validation.

	Comparison with pure ML approaches
	Measurements overhead and models resolution time

	Conclusion

	The Hybrid Ensemble Approach
	Notation
	Patching-based Hybrid Ensemble Techniques
	Bootstrapping
	Synthetic Knowledge Base Initialization
	Update of the Knowledge Base

	Hybrid Boosting

	Selection-based Hybrid Ensemble Techniques
	Hybrid K Nearest Neighbors
	Probing

	Evaluation
	Experimental test-bed
	Total Order Broadcast Overview
	Introduction on the Employed Base Models
	Preliminary considerations on the evaluation

	Bootstrapping
	Initialization
	Updating
	Bootstrapping in extrapolation

	Hybrid Boosting
	Hybrid KNN
	Probing
	Comparison among the approaches

	Conclusions

	Conclusions and Future Work

