
Integrating Transactional Memory Support in the
TensorFlow Framework

Facoltà di Ingegneria dell’Informazione, Informatica e Statistica

Master of Science in Engineering in Computer Science

Candidate

Davide Leoni
ID number 1614811

Thesis Advisor

Prof. Bruno Ciciani

Co-Advisors

Prof. Francesco Quaglia
Prof. Paolo Romano
Prof. Bruno Martins
Manuel Barreto Lima Reis

Academic Year 2016/2017

Integrating Transactional Memory Support in the TensorFlow Framework
Master thesis. Sapienza – University of Rome

© 2017 Davide Leoni. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: davide.leoni90@gmail.com

mailto:davide.leoni90@gmail.com

iii

Acknowledgments

The thesis work described in this document was conducted from May to September
2017 at the Instituto de Engenharia de Sistemas e Computadores, Investigação e
Desenvolvimento em Lisboa (INESC-ID) 1 within the SATURN 2 (Spatio-temporal
cloud store for big-data applications) project. The work was done together with
Manuel Barreto Lima Reis (who is currently pursuing a PhD degree in Computer
Science) and was supervised by Prof. Paolo Romano, from Instituto Superior Técnico
of the University of Lisbon, Prof. Bruno Emanuel da Graça Martins, from the same
institute, and Prof. Francesco Quaglia, from Università degli Studi di Roma Tor
Vergata. I want to thank all of them: collaborating with them was a pleasure and
allowed me to improve much my technical preparation. I am really grateful to Paolo
and Francesco, as they gave me the opportunity of working on a very interesting
project, in a stimulating international environment. I enjoyed much my time in
Lisbon, in particular at the INESC-ID institute, and I learned a lot, both from the
professional and the personal point of view. I must acknowledge all the colleagues
from the institute, who offered me a great support: Daniel Castro, Pedro Raminhas
and Shady Alaa Issa. My sincere appreciation also goes to Bruno, for his contribution
and for the time he dedicated to me. A special thank goes to my friend Manuel, for
his fundamental help and for all the good moments spent together. Last, but not
least, I must thank my advisor, for his availability and support.

1www.inesc-id.pt
2www.gsd.inesc-id.pt/blog/saturn

v

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Goal . 2

2 Background 3
2.1 Transactional Memories . 3

2.1.1 Introduction . 3
2.1.2 Implementation . 5
2.1.3 Software Transactional Memories 6
2.1.4 Hardware Transactional Memories 7
2.1.5 POWER8 . 8
2.1.6 Intel Haswell . 11

2.2 Transactional Lock Elision . 11
2.2.1 Intel Transactional Synchronization Extensions 12
2.2.2 POWER ISA Transactional Memory Support 13
2.2.3 GCC Transactional Memory Interface 15

2.3 TensorFlow . 18
2.3.1 Introduction . 18
2.3.2 Building the Dataflow Graph 19
2.3.3 Executing the Dataflow Graph 19
2.3.4 Visualizing the Dataflow Graph 20
2.3.5 Architecture . 21

2.4 Statistical Learning . 23
2.4.1 Overview . 23
2.4.2 Linear Regression . 25
2.4.3 Logistic Regression . 25
2.4.4 Gradient Descent . 27

2.5 Artificial Neural Networks . 28
2.5.1 Perceptrons . 28
2.5.2 Training Perceptrons . 29
2.5.3 Multilayer Perceptrons . 30
2.5.4 Variations to the Gradient Descent Algorithm 32
2.5.5 Convolutional Neural Networks 33

vi Contents

3 Integrating Transactional Memories in TensorFlow 35
3.1 Parallel Gradient Descent . 36
3.2 Gradient Descent in the TensorFlow 37

3.2.1 Python API . 37
3.2.2 Back-end Implementation . 38

3.3 Transactional Application of the Gradient Descent 39
3.3.1 Lock Elision with Hardware Transactional Memory 39
3.3.2 Application of the Updates with Software Transactional Memory 42

3.4 Eliding All the Locks in TensorFlow 43

4 Experiments and Results 45
4.1 The MNIST dataset . 46
4.2 Training of the Models . 46
4.3 Evaluation of the Models . 47
4.4 MNIST Softmax Regression (mnist_softmax) 48
4.5 MNIST Convolutional Network(mnist_deep) 49
4.6 TLE of the Lock for the Application of the Updates 50

4.6.1 Elision with HTM . 50
4.6.2 Elision with STM . 56

4.7 Global TLE . 58

5 Conclusions 67

vii

List of Figures

2.1 The HTM architecture on POWER8 10
2.2 Dataflow graph relative to Listing 2.9 22
2.3 Architecture of TensorFlow . 23
2.4 Multilayer perceptron . 31

3.1 The gradients in TensorBoard . 37

4.1 Speedup with HTM elision on Intel TSX - mnist_softmax - size:784 53
4.2 Commits with HTM elision on Intel TSX - mnist_softmax - size:784 54
4.3 Conflicts with HTM elision on Intel TSX - mnist_softmax - size:784 55
4.4 Conflicts with HTM elision on Intel TSX - mnist_softmax - size:100 56
4.5 Commits with HTM elision on Intel TSX - mnist_softmax - size:100 57
4.6 Speedup with HTM elision on Intel TSX - mnist_softmax - size:100 58
4.7 Speedup with HTM elision on POWER ISA - mnist_softmax - size:784 59
4.8 Failures with HTM elision on POWER ISA - mnist_softmax - size:784 60
4.9 Accuracy with HTM elision on POWER ISA - mnist_softmax - size:784 60
4.10 Speedup with HTM elision on Intel TSX - mnist_deep - size:784,

batch:1 . 61
4.11 Speedup with HTM elision on Intel TSX - mnist_deep - size:784,

batch:15 . 61
4.12 Accuracy with HTM elision on Intel TSX - mnist_deep - size:784,

batch:1 . 62
4.13 Speedup with STM - default c.m., size:784, batch:1 62
4.14 Speedup with STM - default c.m., size:784, batch:5 63
4.15 Speedup with STM - backoff c.m., size:784, batch:1 63
4.16 Speedup with STM - backoff c.m., size:784, batch:5 64
4.17 Speedup with Global TLE - default elision configuration 64
4.18 Speedup with Global TLE - custom elision configuration 65

ix

Listings

2.1 Locks vs. Transactions . 4
2.2 Transactional Lock Elision with TSX 13
2.3 Transactional Lock Elision with POWER ISA 14
2.4 Low-level HTM GCC built-in functions on POWER ISA 15
2.5 Transactional code using libitm . 16
2.6 Transactional code using the GCC RTM interface 17
2.7 Start transaction with HLE . 17
2.8 End transaction with HLE . 18
2.9 Add matrices in TensorFlow . 20
3.1 Train a linear model . 38
3.2 Original application of the updates, with Eigen 39
3.3 HTM-friendly application of the updates, without Eigen 39
3.4 HTM elision on Intel TSX . 40
3.5 HTM elision on POWER ISA . 41
3.6 GCC TM application of the updates 43
4.1 Load MNIST in Python . 46

1

Chapter 1

Introduction

1.1 Motivations

It only takes to look in any academic search engine at the number of publications
related to it, to realise how machine learning has been having a growing momentum
in the last decades. Nowadays, the core business of the main world-wide leading
companies, like Facebook, Google or Amazon, is largely based on the capacity of
training models. This is particularly true for one of the branches of machine learning,
deep learning, whose success has been impressively increasing in the very last few
years at a large scale. Such a popularity is understandable considering the great
progresses made in various areas (for example computer vision, natural language
processing, speech recognition and information retrieval) thanks to the algorithms
provided by this research field [1, 11, 27].
Hence it does not come as a surprise to know that many frameworks and libraries,
both open and closed source, exist to implement and experiment with these algo-
rithms. Nevertheless, although machine learning, and even more deep learning,
have been only recently catching the attention of the researchers, it is been now
many years since the first libraries and frameworks for machine learning have been
introduced. A list of the most famous ones can include, in chronological order,
the OpenCV library for C++, the scikit-learn library for Python, and the Apache
Hadoop platform for Java. Focusing on deep learning, the oldest example, Torch,
dates back to 2002 and was then followed by Theano and Caffe.
In November 2015, Google released TensorFlow (TF), a software library for the
implementation and training of machine learning models. After the very first releases,
whose performances were poor compared to the other libraries [4], TF rapidly gained
a broad consensus among developers (as witnessed by the thousands of projects on
GitHub making use of it) and researchers. This is probably due to one characteristic
that makes TF unique compared to its competitors: flexibility [27]. As a matter of
fact, TF supports distributed execution across various kinds of devices, with very
different computational power, from mobile phones to GPUs. Such an heterogeneity
of hardware platforms reflects into a variety of tasks and goals, which range from
large-scale training with many dedicated machines in a production environment, to
experimenting new algorithms on simple smartphones. Overall, on one hand, the
objective pursued by TF is to make machine learning and deep learning accessible

2 1. Introduction

to the broadest audience as possible; on the other hand, it puts a strong accent on
the adoption of parallel and distributed computing to make machine learning faster
[1, 2, 27]. Indeed, in the last decade the rapid spread of low-cost machines with
multiple cores has made possible to apply machine learning to datasets much larger
than before, allowing to improve the accuracy of trained models [6, 23]. Nevertheless,
because of the synchronization primitives that have to be used when the training is
performed in parallel, the scalability is still limited.

1.2 Goal
The great popularity of TF, together with the current emphasis on training models in
parallel, suggested the idea of investigating the benefits of providing this framework
with the support for transactional memories. These, indeed, removing the need
for the classic synchronization primitives (more on this in Section 2.1), can help to
improve the scalability of programs run on multiple processors. As a consequence,
the algorithms provided by TF, when applied in the context of large-scale training,
could potentially profit from the application of transactional memories. The intended
goal of this thesis consisted in verifying whether this speculation was true.

3

Chapter 2

Background

This chapter contains an overview of the fundamental concepts which this disser-
tation is based on. The first part deals with the transactional memories, starting
from the reasons that motivated their introduction, describing the general design
concepts and bringing some concrete examples. The following section is dedicated to
TensorFlow, the library for machine learning by Google, at the center of this thesis
work. Considering its complexity, and the high number of functionalities, it is not
trivial (and out of scope) to provide a complete description of the framework. The
attention is thus focused on the aspects that are most relevant in the perspective of
integration the transactional memory support. The last section provides a theoretical
background related to the machine learning models taken into account as testbeds
for the experiments reported in this work.

2.1 Transactional Memories

2.1.1 Introduction

After many years since the first parallel architectures came to light, it is now clear
that writing programs that exploit effectively all their computational power is not a
trivial task [14]. Indeed, the well-known synchronization primitives (locks, mutexes,
semaphores, etc.), required to coordinate the action of threads (or processes) on
shared data, introduce some complications. On one hand, it is necessary to keep as
tiny as possible the critical sections, the piece of code protected by the primitives,
in order to provide scalability. On the other hand, the finer the grain of the critical
sections, the more complicated and the trickier to debug is the associated code.
Besides performances, when not properly used synchronization primitives can threat
the progress of the programs (deadlocks) or their correctness (race conditions). Last,
but not least, explicit synchronization is not composable. In alternative, programs
designed to run in parallel can adopt lock-free algorithms, but it is even more difficult
to design them and to prove their correctness, so they are actually used for very
specific domains.
Given all these issues, Transactional memories were introduced to provide program-
mers with a new abstraction that made parallel programming easier. The idea
was borrowed from the world of databases, which are able to run queries simul-
taneously on multiple processors without the programmer to be concerned about

4 2. Background

the concurrency of the execution: this is achieved wrapping the computation with
transactions. In databases, transactions are the fundamental unit of execution: they
are a set of instructions that have to be executed sequentially. They have four basics
characteristics:

1. atomicity: the effects of a transaction are made visible (the transaction is said
to have committed) only if all the enclosed operations completed successfully.
If any of these fails, the whole transaction is said to have failed and the system
remains untouched as if the transaction had been never executed

2. consistency: the transaction must not alter the consistency properties of the
database

3. isolation: each transaction must not interfere with other transactions (if any)
executed simultaneously

4. durability: once a transaction has committed, its effects on the database are
definitive

Each transaction is executed as if it the associated computation was the only one
running in the system, despite multiple transactions can be executed simultaneously.
The underlying implementation deals with the concurrency issues transparently to
the programmer and still guarantees serializability: the net result of the simultaneous
execution of the transactions is the same as if the transactions run sequentially, so
the programmer is not worried by synchronization of the operations. Transactional
memories are intended to provide the support for performing the concurrent read
and write to shared memory addresses applying the semantics of the database
transactions [14]. As a consequence, programmers are relieved from the burden of
explicitly applying synchronization primitives, since the properties of the transactions
offer the guarantees necessary to solve the synchronization problems. Developers
only have to identify the code associated with a critical section and surround it with
a transaction using an interface similar to the one shown below.

i n t balance ;
l o ck protect_balaance ;

void depos i t (i n t x) { void depos i t (i n t x) {
protect_balance . l o ck () ; startTx () ;
ba lance += x ; balance += x ;
protect_balance . unlock () ; endTx () ;

} }

void withdraw (i n t x) { void withdraw (i n t x) {
protect_balance . l o ck () ; startTx () ;
ba lance −= x ; balance −= x ;
protect_balance . unlock () ; endTx () ;

} }

Listing 2.1. Locks vs. Transactions

2.1 Transactional Memories 5

2.1.2 Implementation

This section provides an overview of the underlying mechanisms of transactional
memories, independently of their specific implementation. First of all, it is necessary
to handle the concurrent access to shared data in order to achieve isolation between
transactions. Two transactions are said to determine a conflict if they execute two
conflicting operations (two writes or one read and one write) on the same memory
addresses: not only have conflicts to be detected, but they also have to be resolved.
Three types of approach are possible [14]:

• pessimistic: at the moment of executing each operation inside a transaction, it
is checked whether it will not produce a conflict; if that is so, the system takes
some actions to avoid it

• optimistic: transactions are executed until a conflict is detected at only at
that the point, actions are taken to resolve the conflict, possibly aborting
transactions

• hybrid: it is possible, for example, to apply the pessimistic control only to
conflicts between write operations and use instead the optimistic control for
read operations. Another possibility is to use optimistic control and define
some irrevocable transactions which are guaranteed to complete

In case the optimistic concurrency control is chosen, a further design decision regards
the granularity of the detection of a conflict: in Software Transactional Memories
(see Section 2.1.3) the resolution of the detection corresponds to entire objects, while
in Hardware Transactional Memories (see Section 2.1.4) corresponds to single lines
of the cache. Another important aspect of the detection is the time when it occurs.
There are three moments, in chronological order with respect to the execution of
the transaction, when a conflict can be detected [14]:

1. before the transaction is actually started

2. during its execution, a transaction can check whether the data it has accessed
have been modified by other concurrent transactions

3. at “commit-time’, when the transaction has already concluded its work
Furthermore, in order to detect conflicts, some implementations monitor the in-
tersection of the set of accessed addresses only between committed and on-going
transactions, while others also consider the intersection between transactions that
are not terminated yet. Finally, transactional memories are required to keep track
of the effects produced by the operations they contain, in order for them to be
removed should the transaction be aborted. As regards with this aspect, there are
two alternatives [14]:

1. direct update: the write operations directly replace the content of memory
addresses to which they are applied and the old content is stored in an undo-log:
this will be consulted, in case of abort, to restore the state of the memory
antecedent to the execution of the transaction

2. deferred update: the results of the write operations are written to a redo-log
and if the transaction eventually commits they are propagated to the memory

6 2. Background

2.1.3 Software Transactional Memories

The idea behind Software Transactional Memories was inspired by the work presented
in [28], which first introduced the concept of “transaction” outside the domain of
databases. Anyway, the current implementations of STMs are quite different from
the mechanism presented in that work, where a transaction was required to first
declare the memory addresses it was about to work with [14]. Many examples of
STMs exist nowadays and each represents a different approach in the implementation
of some basic mechanisms necessary to build STMs.
One of these mechanisms regard the storage of the metadata necessary to keep track
of the memory locations accessed by the transactions. Two alternatives are possible:

1. storing the metadata as part of the object allocated by the program (object-
based)

2. creating a mapping from each memory location to the address where are stored
the related metadata (word-based)

The first solution is more convenient in terms of time required to access the metadata,
since they are tightly connected to the object they refer to; on the other hand, since
the metadata are usually stored in the same cache line as the object, two concurrent
accesses to different fields of the same object will be detected as a conflict by the
cache coherency protocol. Undo-logs (see Section 2.1.2) are usually allocated using
lists, while for redo-logs the implementation has to be more complex in order to
avoid the degradation of performances. Unlike the undo-log, indeed, the redo-log has
to be checked every time a transaction reads a memory location previously written
by another transaction, so that the former can see the speculative updates performed
by the latter. The computational complexity of searching for these updates in a list
is linear, and this is not acceptable from the point of view of performances, so often
a hash table is used instead. STMs also need to keep track of the memory locations
a transaction read from (read-set) and of those it wrote to (write-set).
The STM implementation used in some of the experiments described in this disser-
tation is TinySTM 1 [9, 10], which inherits many of its mechanism from the TL2
algorithm [8]. This algorithm makes use of versioned locks to store the metadata
relative to a memory location accessed by a transaction. Versioned locks combine a
mutual exclusion lock, that has to be acquired by write operations, with a version
number, incremented every time the lock is grabbed and then released. If the lock
is free, no write operations is currently being performed and the version number
reflects the current state of the object; otherwise, the version number refers to the
transaction that is accessing the object the metadata is associated with. TL2 adopts
deferred updates: the lock, that protects the critical section executed transactionally,
is acquired only when the transaction is ready to commit. Moreover, TL2 relies on
a global clock, namely a counter, unique for the whole application, incremented by
one when a writing transaction commits. When a transaction starts, it reads the
value of the global clock: this value is referred to as read-version to distinguish it
from the write-version, which instead is the value of the global clock incremented by
a transaction before committing. The version number of each object is equal to the

1tmware.org/tinystm

2.1 Transactional Memories 7

write version of the last transaction that modified it and successfully committed. A
read-only transaction works as follows:

1. gets a read-version, reading the global clock

2. speculatively performs load operations: before each load, checks whether the
versioned-lock of the memory address is free and whether the version number
is less than or equal to the read version. If either of the two checks fails, the
transaction is aborted, because this means that a write transaction meanwhile
committed and modified the value of the location

It has to be noted that read-only transactions have the great advantage of avoiding
that a read-set gets built for them; moreover, the read-version ensures the consistency
of the view of the memory of a transaction. Unsurprisingly, a write transaction is
more complex:

1. gets a read-version, reading the global clock

2. speculatively performs load ans store operations, logging them respectively in
a read-set and a write-set. The load instructions, before actually accessing the
memory, first check if the address is contained in the write-set and, if so, the
corresponding value is returned. Moreover, for each load is made the same
double check as in read-only transaction: this ensures that a memory location
has not been concurrently modified by another transaction.ì

3. when the transaction is ready to commit, it tries to acquire all the locks of the
locations in the write-set: if only one of these is not successfully grabbed, the
transaction aborts

4. the write version is obtained, reading the global clock after having incremented
it

5. before committing, the read-set is further validated to guarantee that, during
the preceding two steps, no modification has been made to the addresses read

6. commit: for all the locations in the write set, the new value is stored, the
version number is initialized to the write-version and then the lock is released

The main advantages of implementing transactional memories in software rather
than using hardware resources is that software in general is easier to adapt and to
modify.

2.1.4 Hardware Transactional Memories

Hardware Transactional Memories represent a step forward with respect to STMs
under many points of view. From the performances point of view, for example, they
have less overhead than STMs. Also they can be applied more transparently to
existing environments and they allow to save energy compared to STMs. Analogously
to STMs, various types of HTMs have been proposed, but it still possible to categorize
them on the basis of some design choices. Firstly, as regards with the definition of
the boundaries of a transaction, there are two types of HTMs:

8 2. Background

1. explicit HTMs provide new sets of instructions to directly specify which load
and store instructions have to be performed inside a transaction; examples are
[15, 30]

2. implicit HTMs only allow to specify where a transaction starts and where it
finishes, treating all the memory accesses in between as part of the transaction;
[25] and [7] belong to this group

HTMs usually exploit the hardware cache to store the read set (set of memory
addresses read by a transaction) and the write set (set of memory addresses modified
by a transaction). For the read set this is as simple as setting an extra “read bit” in
the cache line containing the address accessed by a transaction. As for the write set,
this is not so easy to deal with, since some cache coherency protocols allow that a
modification to an address is first written in the cache and then propagated to the
main memory. An alternative approach consists in allocating dedicated extra spaces
for the read and write sets. Nevertheless, the usage of the hardware cache has a
further advantage: it allows to rely on the cache coherency protocols for the detection
of conflicts. As a matter of fact, the most common of this protocols, M.O.E.S.I
defines five states for a cache line (modified, owned, exclusive, shared and invalid)
which allow to determine whether two transactions are accessing memory locations
in a conflicting manner. As soon as a conflict is detected, the usual strategy adopted
by HTMs consists in aborting the transaction and passing the control to a software
handle to either use a fallback path or re-execute the transaction.
The hardware support for transactional memories is now a mature feature of pro-
cessors: the next two sections provide a description of two commercial examples of
HTMs that were used for this thesis.

2.1.5 POWER8

The POWER8 processor, by IBM, features twelve cores, each having at disposal its
own Level2(L2) cache, with a capacity of 512KB, and and Level3(L3) cache, capable
of storing information up to 8MB. There are also two memory controllers (both third
generation PCI Express) and a bus providing connection among all the components.
Each core (64 bit) supports multithreading, being able to simultaneously run up to
8 threads, and is provided with a 32KB eight-way associative Level1(L1) cache for
instructions and a 32KB eight-way associative Level1(L1) cache for data [12].

Transactional Memory Implementation

POWER8 is the first processor, based on POWER ISA, that supports transactional
memory: the instruction set is extended with a set of machine instructions to
implement and control the execution of transactions. The implementation is best-
effort, namely there is no guarantee that a transaction will eventually commit. In
case of failure, a dedicated register, the Transaction Exception and Status Register
(TEXASR), is initialized to a code (eight different values are possible on POWER8)
that gives an indication of what prevented the transaction from committing; another
register, the Transaction Failure Instruction Address Register (TFIAR) is instead
set to the address of the instruction responsible for the failure. More importantly,

2.1 Transactional Memories 9

if a transaction fails, a software handler is activated to take care of it: the usual
behaviour of the handler consists in reading the value of the two registers and
deciding, depending on the cause of the failure, whether it is worthy to try re-
executing the transaction or if it is better to abort it. Transactions can be nested
(up to 62 levels), but the results of the commit of a inner transactions are not made
available until the outer transaction correctly finishes too; if a transaction, at any
level of nesting, aborts, the whole stack of transactions aborts too. The programmer
requests for the beginning of a transaction in a thread issuing the tbegin instruction.
The Machine Status Register (MSR) is used to determine whether an execution
path is running inside a transaction or not. These two conditions correspond to the
Transactional and Non-Transactional state respectively; the third possible state is
Suspended (see later). The begin instruction causes the underlying implementation to
first make a checkpoint of the current state of the hardware registers; then it checks
whether other threads are concurrently executing the operations on the same shared
data outside the scope of a transaction. If that’s so, the transaction can not proceed
and it is aborted by the tabort instruction, which gives control to the software
handler. Otherwise, the transaction can continue till the end. During the execution,
write operations to memory are performed speculatively, namely their effect are made
visible only after the transaction eventually commits, otherwise they are cancelled. If
two different threads access the same cache line and either one or both are currently
running a transaction, a conflict arises, causing either of the transactions to fail.
The size of a cache line determines the capability of the implementation of detecting
false conflicts (those situations where two threads are actually accessing different
memory locations but these operations are still recognized as conflicting because the
two addresses are stored in the same cache line). In case of POWER8, the cache
line has a size of 128 bytes [24]. The programmer can also temporarily suspend
a transaction with the tsuspend instruction: from that point on, the instructions
will not be included in the transaction, so their effects will not be undone should
the transaction later fail; indeed, the cache lines used by the transactions before
it was suspended keep being monitored, so if a conflict takes place the transaction
will fail as soon as it is resumed with the tresume instruction. The possibility of
suspending transactions serves for debugging purposes and for the transaction itself
to continue after an interrupt has occurred. The end of a transaction is marked
by the programmer with the instruction tend: if the transaction can successfully
commit, its associated write operations are atomically committed for all the other
threads to see them; the effects of multiple transactions are applied following a serial
order. Otherwise, if the transaction can’t commit, the software handler usually
tries to re-run it for a limited number of times; if it never succeeds, the code of the
transaction is executed acquiring the lock that protects the critical section [19].

Transactional Memory Architecture

Fig. 2.1 (the image taken from [19]) provides a clear illustration of the internal
hardware architecture of POWER8: what follows gives a brief explanation of its
most important elements. The Instruction Sequencing Unit (ISU) stores in the
core the checkpoint of the registers created every time a new transaction begins.
The Load Store Unit (LSU) of each core contains a Level1 private cache where are

10 2. Background

Figure 2.1. The HTM architecture on POWER8

stored the addresses written by the transaction. In particular, for each cache line
the L1 Directory (L1Dir) includes two extra bits that are set to respectively indicate
whether the cache line has been accessed inside a transaction and the ID of the
thread executing it. Cache lines involved in a transaction are not available to other
threads until the commit or the abort of the transaction itself: any attempt of access
is translated to a cache miss and handled by L2 cache. The TM Load Directory
(TM LD DIR) keeps a reference to the addresses read by transaction, which are
maintained in the L2 cache, and serves to reduce transfers to the L1 cache. In the
L2 cache, the TMCAM is a directory with 64 entries, each containing a cache line
address and several bits that indicate its state for each single thread. Conflicts are
detected by the TMCTL unit of the L2 cache, which keeps an eye on the memory
locations accessed by not only the local core, but also by the other cores. When a
conflict actually occurs, the core running the aborted transaction gets informed by
the TMCTL unit and the software handler is activated. Finally, the TMCAM in
the L3 cache keeps track of dirty cache lines accessed by a transaction during its
execution, until it eventually fails or commits.
The size of the described hardware resources, necessary for the hardware implemen-

2.2 Transactional Lock Elision 11

tation of the transactional memory, puts a limit on the total number of memory
addresses that can be accessed inside a transaction. When a transaction tries to
overcome this limit, the transaction is aborted: such a kind of abort is referred to as
capacity-overflow abort [24].

2.1.6 Intel Haswell

Haswell [13] is the fourth-generation family of Intel Core processors, by Intel. Ac-
cording to jargon used by Intel to classify the advancements in the architectures
of CPUs, it is a “tock”, meaning that it represents a big step with respect to the
microarchitecture of its predecessor, Ivy Bridge. Despite the main improvements
affect the area of power management and efficiency, Haswell features, for the first
time in the history of Intel architectures, a new set of instructions taht provide
support for transactional memories: this extension of the ISA is called Transactional
Synchronization Extensions (TSX) (see Section 2.2.1).
Whereas plenty of information is available regarding the interface exposed to pro-
grammer for them to take advantage of the transactional memory support, it is
way more difficult to find details about its underlying implementation, since they
were not disclosed. It is sure [13] that the Level1 cache, whose capacity is 32KB,
serves to maintain the memory addresses accessed by the transaction during its
execution, for both load and store instructions. Moreover, conflict detection relies on
cache coherency protocols. Some 2 speculated about the rest of the implementation,
formulating the hypothesis that write operations are first executed on cache lines,
saving the original data present in memory in a shared L3 cache.

2.2 Transactional Lock Elision

Transactional lock elision (TLE) is a technique that exploits hardware transactional
memories to execute simultaneously on multiple threads critical sections that other-
wise would be serialized by a synchronization primitive, running sequentially. The
programmer is required to define the boundaries of the critical section to be run in
parallel and the processor, at runtime, avoids taking the lock which protects the
critical section and executes it in parallel on multiple threads in a “transactional
way”. This means that the processor does not actually execute the write operation
directly to memory, but buffers them waiting for the outcome of the transaction;
analogously, it tracks all the memory addresses read. At the end of the transaction,
if there was no conflict in the access of shared data by concurrent threads, the
processor atomically applies the buffered store operations to memory. If that is
so, the lock has been “elided”, since the critical sections have been executed in
parallel without synchronizing the access to shared data and still ensuring isolation,
consistency, durability and atomicity (the properties inherited from the transactional
semantics). Otherwise, if the transaction fails, the state of the system is restored to
the moment antecedent to its start. The next two sections contain a description of
the interface offered to the programmer for the definition of transactions by the two
architectures described before.

2realworldtech.com/haswell-tm

12 2. Background

2.2.1 Intel Transactional Synchronization Extensions

Starting from the family of processors Haswell (see Section 2.1.6), Intel adopted a new
instruction set, Intel TSX, that comprises two software interfaces for programmers
to request transactional lock elision:

1. Hardware Lock Elision (HLE)

2. Restricted Restricted Transactional Memory (RTM)

The underlying implementation is best-effort, meaning that transactions are not
guaranteed to always commit, even in absence of concurrency, because of conflicts
or capacity aborts. Another reason for failures is the execution of machine level
instructions that are guaranteed to cause transactions to abort, like CPUID or PAUSE
3. It is up to the programmer to ensure that these kind of instructions are not
included in a transaction, as well as to try avoiding the following (partial) list of
instructions, which might may cause an abort too:

• system calls (SYSENTER, SYSCALL, SYSEXIT, SYSRET)

• interrupts (INTn, INTO.)

• I/O instructions

• updates to some portions of the EFLAGS register

• saving the state of the processor (XSAVE)

HLE is an extension of the machine instructions set that introduces two new
instruction prefixes, XACQUIRE and XRELEASE, to mark respectively the beginning
and the end of a transaction. The two prefixes are ignored on legacy architectures
that do not have the transactional support, hence HLE is the recommended choice
for programmers that intend to run their code on the broadest set of architecture
as possible. The mechanism associated with HLE tries to run the code comprised
between the two prefixed instructions as a transaction: in case of abort, there is no
further attempt to make the transaction commit.
RTM, on the contrary, although relies on the same hardware resources, is capable
of offering the developers more flexibility in the management of the transactions.
It is a new set of instructions that a programmer has to use in his code to handle
transactions:

• XBEGIN serves to define the beginning of a transaction and takes in input the
address of a fallback function, which is passed the control of the execution if
the transaction does not successfully commit. One common behaviour for this
software handler is to try re-executing the transaction a number of times: in
case all the attempts are not successful, the critical section is executed in a
non-transactional way grabbing the associated lock

• XEND marks the end of the transaction
3software.intel.com/en-us/node/524022

2.2 Transactional Lock Elision 13

• XABORT allows to explicitly abort an ongoing transaction, also specifying the
motivation of this action through an 8-bit value

1 r e t r i e s = N_RETRIES
2 s ta tu s = XBEGIN()
3 lock = in i t_ l o ck ()
4 i f s t a tu s != ok :
5 i f r e t r i e s == 0 :
6 lock . acqu i r e ()
7 else :
8 r e t r i e s −−
9 goto 2
10 i f i s l o c k e d (l ock) == true :
11 XABORT
12
13 CRITICAL SECTION
14
15 i f attempts == 0 :
16 lock . r e l e a s e ()
17 else
18 XEND

Listing 2.2. Transactional Lock Elision with TSX

In case of abort of a transaction, even due to a call to XABORT, the implementation
sets the bits of the EAX register in order to indicate the reason of the failure. The
following is an explanation of the meaning associated with each bit of the register in
case of abort:

• bit 0: set if XABORT was called

• bit 1: set if a re-execution of the transaction might commit successfully; cleared
if bit 0 is set

• bit 2: set in case of conflicting access to shared data

• bit 3: set in case of buffer overflow

• bit 4: set in case of debugging point being hit

• bit 5: set in case of abort of a nested transaction

• bits 24 to 31: contain the 8-bit value passed by XABORT

2.2.2 POWER ISA Transactional Memory Support

As already anticipated in 2.1.5, POWER 8 is the first family of microarchectures
manufactured by IBM to have the transactional memory support. The new instruc-
tion set has an extension that, similarly to Intel, allows programmers to run a critical
section speculatively, without first acquiring the lock and possibly bypassing (or

14 2. Background

“eliding”) it. The boundaries of the code to be executed speculatively are defined
by the programmer with the machine level instruction tbegin and tend; a running
transaction can be momentarily suspended with the tsuspend instruction and later
restored with the tresume instruction. Like Intel TSX, also the POWER ISA im-
plementation is best-effort, so when a transaction starts, a checkpoint of the actual
state of the registers (so called pre-transactional state) is automatically created: in
case of a premature interruption of the transaction, the condition of the system is
rolled-back to this initial state. Privileged users can access the values of the check-
pointed registers by mean of the treclaim instruction; conversely, the trechkpt
instruction places the checkpoint back to the dedicated registers. If a transaction fails
(either because of external factors or because of an explicit termination requested
by the programmer through tabort), the control has to be redirected to a software
handler. In particular, the CR0 register is initialized to the value 0b1010 in case
the transaction cannot be successfully start, to the value 0b0100 otherwise. As a
consequence, the instruction following tbegin has to be a branching instruction, for
example beq (branch on equal), that checks the value of the CR0 register and gives
control to a software handler in case of failure.

1 s t a r t_t ran sac t i on :
2 tbeg in # Star t t r an sa c t i on
3 beq software_handler # Branch on value o f CR0
4 CRITICAL SECTION # Cr i t i c a l s e c t i o n
5 tend . # End t r an sa c t i on
6 b t ran sac t i on_ex i t # Continue execut ion a f t e r
7 # a t r an sa c t i on has terminated
8 software_handler :
9 mfspr r4 , TEXASRU # Read the value o f
10 # the TEXASR r e g i s t e r
11 andis . r5 , r4 , 0x0100 # Check i f the f a i l u r e
12 # i s p e r s i s t e n t
13 bne acqui re_lock # I f i t i s p e r s i s t e n t ,
14 # acqu i r e the lock
15 # to run the c r i t i c a l s e c t i o n
16 b s t a r t_t ran sac t i on # I f not p e r s i s t e n t , t ry again
17
18 acquire_lock :
19
20 t ran sac t i on_ex i t :

Listing 2.3. Transactional Lock Elision with POWER ISA

A failure is either transient or persistent: in the former case, the abort of the
transaction was caused by a temporary condition of the system, so there are chances
that the transaction commits on a new attempt; in the latter case, instead, there
are no possibilities for a successful completion of the transaction, so the strategy
adopted in this case consists in acquire the lock and run the critical section in
non-transactional way. The software handler leverages the content of the TEXASR
(see Section 2.1.5) register to determine the cause of the failure. More precisely, the

2.2 Transactional Lock Elision 15

first 6 bits of this 32 bit register contain the transaction failure code; the seventh bit
is set in case of persistent failure [12].

2.2.3 GCC Transactional Memory Interface

On machines based on POWER ISA, like POWER 8, developers can take advantage
of the transactional memory facility through GCC (GNU Compiler Collection).
There are three possible choices [12]:

1. using the HTM low-level built-in functions

2. using the HTM high-level built-in functions

3. using the libitm library

The first set of functions is enabled compiling the source code with the -mcpu=power8
or -mthm options. All these functions return the 4-bit value written by the correspond-
ing machine level instructions in the TEXASR register; the header file htmintrin.h
includes some helper functions to parse and return this value. The macro that starts
a new transaction, __builtin_tbegin does not adhere to this procedure and re-
turns instead a boolean value indicating whether a transaction has been successfully
started. The listing below shows a pattern of usage of the functions.

1 #include <htmintr in . h>
2
3 int num_retries = 10 ;
4
5 while (1)
6 {
7 i f (__built in_tbegin (0))
8 {
9 /∗ Transact ion S ta t e I n i t i a t e d . ∗/
10 i f (i s_locked (l ock))
11 __built in_tabort (0) ;
12 . . . t r an s a c t i on code . . .
13 __builtin_tend (0) ;
14 break ;
15 }
16 else
17 {
18 /∗ Transact ion S ta t e Fa i l ed . Use l o c k s i f the

t r an sac t i on
19 f a i l u r e i s " p e r s i s t e n t " or we ’ ve t r i e d too many

t imes . ∗/
20 i f (num_retries−− <= 0
21 | | _TEXASRU_FAILURE_PERSISTENT (

__built in_get_texasru ()))
22 {
23 acquire_lock (l ock) ;

16 2. Background

24 . . . non t r an s a c t i o n a l f a l l b a c k path . . .
25 r e l e a s e_ lo ck (l ock) ;
26 break ;
27 }
28 }
29 }

Listing 2.4. Low-level HTM GCC built-in functions on POWER ISA

The code above 4 tries to execute speculatively the code corresponding to a critical
section (transaction code) until either the associated transaction (identified by the
integer passed to __builtin_tbegin) commits or a limit for the number of attempts
(num_retries) is reached. As soon as the transaction starts, the code checks whether
other threads are concurrently executing the same critical section acquiring the
lock that protects it (see Section 2.1.5). If that is so, the transaction is explicitly
aborted by __builtin_tabort; otherwise it proceeds until the end of the critical
section, which is marked by __builtin_tend. In case of failure of the transaction,
the software handler (corresponding to the else branch) reads the value of the
TEXASR register with __builtin_get_texasru and thanks to the utility function
_TEXASRU_FAILURE_PERSISTENT determines if it is worthy to try re-executing the
transaction. If this is not so, the fallback path, namely the lock-protected execution
of the critical section, is taken.
The second group of functions is intended to make the code more portable, since
it can be compiled not only by GCC, but also by IBM XL; programmers have to
include the header htmxlintrin.h to use this interface.
Finally, the highest level interface available is represented by libitm, the GNU
Transactional Memory Library5. At runtime, it transparently verifies whether the
underlying hardware supports transactional memory and, if so, wraps a transaction
around the critical section specified by the programmer as in the listing below. The
integration of this

1 __transaction_atomic {
2 CRITICAL_SECTION;
3 }

Listing 2.5. Transactional code using libitm

GCC also offers support for programmers to use hardware transactional memories on
machines based on Intel TSX. The RTM interface (see Section 2.2.1) can be accessed
adding -mrtm to the flags passed to the compiler and comprises four functions (see
the code 6 below:

• xbegin starts a transaction. If this operation is successful, _XBEGIN_STARTED is
returned; if the transaction is aborted, besides undoing its effects, this function
stores in the EAX register a code indicating the reason for the abort and

4gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-
Functions.html

5gcc.gnu.org/wiki/TransactionalMemory
6gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc/X86-transactional-memory-intrinsics.html

2.2 Transactional Lock Elision 17

returns it. This provides the software handler with the information necessary
to decide to either retry the transaction or not

• xend commits a transaction. If this operation is successful, the effects of the
operations inside the transaction are applied atomically, otherwise the state of
the registers is restored to the state antecedent to the transaction

• xabort explicitly aborts a transaction (including nested transactions); the
constant to be passed as parameter is written into the upper eight bits of the
EAX register

• xtest serves to check if a transaction is currently active: 0 is returned if that’s
not the case

1 #include <immintrin . h>
2
3 int n_tr ies , max_tries ;
4 unsigned s t a tu s = _XABORT_EXPLICIT;
5 . . .
6
7 for (n_tr i e s = 0 ; n_tr i e s < max_tries ; n_tr i e s++)
8 {
9 s t a tu s = _xbegin () ;
10 i f (s t a tu s == _XBEGIN_STARTED | | ! (s t a tu s &

_XABORT_RETRY))
11 break ;
12 }
13 i f (s t a tu s == _XBEGIN_STARTED)
14 {
15 . . . t r an s a c t i on code . . .
16 _xend () ;
17 }
18 else
19 {
20 . . . non−t r a n s a c t i o n a l f a l l b a c k path . . .
21 }

Listing 2.6. Transactional code using the GCC RTM interface

The HLE interface (see Section 2.2.1) is accessible through the atomic built-in
functions, which allow to synchronize the access to memory locations by multiple
threads in such a way that read and write are made visible atomically. A transaction
is started by the following snippet of code 7

1 /∗ Acquire l o c k wi th l o c k e l i s i o n ∗/
2 while (__atomic_exchange_n(&lockvar , 1 , __ATOMIC_ACQUIRE|

__ATOMIC_HLE_ACQUIRE))
7gcc.gnu.org/onlinedocs/gcc/x86-specific-memory-model-extensions-for-transactional-

memory.html

18 2. Background

3 _mm_pause() ; /∗ Abort f a i l e d t r an sac t i on ∗/

Listing 2.7. Start transaction with HLE

and finished by this piece of code 7

1 /∗ Free l o c k wi th l o c k e l i s i o n ∗/
2 __atomic_store_n(&lockvar , 0 , __ATOMIC_RELEASE|

__ATOMIC_HLE_RELEASE) ;

Listing 2.8. End transaction with HLE

2.3 TensorFlow

2.3.1 Introduction

Ever since it was released by Google in 2015, TensorFlow (TF) has become one
of the most successful open-source software library for building and training ma-
chine learning models, especially deep-neural networks [11]. TF is the successor of
DistBelief [2], a system for large-scale deep learning developed within the Google
Brain project for internal usage: in particular it was meant to support research
and to implement some of the functions of Google products like Google Maps or
YouTube. Besides the fact that DistBelief is not open-source, TF was introduced to
overcome the limits of its predecessor[1]. In particular, TF is intended to ease the
definition of new architectures for the layers of the neural networks, as well as the
experimentation of various optimizations for the training algorithms. Furthermore
it allows to model further kinds of neural networks, like recurrent neural networks.
More importantly, TF is not only capable of scaling-up to train on big amount of
data, like DistBelief, but it can also scale-down to allow training networks even with
limited hardware resources at disposal. As a result, TF can be run on a plethora of
heterogeneous platforms, ranging from mobile devices to large-scale training systems
featuring many GPUs.
The core of the library is implemented in C++ and exposes an API for the following
programming languages: Python, C++, Java and Go; actually the first one is the
recommended and most complete API. The logical organization of a client program
that makes use of TF comprises two sections 8:

1. a dataflow graph is built in order to represent the computation and the state
associated with the desired machine learning algorithm

2. an optimized version of the dataflow graph is executed on the devices specified
in the code

Postponing the execution, this can be optimized exploiting the information provided
by the representation of the computation [1].

8tensorflow.org/get_started/

2.3 TensorFlow 19

2.3.2 Building the Dataflow Graph

Following the dataflow programming model [29], a TF program is internally modelled
as a directed acyclic graph where the nodes correspond to the computation to be
performed; the edges carry the input data to the nodes and gather the resulting
output data. The choice of such paradigm is motivated by the following advantages
9:

1. the explicit connections between the nodes enable to rapidly determine the
operations that can be executed in parallel

2. the computation can be distributed across multiple devices

3. it is possible to apply some linear algebra optimizations during the compilation
and produce a faster code

4. the dataflow can be expressed in various programming languages, so it is
portable

In TF each node of the graph is referred to as operation and represents the fundamen-
tal unit of computation: it is assigned a unique name and has a non-negative number
of input and output data [1]. Each operation is executed on a device([[2]), like a
CPU or a GPU, characterized by a type and a name. A kernel is the implementation
of an operation optimized for a certain device, so for a single operation there are as
many as kernels as the number of devices where the operation can be performed.
Most of readily available kernels of TF rely on the Eigen library, which exploits C++
template to parallelize the execution of the code. Developers can add their own
operations and related kernels into the library via a simple registration mechanism
[1].
As the name suggests, in TF data flow along the edges under the form of tensors,
namely n-dimensional arrays characterized by a primitive data type (integer, float,
string) and a shape (the number of elements in each dimension) 10. Training models
usually implies multiple executions of the same dataflow graph: the lifetime of a
tensor coincides with the duration of a single iteration and it maintains the same
value throughout it. An exception to this rule regards the tensors returned by
variables 11. A variable is a special kind of operation, with no input, holding an
internal buffer where values can be stored, modified and retrieved. Since variables
survive a single execution of the graph, they are used to maintain the parameters of
the models learned iteration after iteration. Another special kind of operation is the
queues: like variables, queues persist values across successive executions using an
internal mutable buffer, but unlike the former they implement the logic of a queue
data structure.

2.3.3 Executing the Dataflow Graph

After having constructed the dataflow graph, it has no utility if it is not executed,
because it is during the execution that the nodes are processed and produce a

9tensorflow.org/programmers_guide/graphs
10tensorflow.org/programmers_guide/tensors
11tensorflow.org/programmers_guide/variables

20 2. Background

result. A Session object is the interface provided by the API for a client program
to request the execution of the graph to the TF runtime, in particular invoking its
Run method [1, 2]. This method has to be given a list with one or more fetches,
namely the operations that have to be executed or the tensors that have to be
evaluated. The C++ back-end automatically determines the subset of the nodes
of the dataflow graph that have to be considered in order to satisfy the request
and also the order in which they have to evaluated. This subgraph comprises the
operation nodes in the provided list and all the other nodes whose outputs determine
the inputs to the fetches. The user can control the execution providing input data
under the form of feeds, i.e. a mapping between tensors present in the graph and
the values to be assigned to them; typically these tensors are the placeholders, nodes
through which a client program can feed data into the graph. Every execution of the
Session through its Run method represents a step of the computation and TF allows
concurrent executions of the same graph. By default there is no coordination between
concurrent executions, which makes it possible to implement training algorithms
where consistency is not required, but synchronization primitives are also provided
when more guarantees are needed.

2.3.4 Visualizing the Dataflow Graph

The number of nodes of the dataflow graphs associated to some complex machine
learning models can be over a few thousands, so it might be tricky trying to check
how the computation is performed. In TF this problem is solved by TensorBoard, a
tool that manages to provide a simplified yet complete and interactive visualization
the dataflow graph created by a client program [2]. TensorBoard also allows to
monitor many other metrics regarding the training of the model, like the value of the
loss function or the values of the weights. To realize all this, the tool extracts all the
information from special events files produced during the execution of the dataflow
graph thanks to some summary operations. These special nodes have to be added to
the graph by the developer and connected to those other nodes from which he/she
wants to collect the information to be later visualized. When the dataflow graph is
run, the summary operations generate the events file needed by TensorBoard and
the graphical representation of the computation gets accessible at port 6006 of the
local host. Below are a piece of code that computes the sum between the matrices
in TF and the visualization of the corresponding dataflow graph in TensorBoard.

1 import t en so r f l ow as t f
2
3 # the p l a c eho l d e r f o r the input matr ices
4 A = t f . p l a c eho ld e r (t f . int32 , [2 , 2] , "A")
5 B = t f . p l a c eho lde r (t f . int32 , [2 , 2] , "B")
6
7 # the Operation node t ha t computes the sum of the two

matr ices and
8 # re turns the r e s u l t i n g matrix
9 C = t f . add (A, B)
10
11 # the Summary opera t ion to v i s u a l i z e the graph

2.3 TensorFlow 21

12 summary = t f . summary . tensor_summary ("Sum" , C)
13
14 # crea t e a Sess ion us ing the con t ex t manager
15 with t f . S e s s i on () as s e s s :
16
17 # run the graph : prov ide a d i c t i ona r y o f va l u e s to

i n i t i a l i z e the input
18 # matr ices and compute the sum of the matr ices .

S e r i a l i z e the summary data
19 # in to the "summary" pro tobu f o b j e c t
20 summary , _ = s e s s . run ([summary , C] , {A: [[0 , 1] , [1 ,

0]] , B: [[1 , 1] , [0 , 1]] })
21
22 # in s t a n t i a t e a Fi l eWri ter to wr i t e the s e r i a l i z e d

o b j e c t to the d i s k
23 wr i t e r = t f . summary . F i l eWr i t e r (’ . ’ , s e s s . graph)
24
25 # wr i t e the s e r i a l i z e d o b j e c t to the d i s k
26 wr i t e r . add_summary(summary)

Listing 2.9. Add matrices in TensorFlow

2.3.5 Architecture

As soon as it has created the dataflow graph, the client program instantiates a
Session, which serializes the graph and passes it to the core runtime of TF through
an intermediate layer represented by a C API. The runtime of TF is composed of
two main components:

• distributed master

• worker service(s)

The distributed master extracts from the entire dataflow graph the subset of nodes
whose execution is necessary to evaluate the nodes indicated in the Session. The
resulting portion of the dataflow graph is partitioned into one or more subgraphs,
which are optimized and cached to make successive training steps quicker [1, 2]. The
distributed master then schedules the execution of the subgraphs through a set of
tasks, each running as a single operating system process. A task is responsible for
the access to one or more devices and is associated with a worker service (a.k.a.
dataflow executor). This receives the subgraphs from the master and decides the
execution of the kernels corresponding to the operations across the set of available
devices; when possible, kernels are executed in parallel (for instance using multiple
CPU cores).
Two implementations of the above described architecture are available [2] (image
was taken from 12):

12tensorflow.org/extend/architecture

22 2. Background

Figure 2.2. Dataflow graph relative to Listing 2.9

• local: the client, the master and one worker service all reside in the same
process on a single machine

• distributed: the client, the master and multiple workers belong to the different
processes on different machines connected over the network

In both cases, there are two possible scenarios:

• single-device execution

• multiple-devices execution

When only one device is available, a single worker service schedules the execution, for
each operation node, of the kernel corresponding to the present device. If more the
one device is eligible for running the nodes of the computation graph, the runtime of
TF has to decide where to place the nodes and also hat to handle the communication
between the devices in order to coordinate the execution. The algorithm adopted to
determine the placement of the nodes takes into account parameters like the size
of input and output tensors of a node and an estimation of the computation time
required. After a simulation of the execution of the graph, the algorithm assigns
each node to a device. This causes a partitioning of the original graph into as many

2.4 Statistical Learning 23

Figure 2.3. Architecture of TensorFlow

subgraphs as the number of devices. The starting and ending vertices of each edge of
the original graph connecting two nodes assigned to different devices are respectively
replaced by two new nodes Send and Receive. In this way, after the partitioning,
those tensors that flowed along the replaced edge are transferred from one device to
another. The actual realization of the two communication operations depends on
the involved devices [1]:

• local transfers between a CPU and a GPU use the cudaMemcpyAsync() API

• local transfers between GPUs rely on Direct Memory Access

• transfers over the network between worker services adopt various protocols,
mostly gRemoteProcedureCall(gRPC) and RDMA over Converged Ethernet

2.4 Statistical Learning

2.4.1 Overview

This area [16] deals with the solution of problems where, given a set of input variables
X1, X2...Xn and an output variable (or dependent variable) Y , it has to be found an
estimation of the function f such that Y = f(X) + ε, being ε an error term. The
estimated function serves to predict the output corresponding to a certain input(s) or
to understand the relation between input and output variables. Statistical learning
requires the training data, namely a set of pairs (xi, yi), i = 1...m where xi and yi
are respectively the value(s) of the i-th observation for the input variable(s) and
the corresponding value of the output variable. The estimation of the function f is

24 2. Background

obtained through the application of a learning method to the these data. There are
two main kinds of learning methods:

• parametric methods: they assume that the function f is approximated by a
parametric model so the estimation of f is made finding the parameters of
the models that minimize the distance between the function and the model
themselves

• non-parametric methods: no assumption is made about the shape of f , so
these methods usually achieve a better accuracy in the estimation at the cost
of a higher number of observations.

So far we considered training data where for each value of the input variables
observed the corresponding value of the output variable is known: in this scenario
the training of the model is said to be supervised. Unfortunately it is sometimes
the case that the values of the output variable are not known, which makes the
training more difficult. The methods applied in this setting perform an unsupervised
learning. Examples of the supervised learning are liner and logistic regression, while
examples of unsupervised learning are clustering methods. A further classification of
the problems tackled by statistical learning regards the kind of the variables involved:
the domain of quantitative variables is numerical, while the domain of qualitative
variables is a set of classes. Problems dealing with quantitative variables are referred
to as regression problems, while those related to qualitative variables are known as
classification problems. Given the variety of the learning methods available, a metric
to evaluate their performances is needed in order to decide which of them achieve
the best results for a certain dataset.
In case of regression problems, the chosen metric is usually the mean squared error
(MSE) and it is calculated over the test data. This is a set of pairs (xi, yi), where xi
is the observed value(s) of the input variable(s) and yi is the related value of the
output variable, that is disjoint from the training set. Indeed it is not important that
model performs well on the instances of the input values used for the training, but
rather on unseen instances, because this ensures that it can predict the output with
good accuracy for a future usage. Being m the number of test data pairs available
and f̂ the trained model, i.e. the estimation of the function f , the test MSE is
defined as follows:

MSEtest = 1
m

m∑
i=1

(yi − f̂(xi))2

Obviously, the smaller the test MSE, the better is the performance of the learning
method. A risk associated with learning methods is overfitting the data, namely
training the model in such a way that it is tightly connected to the training set. The
negative consequence is that even though the model is accurate on training data, it
does not perform well on test data.
As regards with classification problems, where the estimated function f determines
the class which the input value belongs to, the measurement of the performances of
the learning methods is based on the number of wrong classifications. Given ŷ0 and

2.4 Statistical Learning 25

y0 respectively the estimated class and the actual class (or label) of the input value
x0, the indicator variable I returns 1 if ŷ0 6= y0 and 0 otherwise. In other words, I
returns 1 when a value is misclassified. Using the indication variable, it is possible
to evaluate a classification algorithm through the test error, which is defined as
the average value of the indicator variable over the test data. To put it simply, it
coincides with the number of misclassifications over the number of test data, so the
smaller is this value, the better is the classifier.

2.4.2 Linear Regression

Linear regression is a supervised learning method to predict the quantitative output
variable Y given an input variable X, assuming the existence of a linear relation
between them. In simple linear regression Y is approximated by the model β0 +β1X:
the training phase returns the estimation of its parameters, respectively β̂0 and β̂1.
The most common approach for the estimation of the parameters is by far the
minimization of the least squares. For each value ŷi of the output variable predicted
by the model as function of the input value xi, a residual ei is defined as the
difference between the actual value yi corresponding to xi and the predicted value.
The residual sum squares (RSS) is the sum of the squares of the residuals of all
the values of the input variable. Applying some calculations it is easy to show that
the values of the parameters of the model that minimize the RSS are the following
(considering m possible values for the input variable):

β̂1 =
∑m
i=1(xi − x̄)(yi − ȳ)∑m

i=1(xi − x̄)2

β̂0 = ȳ − β1x̄

with ȳ and x̄ the average value of the output and input variable respectively. When
there are more than one input variables, simple linear regression is extended to
multiple linear regression. Here the relation between the output variable and the n
input variables is modelled by the equation y = β0 +β1X1 + ...βnXn+ ε. Also in this
case, an estimation of the parameters β̂0, β̂1...β̂n is obtained minimizing the RSS.

2.4.3 Logistic Regression

In a classification scenario, where the output response is qualitative (a class or a
category), linear regression is to be replaced by logistic regression, which takes into
account the probability that the output corresponding to a set of input values falls
into a certain class. On the basis of such probability, it is possible to estimate the
category which the input data belong to. For example, in case of binary class, given
p1(X) = Pr(Y = 1|X), the estimated class of X is 1 if p1(X) > 0.5, 0 otherwise.
The linear model is no longer suitable to express the relation between input and
output variables: indeed, because of the introduction of probability, there is the
need of a function resembling a density function, whose response is comprised in the
interval [0, 1]. The approach of logistic regression consists in modelling the likelihood
of a certain class k conditioned to the input values using a logistic function (or
logistic sigmoid) pk(X) ([[3, 16]), with pk(X) defined as follows:

26 2. Background

pk(X) = Pr(Y = k|X) = eβ0+β1X

1 + eβ0+β1X
= 1

1 + e−β0−β1X

Given the assumption of a binary class, the input corresponds to either of the two
possible values of the class, so it holds p0(X) = Pr(Y = 0|X) = 1−Pr(Y = 1|X) =
1− p1(X). This can be expressed more concisely as

p(y|X) = p(X)y + (1− p(X))1−y, y ∈ {0, 1}

which corresponds to the density function of a Bernoulli distribution. In this case,
fitting the model means finding those values β̂0 and β̂1 such that, for each input xi
of the training data, p̂(xi) it holds:

p̂(y|xi) =
(1

1 + e−β̂0−β̂1xi

)y
+
(
1− 1

1 + e−β̂0−β̂1xi

)1−y

is close to 1 when the class yi of xi is equal to y and 0 otherwise. One way to obtain
an estimation is maximizing the likelihood function

l(β0, β1) =
m∏
i=1

p̂(yi|xi) = p̂(xi)yi + (1− p̂(xi))1−yi , yi ∈ {0, 1}

assuming the independence of the m training examples (xi, yi). The maximization
of the likelihood function is equivalent to the minimization of the error (or loss)
function [3] defined as

E = − log(l(β0, β1))

Applying the properties of logarithms, it easy to see that E is equivalent to the
cross-entropy between the actual probability distribution of the class conditioned to

the input, and its estimation:

E =
m∑
i=1

yi log(p̂(xi)) + (1− yi) log(1− p̂(xi))

Considering the non-linearity of the loss function, its minimization can be achieved
appyling the gradient descent algorithm (see Section 2.4.4). Applying a similar
reasoning, logistic regression can be easily extended to a scenario where there are
p > 2 different classes. In this case, for each class k, pk(X) is modelled with a
softmax function:

2.4 Statistical Learning 27

pk(X) = Pr(Y = k|X) = eβkX∑p
i=1 e

βiX

The name of this function derives from the fact that if there is a term eβjX , for some
class j, which is far bigger than the other terms, this causes pj(X) to be almost
equal to 1 and all the other probabilities to be almost zero. As a consequence,
applying the softmax is like taking the "maximum" among all the pk(X), k ∈ {1...p};
also it is guaranteed that

∑p
i=1 pk(X) = 1. Fitting implies the minimization of the

cross-entropy function with this model too.

2.4.4 Gradient Descent

Being β the set of parameters of a model, and E(β|X) the error committed applying
the model to a training set X, the goal of learning algorithms is minimizing E(β|X).
Many times this is done through optimization methods like gradient descent [3].
The rationale behind this method can be better understood giving a geometrical
interpretation of the minimization problem [22]. Let’s consider a simple model with
two parameters, β1 and β2, and an error function E. The set of possible values for
the parameters defines a plane: considering a vertical axis indicating the value of the
error corresponding to the values of the parameters, E defines a parabolic surface in
the three-dimensional space, with a global minimum. The gradient descent method
starts from an initial value of the parameters β1 and β2 and then modifies them
little by little in such a way that the corresponding value of the error function moves
along the surface following the fastest direction towards the global minimum. This
direction is represented by the gradient vector, whose components correspond to
the partial derivatives of E with respect to the respective parameters of the model.
Considering a model with p parameters, the gradient vector of the error function E
is:

∇βE =
[∂E
∂β1

,
∂E

∂β2
...
∂E

∂βp

]T
Defined as above, the gradient vector actually points to the direction that causes
the biggest increase of E, which is why gradient descent takes the negative of the
gradient. In particular, the method consists in the application, at each step, for each
component i of the parameters vector

−→
β = [β1, β2, ..., βp]T of the following rule:{

∆βi = −η ∂E∂βi

βi = βi + ∆βi

η is positive constant defined as learning rate which is needed to limit the size of the
updates performed at every step and ensure that the global minimum is not missed.
On the other hand, if the rate is too small, the method proceeds very slowly. Having
defined the rule for the update of the parameters in terms of partial derivatives
of E, it is necessary to also choose the error function in order to get an operative
description of the gradient descent algorithm [22]. For example, E can be defined
as half of the sum of the squared difference between the actual and the expected
output of each input training value. Considering d training input values, being yi

28 2. Background

and ŷi respectively the expected value and the actual value returned by the model
for the i-th training value, E is defined as follows:

E(
−→
β) = 1

2

d∑
i=1

(yi − ŷi)2

The partial derivative with respect to the i-th parameter is then:

∂E

∂βj
=

d∑
i=1

(yi − ŷi)(−xji)

being xji the j-th component of the i-th training input, so the corresponding update
is:

∆βj = η
d∑
i=1

(yi − ŷi)(xji)

In summary, the gradient descent method starts choosing a random vector of
parameters and then iteratively updates them applying the update rule, comparing
the output corresponding to the current state of the model to the expected output.
The method stops when the gradient vector has length equal to zero, namely when
the partial derivatives of E are zero: this happens when a minimum of the error
function, either local or global, is found.

2.5 Artificial Neural Networks

Artificial Neural Networks (ANNs) draw inspiration from the mechanism employed
by the human brain to perform complex operations like vision, speech recognition
and learning, to implement these as tasks executable by a computer. The reasons
why this approach is promising are to be found in the biological discoveries regarding
how the human brain works. It has been indeed shown that its abilities are not due
to the computational power of its single “processing units”, the neurons, but rather
on the high number of connections, the synapses, between them, which allows an
highly-parallel processing. ANNs hence try to emulate this parallelism to improve
the performances of the implemented tasks [3, 22].

2.5.1 Perceptrons

Perceptrons are the basic computational units of the ANNs. They take n real input
values x1, x2, ..., xn and output a value in the set {0, 1}. In the simplest case, the
result is obtained composing two functions. The output of the first function is a
linear combination of the inputs

2.5 Artificial Neural Networks 29

y =
n∑
i=1

wixi + x0

where each coefficient wi is a real value referred to as synaptic weight (or simply
weight); w0 represents a bias, so sometimes a “fictitious” input x0 = 1 is introduced
in order to express the function as a dot product

y = −→w · −→x

with −→w = [w0, w1, ..., wn] vector of the weights and −→x = [x0, x1, ..., xn] vector of the
inputs. The perceptron defines a decision hyperplane, with equation −→w · −→x = 0,
which divides the n−dimensional space of the input values into two halves: on one
side y > 0, on the other side y < 0. That’s why usually y is usually used as input of
a signfunction defined as follows:

sign(y) =
{

1, if y > 0
−1, otherwise

In a classification scenario, a set of inputs is said to be linearly separable if an
hyperplane exists such that each input can be assigned to either side of the hyperplane
itself. In a scenario with m > 2 output values, there are m parallel perceptrons,
each with its own weights vector −→wi, so the the i−th output is:

yi =
n∑
j=1

wijxj + wi0

and the output of all the perceptrons as a whole is:

y = Wx

W is a matrix whose element wij corresponds to the weight from input xj to the
the output yi.

2.5.2 Training Perceptrons

A perceptron defines a decision surface which can be exploited for classification,
but this requires the perceptron to be trained, namely learning the elements of the
weights vector to correctly classify all the given input values. This step can be
performed offline, before actually using the perceptron, when the whole set of input
samples is available. One way of doing it consists in choosing a random initial vector
of weights and then adapting it on the basis of the output of the perceptron applied
to each input value in the training set. More precisely, for each sample, the weight
wi associated with the input xi is updated according to the following rule

30 2. Background

{
∆wi = η(y − ŷ)xi
wi = wi + ∆wi

being y and ŷ respectively the expected output and the actual output of the
percepetron corresponding to the sample; η has the same role as in the gradient
descent method. The limit of this method is that it manages to successfully train
the perceptron only when the training sample are linearly separable. When this is
not the case, the perceptron can be trained applying the gradient descent method,
adopting the error function mentioned in 2.4.4. The update rule of the weight
applied to the input xi becomes:

∆wi = η
d∑
j=1

(yj − ŷj)(xij)

yj and ŷj are respectively the expected output and the actual output of the per-
cepetron corresponding to the j-th (out of d) sample; xij is the i-th component of
the sample. It has to be said, though, that the weights learned with gradient descent
only minimize the error of the unthresholded perceptron, namely a perceptron where
the sole linear combination of the inputs is applied. In order to adapt the gradient
descent to the thresholded perceptron (including the sign function), it is possible
to train the unthresholded perpeptron with {1,−1} as target values. Nevertheless,
this does not guarantee that this minimizes the misclassifications of the thresholded
perceptron.
When the set of samples is not known in advance, the perceptron is trained with
online learning: in this case, as new values arrive as input to the percepetron,
its weights vector is correspondingly updated to adapt it to the new information
available and minimize the misclassification. One common method adopted in this
scenario is the stochastic gradient descent [3, 22], a variation of the gradient descent
method where, instead of iterating over the whole training set before modifying the
weight vector, the update is performed after having computed the error associated
to a single training example.

2.5.3 Multilayer Perceptrons

Mapping {1,−1} to respectively {true, false}, a simple thresholded function can be
used to implement binary functions like logical AND, OR, NAND and NOR. The
same does not hold for other boolean fuctions, like the logical XOR though. This
is due to the fact that a perceptron defines a linear decision surface, so it can be
only used to represent linearly separable functions. When there is the need to define
non-linear decision surfaces, the solution is represented by multilayer perceptrons,
with one or more hidden layers inserted between the ouputs and the inputs applied
to the perceptrons, thus realizing a structure (referred to as feedforward network)
like the one represented below [3, 22].

The hidden layers are implemented through the sigmoid unit. Analogously to
the perceptron, the sigmoid corresponds to the application of a function to the linear
combination of its inputs, but, unlike the former, in the latter this function coincides
with the logistic function (or sigmoid function) (see Section 2.4.3), defined as:

2.5 Artificial Neural Networks 31

Figure 2.4. Multilayer perceptron

σ(y) = 1
1− ey , y = −→w · −→x

The sigmoid function is differentiable, so it can be used in training algorithms based
on the gradient descent and also its derivative has an interesting property:

∂σ(y)
∂y

= σ(y) · (1− σ(y))

and its output falls within in [0, 1]; an alternative to the sigmoid function is the
tangent function.

Multilayer perceptrons are trained applying the backpropagation algorithm, a method
that exploits the gradient descent to minimize the value of the error function
corresponding to the squared differences between the expected and the actual
outputs of the network. The algorithm iteratively computes the error of the network
corresponding to a training sample and modifies the weights of all the units in order
to minimize the error itself. The name of the algorithm is due to the fact that
the error in the classification committed by each unit of the network propagates
downward from the output layers to the bottom hidden layer. Let’s consider a
network with two hidden layers of sigmoids, each connected to all the units in the
preceding layer. In such a network, the update of the weight wi,j from the unit i to
the unit j amounts to

∆wi,j = ηδjxi,j

with xi,j the input from the node i to the node i and δj recursively defined as follows
[22]:

32 2. Background

• for each unit k of the output layer, being yk and ŷk respectively the label and
the k-th component of output of the network in correspondence of the training
sample, δk = ŷk(1− ŷk)(yk − ŷk)

• for each hidden unit h with K outputs, being yh its output in correspondence
of the training sample, δh = ŷh(1− ŷh)

∑K
k=1wkhδk

The rule comes from the application of the chain rule of the gradient. Indeed,
each weight wi,j only affects the sub-network constituted by the unit j to which
it is connected and by all the underlying layers and units in turn connected to it.
Referring to this sub-network as subneti, the derivative of the error function E with
respect to wi,j (see Section 2.4.4) is:

∂E

∂wi,j
= ∂E

∂subneti

∂subneti
∂wi,j

The same holds for all the weights in subneti, so the above calculation can be
recursively to all the layers of the network, resulting in the aforementioned update
rules. Applying the updates to the weights of all the units after having computed
the output of a single training example actually provides an approximation of the
gradient descent which resembles to the stochastic gradient descent method. In
this context, an epoch is defined as a single iteration over the training set with the
application of the update rules to all the samples.

2.5.4 Variations to the Gradient Descent Algorithm

Vanilla gradient descent implies the calculation of the gradients for all the samples
before applying the corresponding updates to the parameters of a model. A training
approach applying the vanilla version of the gradient descent algorithm is referred
to as batch learning, since computation is performed on a large “batch” of data.
The problem with batch learning is that it requires to load the entire dataset in
memory and this can pose some difficulties if the size of the dataset is big. Moreover,
despite gradient descent is guaranteed to converge, this may take a huge number
of iterations. To overcome these issues, the vanilla version of gradient descent is
usually replaced by stochastic version (see Section 2.5.2), which has been proved
to offer nearly the same guarantees to converge, but does this more rapidly; it can
be regarded as a particular case of batch learning with batch size equal to one. In
practice neural networks are usually trained using a third variant, minibatch learning,
which falls in between the first two: updates are applied after having taken into
account a small portion of the entire dataset; this corresponds to performing batch
learning taking batches of size comprised between one and the size of the training
set.
Besides varying the number of elements in each batch, there are further modifications
to the gradient descent algorithm that help to improve performances in its real
applications. One of them consists in altering the update rule for the weights of a
neural network by adding a momentum. The update applied at epoch n (in case of
batch learning) or iteration n (in case of online learning) to the weight wi,j(n), from
the unit i to the unit j, becomes:

2.5 Artificial Neural Networks 33

∆wi,j = ηδjxi,j + ∆wi,j(n− 1)

being ∆wi,j(n− 1) is the amount of the updated applied to the same weight in the
preceding epoch or iteration (sometimes called momentum term); is usually takes
values from 0.5 to 1. From a geometrical point of view, the added term has the
effect of maintaining the direction of the descent along the error function towards
the global minimum.

2.5.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specialization of ANNs where at least
one layer contains an operation called convolution. They are particularly suited for
computer visions tasks, like image classification or objects detection, because they
can handle images of big size better than ANNs. Indeed, since in ANNs a single
output in a hidden layer is the linear combination of all the inputs, the number of
parameters (weights) grows fast with the size of the input. Images typically contain
a high number of pixels, so they are not suited to be used with ANNs. Hence, the
typical input to CNNs is an image, usually represented as a third order tensor, where
the third dimension corresponds to one channel of the RGB format. The input image
is processed though a series of steps, each performed by one layer of the network,
which is associate with a set of parameters (weights) analogously to ANNs. In case
of image classification, the last layer is often represented by the application of the
softmax function (see Section 2.4.3) in order for the network to return a vector of
values comprised in [0,1], each indicating the probability that the image belongs to
one specific class.
There are three fundamental type of layers:

1. Convolutional layer

2. ReLU layer, also know as rectifier

3. Pooling layer

4. Fully-connected layer

Convolutional layer

Represents the main component of CNNs and is associated with a number k of
kernels, each having a smaller size, f than the input tensor. A kernel can be thought
of as a squared filter that gets applied to an image and moved across its width and
height, step by step until all the surface of the image has been covered. At each
step, the pixels of the image are aligned with those of the filter and the dot product
between the two is computed. More concretely, both the image and the filter are
vectors and the pixels represent their elements. The output is a feature map (or
feature), whose elements correspond to the dot products; there is one feature map
for each kernel applied to the input. Two parameters regulate the application of a
kernel:

34 2. Background

1. stride s: the number of pixels by which the kernel has to be moved at each
step

2. padding p: the number of rows of 0s added to pad the input

Being, the input image a third-order tensor with the first two dimensions equal to
the width w and height h of the image and c the number of channels (3 for RGB, 1
for gray-scale), the output of the convolutional layer is another third-order tensor
with the following sizes for the dimensions:

width = w − f + 2p
s

+ 1

height = h− f + 2p
s

+ 1

depth = k

ReLU layer

The rectifier coincides with a simple function that returns the the maximum between
0 and the input. Hence, the result of the composition of the rectifier with another
function corresponds to the positive part of the latter. It CNNs it is used to “activate”
specific features of an image: applying the rectifier to a feature map, all its negative
elements are set to zero, while the positive elements remain unaltered.

Pooling layer

This kind of layer serves to reduce the spatial occupation of the network and the
number of parameters, in order to avoid overfitting. The pooling layer divides the
input tensor in subregions and assigns to each of them a value that summarizes their
content; this can be the maximum or the average of the values in the subregion.

Fully-connected layer

This layer is usually placed as the end of a CNN. As its name suggests, it differs
from the other layers in that its output units are connected to all the input units,
analogously to hidden layers of ANNs. A fully-connected layer is needed to combine
the features learned from preceding layer and making it possible toe learn more
complex features in the successive layers. As in ANNs, this layer performs the
multiplication between the matrix of weights and the input tensor.

35

Chapter 3

Integrating Transactional
Memories in TensorFlow

The size of datasets available has been increasing much in last few years, both in
the commercial and academic fields. This is a good news in the area of machine
learning, since it has been shown that training models with a high number of data
samples favours the accuracy of the trained model [5, 20]. The amount of data can
sometimes be so high that training a model using a single processing unit is not
feasible. Given the availability of parallel architectures and distributed solutions, it
seems only natural to take advantage of them to speed-up training, which directly
translates into parallelizing the application of the stochastic gradient descent (SGD).
Several methods have been proposed, but none of them has managed to achieve a
definitive solution. This is due to the inherently sequential nature of SGD, which
forces to resort to synchronization mechanisms in case of execution on multiple
cores or clusters of machines; this, in turn, inevitably limits the performance of
training. This holds also for TensorFlow, whose implementation of SGD requires
the acquisition of a lock before the application of the updates to the parameters
of a model. This dissertation explores the idea of improving the performances of
parallel training in TensorFlow replacing the lock-based implementation of SGD
with one based on transactional memories: the objective is allowing TensorFlow
to speculatively apply SGD without resorting to any synchronization primitive.
The next sections provide an overview of the methods available to parallelize the
execution of SGD, describe the implementation of this algorithm in TensorFlow and
present a new approach based on the integration of transactional memories in the
framework.
The problem of training models in parallel using the gradient descent algorithm
is well known in literature (see Section 3.1) and trying to solve it by mean of
transactional memories represented most of this thesis work. Nevertheless, this is
not the only way in which transactional memories can be integrated in TF. In this
thesis work, indeed, besides focusing on the elision of a single lock, the completely
opposite approach, namely replacing all the locks, was also taken. The last section
of this chapter covers this part of the work.

36 3. Integrating Transactional Memories in TensorFlow

3.1 Parallel Gradient Descent

One of the first works dealing with the parallel execution of SGD, dates back to
2009 [18]. The authors propose a solution where the algorithm is executed by each
core of a machine independently and the updates are applied asynchronously, i.e.
without coordination, to the shared parameters of the model. This can be easily
extended also to a distributed setting, with one parameter server and a number of
workers. The former maintains the current state of the parameters of the model,
while the latter repeatedly read the values, compute the gradients and send back the
related updates. This kind of approach is generally referred to as asynchronous data
parallel training. The algorithm is a variant of the vanilla gradient descent and is
referred to as delayed gradient descent: unlike the former, in the latter the update of
the parameters at step t does not depend on the gradients computed at time t, but
rather on the gradients computed θ steps before. In the aforementioned scenario,
being n the number of independent cores that apply SGD on different examples of
the training set, the update corresponding to the i-th instance of the data is applied
with a delay equal to n− 1. Indeed, the results of the computation performed by
different cores cannot be applied at the exact same moment, which also implies the
need for a read-write lock protecting the current state of the parameters.
Another proposal based on asynchronous computation of SGD was made in 2011
[26]. Here the authors focus on multicore architectures and show that under the
assumption of sparse updates, namely when SGD modifies at each iteration only a
small fraction of the parameters set, it is possible to design a lock-free parallel variant
of the training algorithm. The absence of synchronization would in general prevent
the model from being successfully trained, since the cores would interfere with each
other, overwriting the results produced by others. The work, on the contrary, shows
that sparsity allows to achieve a speedup of the training that is nearly linear in the
number of cores.
DistBelief, the parent of TensorFlow, is intended to offer support for both model
parallelism and data parallelism [6]. Model parallelism consists in partitioning the
set of parameters of the model and distributing them across multiple cores in a single
machines, or multiple machines in a cluster: the values of the single parameters are
learned locally and then the results are merged. Data parallelism, instead, takes
place when different instances of the same model are trained at the same time
on different cores, or machines, that share the current values of the parameters.
DistBelief is based on a modified version of the asynchronous SGD, called Downpour
SGD, tailored to training large data sets through data parallelism. It requires
the data samples to be split into a number of partitions: each of these serves to
train independently an instance of the model which is distributed across a cluster
of machines representing a replica. A replica reads the assigned data samples in
mini-batches, sequentially, and for each requests the parameter server for the current
state of parameters related to the partition of the model it is in charge of. After
having calculated the gradients, the resulting updates are sent back to the shared
parameter server. The authors claim that asynchronous SGD achieves a better
fault-tolerance with respect to its synchronous version, because of the replication of
the model. At the same time, despite it increases the randomness of the learning
process, because of the lack of synchronization among workers, and gives fewer

3.2 Gradient Descent in the TensorFlow 37

consistency guarantees, it is shown to be effective in practice.

3.2 Gradient Descent in the TensorFlow

3.2.1 Python API

Given the broad usage of the gradient operator in the whole area of machine
learning, the developers of TF decided to make its computation automatic, relieving
programmers from the burden of taking care of it. The programming model requires
users to only build the computational graph (see Section 2.3) representing the error
function to be minimized. Once this step has been taken, TF automatically applies
the backpropagation algorithm (see Section 2.5.2) to determine the nodes of the
graph with respect to which the error function has to be derivated, and connects
them with some special gradients nodes. These nodes make it possible, when
the session is run, to compute the gradient descent in order to minimize the error
function and train the corresponding model. Fig. 3.1 1 shows the computational
graph corresponding to the simple snippet of code 3.1 that trains a linear model:

Figure 3.1. The gradients in TensorBoard

1tensorflow.org/get_started

38 3. Integrating Transactional Memories in TensorFlow

1 W = t f . Var iab le ([. 4] , dtype=t f . f l o a t 3 2)
2 b = t f . Var iab le ([− . 5] , dtype=t f . f l o a t 3 2)
3
4 x = t f . p l a c eho ld e r (t f . f l o a t 3 2)
5 model = W∗x + b
6 l a b e l = t f . p l a c eho ld e r (t f . f l o a t 3 2)
7
8 e r ro r_funct i on = t f . reduce_sum (t f . square (model − l a b e l))
9
10 opt imize r = t f . t r a i n . GradientDescentOptimizer (0 . 0 1)
11 t r a i n = opt imize r . minimize (e r ro r_funct i on)

Listing 3.1. Train a linear model

The Python object GradientDescentOptimizer is one of the variants of the gradient
descent algorithm exposed by the tfṫrain API of TF. In the above listing, invoking
its minimize method and passing it the handle (i.e. the TF Tensor) corresponding
to the error function to be minimized, causes the insertion of the gradients nodes
in the computational graph. In the above example the object is initiliazed with a
learning_rate equal to 0.01: this parameter corresponds to the η defined in 2.4.4.

3.2.2 Back-end Implementation

As explained in 2.3.2, each operation appearing in the computational graph of
TF is associated with one or more implementations in the C++ back-end, each
corresponding to a kernel, namely a specialization of the operation optimized to be run
on a particular device. Each kernel is defined as as C++ class, extending the parent
class OpKernel, whose Compute method implements the associated operation. This
holds also for ApplyGradientDescentOp: this class is in charge of the application of
the update rule of the gradient descent algorithm (see Section 2.4.4). In particular,
each parameter βiSection in the model is assigned by ApplyGradientDescentOp a
new value

βi = βi + ∆βi

where ∆βi is −η ∂E∂βi
, the derivative of the error function with respect to the parameter,

times the learning rate.
As anticipated in 3.1, the execution of this task in a multi-threaded, or distributed,
environment requires some form of synchronization, otherwise the updates applied
by one thread, or replica, may be overwritten and lost by the updates of other
workers. This of course would affect the convergence of the model towards the
minimization of the loss function. Nevertheless, TF leaves the programmers the
freedom of choosing whether the the code of ApplyGradientDescentOp is to be
executed inside a critical section guarded by a lock, or not. If more guarantees
of consistency are needed, it is sufficient to pass the flag use_locking=True when
instantiating the object GradientDescentOptimizer is instantiated.

3.3 Transactional Application of the Gradient Descent 39

3.3 Transactional Application of the Gradient Descent

The main contribution of this thesis work consists in introducing transactional
memories in TF in order to avoid grabbing the lock that protects the update of the
parameters of a model trained with the gradient descent algorithm. The expectation
is that such a modification allows to get a speedup, in terms of execution time, while
providing consistency, in the application of the updates. Two different approaches
were taken:

1. eliding the lock using Hardware Transactional Memories (HTM)

2. executing the critical section protected by the lock inside a transaction created
using Software Transactional Memories (STM)

What follows is a description of the modifications introduced in the back-end of TF
in order to enable the usage of these two solutions. They both regarded the piece
of code in charge of the execution of the the update rule of the gradient descent
algorithm (see Section 3.2.2).

3.3.1 Lock Elision with Hardware Transactional Memory

Given that one of the main causes for transactions to fail is the excessive number of
memory accesses (see Section 2.1.4), a convenient preliminary step in the integration
of hardware transactional memories consisted in a re-implementation of the code that
updates the parameters of a model in ApplyGradientDescentOp. Indeed, despite of
the simplicity of this task, TF delegates its execution to the Eigen library, in order
for it to apply some optimizations under the hood. Unfortunately these optimiza-
tions come at the price of a larger memory occupancy, which enlarges the footprint
left by the program. As a consequence, in order to make the code more “HTM-
friendly”, namely reducing the risk of capacity aborts, the original implementation
has been simplified, using basic C instructions in place of C++ templates, as in Eigen.

1 func to r : : ApplyGradientDescent<Device , T>() (
2 device , var . f l a t <T>() , alpha . s ca l a r <T>() , d e l t a . f l a t <T

>()) ;

Listing 3.2. Original application of the updates, with Eigen

1 for (int i =0; i < s i z e_tenso r ; i++) {
2 var_pointer [i] −= de l ta_po inte r [i] ∗ (∗ alpha_pointer) ;
3 }

Listing 3.3. HTM-friendly application of the updates, without Eigen

The above code was then wrapped inside a transaction using the interface exposed
by the GCC compiler to support transactional memories. As mentioned in 2.2.3,
different constructs are to be used depending on the specific architecture where the
program is run: since the implementation was tested either on a machine based on
Intel TSX and on one based on POWER ISA, two different versions were produced.

40 3. Integrating Transactional Memories in TensorFlow

Anyway, apart from some syntactic differences between the two, they share the same
mechanism, as visible in Listing 3.4 and 3.4

1 # define TM_BEGIN(mutex) {
2 while (1) {
3 while (IS_LOCKED(mutex)) {
4 __asm__ (" pause ; ") ;
5 }
6 unsigned int s t a tu s = _xbegin () ;
7 i f (s t a tu s == _XBEGIN_STARTED) {
8 i f (IS_LOCKED(mutex)) {
9 _xabort (30) ;
10 }
11 break ;
12 }
13 else i f (s t a tu s == _XABORT_CAPACITY) {
14 SPEND_BUDGET(&htm_budget) ;
15 . . .
16 } else {
17 i f (s t a tu s & _XABORT_CONFLICT) {
18 . . .
19 }
20 else i f (s t a tu s & _XABORT_EXPLICIT) {
21 . . .
22 }
23 else i f (s t a tu s & _XABORT_NESTED) {
24 . . .
25 }
26 else i f (s t a tu s & _XABORT_DEBUG) {
27 . . .
28 }
29 else i f (s t a tu s & _XABORT_RETRY) {
30 . . .
31 }
32 else {
33 . . .
34 }
35 }
36 . . .
37 i f (htm_budget <= 0) {
38 mutex−>lock () ;
39 break ;
40 }
41 }
42 } ;
43
44

3.3 Transactional Application of the Gradient Descent 41

45 # define TM_END(mutex) {
46 i f (htm_budget > 0) {
47 _xend () ;
48 . . .
49 } else {
50 mutex−>unlock () ;
51 . . .
52 }
53 } ;

Listing 3.4. HTM elision on Intel TSX

1 # define TM_BEGIN(mutex) {
2 while (1) {
3 while (IS_LOCKED(mutex)) {
4 __asm volat i le (" " : : : "memory") ;
5 }
6 TM_buff_type TM_buff ;
7 unsigned int s t a tu s = __TM_begin(&TM_buff) ;
8 i f (s t a tu s == _HTM_TBEGIN_STARTED) {
9 i f (IS_LOCKED(mutex)) {
10 __TM_abort() ;
11 }
12 break ;
13 }
14 else {
15 i f (__TM_is_failure_persistent(&TM_buff)) {
16 SPEND_BUDGET(&htm_budget) ;
17 . . .
18 }
19 else i f (__TM_is_conflict(&TM_buff)) {
20 . . .
21 }
22 else i f (__TM_is_user_abort(&TM_buff)) {
23 . . .
24 }
25 else i f (__TM_is_footprint_exceeded(&TM_buff)) {
26 . . .
27 }
28 . . .
29 }
30 i f (htm_budget <= 0) {
31 mutex−>lock () ;
32 break ;
33 }
34 }
35 } ;

42 3. Integrating Transactional Memories in TensorFlow

36
37
38 # define TM_END(mutex) {
39 i f (htm_budget > 0) {
40 __TM_end;
41 . . .
42 } else {
43 mutex−>unlock () ;
44 . . .
45 }
46 } ;

Listing 3.5. HTM elision on POWER ISA

The macros TM_BEGIN and TM_END are placed respectively before and after the code
in Listing 3.3 to define the boundaries of the transaction. TM_BEGIN is a loop whose
code:

1. waits until the lock being elided is free

2. as soon as the the lock is free, tries to start a transaction. On the basis of the
outcome of this instruction, the code determines the path to take:

(a) if positive, it means that the transaction can start, the code exits the
loop. But before doing this, it checks if the elided lock is still free and if
that’s not so the transaction is explicitly aborted because another thread
is trying to execute the critical section outside the scope of a transaction

(b) if negative, it means that the transaction has failed. The value of the
dedicated register is read to determine the reason of the failure. In the
piece of code used for TF, this check is made only for gathering statistics
about the nature of the most frequent failures. Indeed, in any case the
transaction is retried, unless the maximum number of attempts has been
reached. When this happens, the code exits from the loop and takes the
fallback path, namely executes the operation wrapped into the transaction
under the protection of the lock

The code in TM_END determines whether the transaction has committed or not
checking the value of the residual “budget”of the transaction, namely the number of
retries left. If the budget is not positive, it means that all the possible attempts to
commit the transaction were made, but without success, otherwise it means that the
transaction eventually committed. In the former situation, the lock grabbed in the
fallback path is released, while in the latter, the the termination of the transaction
is requested to the underlying transactional facility.

3.3.2 Application of the Updates with Software Transactional Mem-
ory

Despite its recent spread, the hardware support to transactional memories is not so
common: that’s why in this thesis work also the software implementation of trans-

3.4 Eliding All the Locks in TensorFlow 43

actional memories was taken into account. The objective was verifying whether it
could be advantageous to execute the application of the updates speculatively, inside
a transaction, even when TF is run on machines without hardware transactional
memories.
TinySTM seemed the most logical choice for introducing STMs in TF, since its
C implementation made immediate the integration in the back-end of the frame-
work. TinySTM was combined with the transactional extension of GCC (see Section
2.2.3), which makes it really to take advantage of the transactional support. The
programmer is required to only define the limit of the code that has to be run inside
a transaction.

1 __transaction_atomic {
2 for (int i =0; i < s i z e_tenso r ; i++) {
3 var_pointer [i] −= de l ta_po inte r [i] ∗ (∗ alpha_pointer) ;
4 }
5 }

Listing 3.6. GCC TM application of the updates

In Listing 3.6, the instruction __transaction_atomic tells GCC that the update
of the parameters of the model is to be wrapped into a transaction. At runtime,
it is possible, providing the path, to ask for a specific STM back-end, for example
TinySTM, to run the transaction; otherwise, the default GCC TM Runtime is
invoked.

3.4 Eliding All the Locks in TensorFlow
While it was necessary to modify the source code of TF to elide the lock that guarded
the application of the updates, it was not feasible to apply the same approach to
elide all the locks grabbed during the execution of a Python program based on
TF. As a consequence, it was necessary to apply the code in charge of the elision
transparently to the back-end of TF. The solution consisted in changing the internal
implementation of the locking mechanism adopted in TF. In this way, every time
the program needed to enter in a critical section and requested to acquire a lock,
the critical section was initially executed speculatively as a transaction, without
actually grabbing the lock. If the transaction managed to commit, the lock had been
successfully bypassed and the effects of the operations in the critical section were
made visible. Otherwise, if the transactions failed for a number of times without
committing, the critical section was effectively run with the protection of the lock.
Since the back-end of TF is written in C++, the underlying implementation of the
locks is provided by the class std::mutex of the standard library, and this in turn
relies on the pthread (POSIX thread), which is part of the glibc library. Thanks to
the work by Andi Kleen [17], it is been now for about five years that pthread offers
the support to lock elision. In particular a new “elision path” has been added to the
functions that implement the synchronization primitives offered by pthread. Such a
path is a wrapper placed around the lock and tries to elide it through a transaction;

44 3. Integrating Transactional Memories in TensorFlow

if the transaction can’t commit, the lock is acquired as a fallback. The transactional
execution of the critical section is based on the RTM interface of Intel TSX (see
Section 2.2.1), so the code in the elision path is similar to the one in Listing 3.4,
except for what concerns the management of failures of a transaction. An adaptive
elision algorithm is used in order to avoid that a program gets slowed down because
of a transaction that never commits despite of many retries (which cause a waste
of time). In case of abort, the algorithm, rather than immediately re-running the
transaction associated with a lock, may temporarily disables the elision for that
specific lock for a certain period; as soon as this period has elapsed, the elision path
is reactivated. On the basis of the reason that caused the transaction to abort, the
algorithm decides whether the elision should be suspended and, in this case, the
duration of the suspension. In particular, four parameters are used to regulate the
behaviour of the algorithm:

1. skip_lock_busy: if the transaction was aborted because the lock was busy,
the value of this parameter defines the number of successive acquisitions of
the lock that will avoid to take the elision path

2. skip_lock_internal_abort: if the transaction was aborted for reasons other
than the conflict with another thread, the value of this parameter defines the
number of successive acquisitions of the lock that will avoid to take the elision
path

3. skip_trylock_internal_abort: same as skip_lock_internal_abort, but
for try locks

4. retry_try_xbegin: if the transaction was aborted but there is still a chance
for a commit, the value of this parameter defines the number of times a
transaction can be re-attempted

By default the elision path is not active in glibc: it can be enabled re-compiling the
library with the flag –enable-lock-elision=yes and this causes the elision to be
automatically tempted by default on every lock. In alternative, thanks to a tool by
Andi Kleen 2, it is possible to activate the lock elision and tune the aforementioned
parameters at runtime, setting the LD_PRELOAD environment variable on Linux. This
is how, as described in the second part of Chapter 4, the transactional elision could
be applied to all the locks of TF.

2github.com/andikleen/tsx-tools/tree/master/glibc-tune

45

Chapter 4

Experiments and Results

In this chapter are presented the results of two kinds of experiments conducted
to verify the effects of the integration of the transactional memory support in
TensorFlow. The first group of experiments was performed to verify whether the
application of the updates to the parameters of a model in a transactional manner
has some positive effects with respect to the original implementation, when this is
protected by a lock. Positive effects are to be intended here in terms of speedup,
namely reduction of the time necessary to train the model, against the accuracy
of the trained model. The expectation was that transactional memories, thanks to
their speculative execution, allowed to remove, in a context of parallel computation,
the bottleneck created by the acquisition a lock before updating the parameters. At
the same time, transactional memories were supposed to guarantee that, despite
of the high degree of parallelism in the application of the updates, this operation
was done in a way that was equivalent to the case where workers were executed
sequentially. More precisely, the underlying implementation of the transactional
memory was intended to avoid that workers could overwrite other worker’s progresses.
This, otherwise, would have required more iterations of the training to reach the
same level of accuracy with guaranteed by the lock-protected scenario. The tests
were performed taking into account both hardware (HTM) and software (STM)
implementation of the transactional memories. As regards with HTM, the tests were
run on two machines with different hardware transactional support:

1. one featuring two Intel(R) Xeon(R) E5-2648L v4 1 CPUs, based on Intel TSX
(see Section 2.2.1), with the support to up to 64 simultaneously running threads
(having enabled HyperThreading)

2. a POWER 8 machine 2, based on POWER ISA (see Section 2.1.5), with the
support to up to 80 simultaneously running threads

A second set of experiments was aimed at checking if the whole TF library can
profit from the usage of transactional memories. This series of experiments can be
regarded as a super-set of the preceding one, since the Transactional Lock Elision
was tempted on all the locks existing in the code of the framework, not just the

1ark.intel.com/it/products/61426/Intel-Xeon-Processor-E5-2648L-20M-1_80-GHz-8_0-GTs-
Intel-QPI

2www-03.ibm.com/systems/it/power/hardware/s822

46 4. Experiments and Results

ones related to the gradient descent algorithm. It was possible to run this second
group of experiments only on the first of the aforementioned machines, because of
the absence of the automatic lock elision support by glibc on POWER ISA (see
Section 3.4).
The various versions of the framework, obtained with the introduction of the support
to transactional memories, were tested with two Python programs, each implementing
the training the model by mean of the API of TF. The models are quite different in
terms of algorithmic complexity, but they are trained using the same approach and
on the same dataset. They represent two different approaches to the same learning
problem: recognizing decimal digits from their handwritten depictions.
The next section gives a description of the dataset and of the training approach. An
overview of the two models follows and, last but not least, are reported the results
of the experiments.

4.1 The MNIST dataset
This dataset is intended to be used to train models for performing recognition of
handwritten images representing decimal digits. It contains 28x28 binary images of
handwritten digits [21], split into two subsets: a training set with 60000 images and
a test set with 10000 images; the digits were written by approximately 250 different
people. MNIST originates from two other datasets (NIST’s Special Database 3 and
NIST’s Special Database 1) which contain binary images of handwritten digits; the
two halves of elements in MNIST come respectively from the two datasets. The
Python API of TF features a dedicated method to automatically load MNIST into
memory.

1 from t en so r f l ow . examples . t u t o r i a l s . mnist import input_data
2
3 mnist = input_data . read_data_sets ("MNIST_data/ " , one_hot=

True)

Listing 4.1. Load MNIST in Python

The mnist object three subsets from MNIST:

• mnist.train contains 55000 train images and corresponding labels

• mnist.test contains 10000 test images and corresponding labels

• mnist.train contains 5000 validation images and corresponding labels

Images are stored as vectors whose 28x28=784 elements are equal to the intensity
of its pixels (a value between 0 and 1); the label corresponding to each digit i is
represented by a vector with ten elements: they are all set to 0 apart from the
element at index i, which is insted equal to 1.

4.2 Training of the Models
In order to minimize the loss function, the gradient descent algorithm is applied with
the learning rate recommended for this dataset, equal to 0.5. With respect to the

4.3 Evaluation of the Models 47

version of the program presented by the official TF documentation, the one used for
the experiments here described was slightly modified in order to enforce the adoption
of an asynchronous data parallelism [2]. In particular, after the main process has
created a TF Session, with its associated computational graph representing the
model to be trained, it launches a number of Python threads with the role of workers
(see Section 3.1. Each of them reads the MNIST dataset in mini-batches, sequentially,
computes the gradients of the loss function and applies them to the parameters of the
linear model (β0 and β1). There is no coordination among the workers, so they do
not wait each other before applying the results of their computation: this determines
an asynchronous scenario. Moreover, the actual state of the model is shared and
guarded by a lock: indeed, the gradient descent is run with the use_locking flag set
to True, so the application of the updates is serialized.
One point to be remarked regards the size of each batch read by a worker at each
iteration. Being batch_size the number of input images in a batch, considering that
each image is a vector of 784 float values, the memory occupancy of the batch is:

batch_size*784*sizeof(float)
Considering the limited capacity of the cache memories used to store the memory
accesses of a transaction (see Section 2.1.6 and 2.1.5), the risk is high that transactions
fail because such a limit is overcome. In order to mitigate this risk, a trick adopted
in some of the experiments next described, consisted in truncating a portion of the
bytes of the input image before they were used for the training. The number of
images after this cut corresponds to the Matrix parameter appearing in the plots of
the experiments.
The last note regards the number of iterations performed over the dataset: they
are split equally among all the workers, so the Iterations parameter in the graphs
later shown refers to the sum of the iterations done by the workers.

4.3 Evaluation of the Models
As said, the accuracy of the model is one of the metrics used to evaluate the
performances of the trasactified version of TF. For the decimal digit i, the label y is
a vector with ten zeros, except the for the i-th element, which is set to 1.

y = [0, ..1, ..0]

The output of the model, when it is given in input a representation of the same digit
is

y = [y′0, y′1, ...y′9]

being y′i ∈ [0, 1] the estimated probability of the input image of representing the
digit i.
If the prediction is correct, the highest element of y′i, namely the most probable
digit, is exactly i. Considering argmax, a function that returns the index of the
highest element in a vector, the model is correct if

48 4. Experiments and Results

argmax(y) = argmax(y′)

Hence the accuracy of the model is calculated as the fraction of input samples for
which the above equation holds.

4.4 MNIST Softmax Regression (mnist_softmax)

The first model derives from one of the tutorials present in the official site of TF3;
in the rest of the dissertation we will refer to it as mnist_softmax. Recognizing
digits from their handwritten representation is one of the most common examples of
pattern recognition [3]: the main difficulty is caused by the fact that pictures in the
training set usually come from different people, each having his own handwriting
style. The task can be considered a classification problem where each handwritten
image has to be assigned one out of ten classes, each corresponding to a decimal
digit. This problem can be tackled with a supervised learning approach. The model
learns to calculate an estimation of the probability that an image belongs to a class,
where each class is associated with a decimal digit. For an input image, such an
estimation is computed for each class and then the digit corresponding to the highest
probability is returned. This probability can be evaluated with a multiclass logistic
regression model (see Section 2.4.3), where:

• the variable X coincides with the vector describing the pixels of an input image

• the variable Y is a column vector with ten elements where its i- th component
amounts to the probability of the input image of being the handwritten
representation of the i-th digit

• the parameter β1 that is to be learned is a matrix with 784 rows (as many as
the number of pixels in each image) and 10 columns (as many as the binary
digit)

• the parameter β0 (bias) to be learned is a column vector with ten elements

The component of the output related to the each digit i can be computed applying
the softmax function as follows:

Yi = eβ1iX + β0i∑9
j=0 e

β1jX+β0j

being β1i the i-th row of the matrix β1 and β0i the i-th element of the bias. As
already mentioned in 2.4.3, a proper choice for the error function to be minimized is
the cross-entropy, which in this case, for each image of the traing set is equivalent to:

3www.tensorflow.org/get_started/mnist/beginners

4.5 MNIST Convolutional Network(mnist_deep) 49

E = −
9∑
i=0

yi log((̂yi))

where yi is the i-th component of the label of the image and p̂(xi) is the estimated
probability that the image represents the digit i. The parameters of the model,
β0 and β1 are learned using the stochastic gradient descent (see Section 2.4.4) to
minimize the cross-entropy.

4.5 MNIST Convolutional Network(mnist_deep)
Also the second model is proposed in one of the tutorials available in the official
site of TF4; in the rest of the dissertation we will refer to it as mnist_deep. It
is based on a convolutional network (see Section 2.5.5) and represents a more
sophisticated approach to the same task as in mnist_softmax, namely the recognition
of handwritten digits. Being more complex, mnist_deep is theoretically capable of
achieving on average a greater accuracy than its linear counterpart (mnist_softmax).
The network is fed with the images from the MNIST dataset, converted to four-
dimensional tensors with one element set 1 to indicate the number of input channels
(the images are gray-scale); the output is the same as in mnist_softmax. The
network is composed of the following layers:

1. the first one combines a convolution with a max pool function. Each kernel of
the convolutional layer has a size of 5x5 and maps each image to 32 features.
The result of the convolution is added to a vector of small biases, before passing
through a rectifier. The biases serves to guarantee that all the features are
activated. The last stage of the layer corresponds to the max pool function,
which shrinks tensors reducing their size to 14x14

2. the second layer has the same structure as the first one, but has 64 output
features; the max pool function further reduces the size of output tensor to
7x7

3. the third layer is fully-connected: it receives in input a 7x7x64 tensor and
connects each of its element to 1024 outputs, thus combining the information
learned from the single features. Also in this case a bias is added to the result
of the matrix multiplication and the sum is activated by a rectifier

4. the last layer has the same role as the softmax function in the previous model:
producing a vector of probabilities, one for each digit. To obtain this vector,
the output from the previous layer is multiplied by a weight vector. The risk
of overfitting data is mitigated by the application of a dropout, which sets to
zero the weights according to probability function provided in input

Like in mnist_softmax, the cross entropy is the loss function to be minimized
and the gradient descent algorithm is used to tune the parameters of the layers.

4www.tensorflow.org/get_started/mnist/pros

50 4. Experiments and Results

4.6 TLE of the Lock for the Application of the Updates
This section contains the results regarding the first set of experiments, where the lock
that protects the application of the updates derived from gradient descent algorithm
is elided using both the hardware and the software transactional support. Results
are presented through two kinds of plots: speedup plots and accuracy plots.
The speedup plots compare the improvement, in terms of reduction of the training
time, deriving from the parallel execution of the gradient descent (see Section 3.1)
when different configurations of the algorithm are adopted. The training time
measures the time required (in seconds) by a Python program to train a model using
the gradient descent, in TF. Being tparallel(w) the training time corresponding to the
parallel execution of the algorithm with a number of w workers (defined Training
Threads in the plots), and t1 the training time for the same model when a single
worker is used, a line in the speedup plots represents the function:

speedup(w) = t1
tparallel(w)

Each line is associated with one of the following configurations:

• HTM: the update of the parameters of the model is protected by a lock
(use_locking=True); the lock is elided with the hardware transactional support

• STM: the update of the parameters of the model is protected by a lock
(use_locking=True); the lock is elided with the software transactional support

• Lock: the update of the parameters of the model is protected by a lock
(use_locking=True)

• NoLock: the update of the parameters of the model is not protected by a lock
(use_locking=False)

Being aparallel(w) the accuracy, in the recognition of handwritten digits, achieved by
a model trained in parallel with w workers, each line in the accuracy plots shows
the values of aparallel(w) in the configurations mentioned above.

4.6.1 Elision with HTM

The graphs contained in this section refer to the experiments in which the lock
protecting the application of the updates was elided leveraging the transactional
memory facility of Intel Haswell and POWER8.

Additional Plots: Commits and Failures

Since the implementation of the hardware support to transactional memory offered
by both the architectures is best-effort (see Section 2.1.6 and 2.1.5), transactions
can fail. On both architectures (see Section 4.6), in case of failure the adopted
strategy consists in trying to retry the transaction for a number of times; if none

4.6 TLE of the Lock for the Application of the Updates 51

of the attempts succeeds, the lock is acquired to perform the critical section in a
non-transactional way. This series of experiments keeps track of the number of times
that a transaction managed to commit: this number is referred to as tle commits.
Dedicated graphs show, as the number of workers increases, the variation in the
percentage of tle commits. More formally, being tle(w) the number of tle commits
obtained with w workers, and transactions(w) the total number of transactions
performed by these workers, the function plotted is:

commits(w) = tle(w)
transactions(w) ∗ 100

Other plots are dedicated to the reasons behind the failure of the transactions. Such
motivations are identified reading the values of the EAX register in Intel TSX and
of the TEXASR register in POWER ISA, thanks to the macros exposed by the GCC
interface (see Section 2.2.3).
On POWER ISA, failures of transactions are grouped in six classes:

1. capacity abort: the transaction was aborted because the size of memory
accessed didn’t fit the cache of the processor; the failure is identified with the
__TM_is_footprint_exceeded macro

2. user abort: the transaction was aborted because the user aborted it; the failure
is identified with the __TM_is_user_abort macro

3. self conflict: the transaction was aborted because it performed an instruction
not allowed (like trying to nest a transaction beyound the maximum of the nest-
ing level); the failure is identified with the _TEXASR_SELF_INDUCED_CONFLICT
macro

4. transactional conflict: the transaction was aborted because it conflicted with an-
other transaction; the failure is identified with the _TEXASR_TRANSACTIONAL_CONFLICT
macro

5. non-transactional conflict: the transaction was aborted because it conflicted
with another thread running outside the scope of a transaction; the failure is
identified with the _TEXASR_NON_TRANSACTIONAL_CONFLICT macro

6. other abort: the transaction was aborted because of a cause that does not fit
any of the above definitions

The related plots show, as the number of workers increases, the variation of the
percentage of failures and of the relative percentage of each kind of failure. The
plots consist in stacked bars, with each bar divided in six sub-bars, one for type of
failure. The height of each sub-bar is computed as follows. For each class of failures
x, being:

• x(w) the number of transactions that failed because of this kind of failure
(training the model with w workers)

• tle(w) the number of tle commits obtained with the same workers

52 4. Experiments and Results

• failures(w) the total number of failures obtained with the same workers

the height of the sub-bar for x is:

failx(w) = x(w)
failures(w) + tle(w) ∗ 100

Note that considering the number of tle commits in the denominator gives an
immediate visual feedback about the ratio between failures and commits: given a
number of workers, the higher the stacked bars, the higher the number of failures
with respect to commits, and vice versa.
On Intel TSX the identification of the reason of conflicts is coarser, so only three
kind of failures are considered:

1. capacity abort: the transaction was aborted because the size of memory accessed
didn’t fit the cache of the processor

2. conflict: the transaction was aborted because of a conflict

3. other : the transaction was aborted because of a cause that does not fit any of
the above definitions

Failures are plotted with the same stacked bars as in POWER 8, but with only three
sub-bars.

Experiments with mnist_softmax

The first plot (Fig. 4.1) shows the speedup achieved on Intel TSX, using batches of
100 images and performing a total number of iterations over the MNIST dataset
equal to 1000; the images were not truncated (see Section 4.2), since the value of
the input images used, indicated by Matrix coincides with their original size.
It is immediately visible that with this configuration of parameters:

1. there is no sensible difference between the case when the gradients are applied
holding the lock and the case where this operation is wrapped into transactions

2. there is no sensible difference between the case where the updates are applied
with some guarantees of consistency (provided by either locks or transactions)

3. the model does not scale well: while it is almost perfectly linear up to 16
training threads (workers), after it gets sublinear

As regards with the first observation, a possible explanation is that the lock being
elided, that protects the update of the parameters of the model, is not contended.
This means that the as soon as a worker tries to acquire a lock, it manages to do
that, without having to wait, because no other worker is simultaneously holding
it. To justify the phenomenon highlighted in the second observation, it is useful to
check the “behaviour” of the transactional facility in terms of commits and conflicts.
As for commits (Fig. 4.2), it can be noted that the percentage of tle commits is
always below 50%, independently on the number of training threads. From Fig. 4.3

4.6 TLE of the Lock for the Application of the Updates 53

Figure 4.1. Speedup with HTM elision on Intel TSX - mnist_softmax - size:784

it can be seen that the main reasons for failures are capacity aborts and conflicts.
The fact that most of the times it is not possible to commit the transaction explains
why the HTM configuration matches the Lock configuration: the necessity of often
making new attempts to commit the transaction before giving up and taking the
fallback path, causes a loss of time which compensates the few cases where the
transaction can commit.
A further attempted was made, maintaining this configuration but truncating the
images to size of 100. The rationale behind this slightly different attempt was that
the reduction of the footprint of the transaction was expected to reduce the number
of capacity aborts.
The plots in Fig. 4.4 clearly show a reduction in the number of capacity aborts,
with all the number of workers.
A further proof that the transactional memory support benefits from the shortening
of input images, derives from the plots relative to the percentage of tle commits.
In Fig. 4.5 the percentage of commits stays over 50% at least up to a number of
training threads equal to 26; after this threshold, the trend is similar to the case
with the bigger matrix. Given these premises, is was reasonable to expect a wider
difference in the behaviour between the Lock and HTM configurations with respect to
the case with Matrix equal to 784.
In reality, as witnessed by Fig. 4.6, the transactional application of the updates

54 4. Experiments and Results

Figure 4.2. Commits with HTM elision on Intel TSX - mnist_softmax - size:784

is equivalent to the case where a lock is grabbed. Another thing that emerges is
that decreasing the size of input images reduces by much the maximum speedup
achievable: with Matrix=784 it is around 25, while here it is around 8.
Given the not so-promising results obtained on Intel TSX, the same model was
trained also on POWER8. Despite trying multiple combinations for the size of
images, size of the batches and number of iterations, the only one providing some
positive results was: Matrix=784, Batch=1, Iterations=10000.
There are two really encouraging results in Fig. 4.7:

1. the plot shows a clear difference between the configurations Lock and HTM

2. the transactional supports outperforms the synchronization scheme based on
“lock”

The fact that here it is clearly more efficient, in terms of time, to update the
parameters of the models inside transactions than in lock-protected critical sections
can be explained considering the minimal size of each batch. Indeed, this ensures a
high frequency in the application of the gradient descent (it is applied after reading
a single image from MNIST) and consequently causes the advantage of applying the
updates speculatively to emerge. This is due to the fact that, with this particular
configuration, the percentage of time required for the application of the updates
with respect to the total time necessary for the whole training phase is high.
Looking at the plot in Fig. 4.8, it is possible to verify that also on POWER8, like
on Intel Haswell, using the input images without truncating them causes the limit of
the cache to be exceeded most of the times, resulting in a high number of capacity
aborts. This is not surprisingly, considering that the limit for the footprint of the

4.6 TLE of the Lock for the Application of the Updates 55

Figure 4.3. Conflicts with HTM elision on Intel TSX - mnist_softmax - size:784

transaction is higher in Intel Haswell than in POWER8.
It does not come as a surprise the fact that the configuration without the acquisition
of the lock (NoLock) is faster than the one that uses transactional memories, because
no time is spent for the coordination of the workers.

In the graphs of Fig. 4.9 it can be observed that the accuracy of the trained
model achieved in the NoLock and Lock scenarios essentially coincides. An obvious
conclusions is that in the simple linear model trained in mnist_softmax it is actually
useless to protect the application of the updates with a lock. This is probably due
to the lack of contention on the lock observed in the experiments run on Intel. This
is confirmed by the low percentage of conflicts on POWER 8 (Fig. 4.8).
In summary, it can be said that the introduction of the hardware transactional
support to train the linear model of mnist_softmax is worthy only on POWER
ISA, using mini-batches, and only in those scenarios where the protection of the
application of the updates with a lock is mandatory.

Experiments with mnist_deep

Various combinations of parameters were tempted also in the set of experiments
regarding the training of the convolutional network. Nevertheless, the only parameter
whose variation really brought to heterogeneous results was, again, the batch size.
From the plot in Fig. 4.10 it is possible to evince that the scalability of the model
has a behaviour similar to the one observed for mnist_softmax: as the number of
workers increases, the trend is first linear, up to 15 training threads, than sublinear
and finally tends to stabilize, despite of some spikes (with 34 and 55 workers). More

56 4. Experiments and Results

Figure 4.4. Conflicts with HTM elision on Intel TSX - mnist_softmax - size:100

importantly, it can be seen that the usage of the transactional support is beneficial
from the point of view of the execution time. Indeed, as expected, the line indicating
the speedup achieved with the HTM configuration lies in between the lines of Lock
and NoLock. As anticipated, this no longer holds as soon as the batch size is slightly
increased, as witnessed by Fig. 4.11. Despite the batch size is still very small (only 15
images), the fact that the lines for the three configurations almost perfectly coincide
suggests that the phase of computation of the updates takes far longer time than
applying them. This makes almost irrelevant with respect to the global training
time, whether some time is spent grabbing a lock or not. This implies that also for
this model, it is necessary to focus only on the scenario with mini-batches.
In the setting, with a number of iterations equal to 100, the accuracy is really low,
independently of the configuration used, and this tells that the complexity of the
model requires to go many more times over the dataset. Nevertheless, the graph
in Fig. 4.12 shows that even with a high number of iterations (5000) the achieved
accuracy is still not acceptable.

4.6.2 Elision with STM

The graphs contained in this section refer to the experiments in which the application
of the updates derived from the execution of the gradient descent was performed inside
a transaction with a software support. The results obtained from the application
of the hardware transactional memories to mnist_softmax suggested the trained
model was not complex enough to highlight the differences between a scenario
where the parameters are updated holding a lock and one where they are directly
updated without synchronization. That’s why the attempts to integrate the software

4.6 TLE of the Lock for the Application of the Updates 57

Figure 4.5. Commits with HTM elision on Intel TSX - mnist_softmax - size:100

transactional support in TF took into account just mnist_deep. Another precious
information learned from the preceding set of experiments regarded the size of the
batches used to train the models: it was worthy to focus on the scenario with
mini-batches.
As anticipated, TinySTM was the chosen software transactional system chosen for
the experiments next described. It gives programmers the opportunity of tuning
some parameters of the implementation at compile time. Among these, one of the
most relevant is the one that sets the behaviour of the system in case of conflict.
Two different settings were used:

1. CM_SUICIDE: corresponding to an “eager” strategy where a transaction is
aborted as soon as a conflict is detected

2. CM_BACKOFF: also in this case the transaction is aborted in case of conflict, but
then, after some backoff time, the transaction is restarted again. The delay
between two successive retries is randomly chosen in a range of values that
grows exponentially with the number of attempts

The plots refer to results obtained running a benchmarker on Intel Haswell: they
present a comparison among the software transactional support (STM), its hardware
counterpart (HTM); the No Lock Lock are also reported as a reference to the original
implementation of TF.

Experiments with Default Contention Management

The plots in Fig. 4.13 and Fig. 4.14 clearly show that the speedup of the training
phase achievable using the software implementation of the transactional memories

58 4. Experiments and Results

Figure 4.6. Speedup with HTM elision on Intel TSX - mnist_softmax - size:100

is very poor, independently of the number of workers. The graphs related to
the accuracy of the model trained with the STM support are not shown since its
application is proved to be very inefficient in this configuraion.

Experiments with Backoff Contention Management

The plots in Fig. 4.15 and Fig. 4.16 almost perfectly match those obtained with the
other strategy for the contention management. This means that retrying to execute
the transactions with some delay between successive attempts does not affect the
performances of TinySTM, in this configuration. It is pointless to report the graphs
related to the accuracy, for the same reason as before.

4.7 Global TLE

The last sequence of experiments regarded the transactional elision of all the locks
present in the framework and it was achieved activating the relative support in glibc
library. Again, the chosen scenario was the training of the convolutional network
(mnist_deep) using mini batches.
Two different combinations of parameters of the adaptive elision algorithm were
tried. The first one, with the following values:

1. skip_lock_busy=3

2. skip_lock_internal_abort=3

3. skip_trylock_internal_abort=3

4.7 Global TLE 59

Figure 4.7. Speedup with HTM elision on POWER ISA - mnist_softmax - size:784

4. retry_try_xbegin=3

This corresponds to the default configuration of the algorithm, where the lock elision
is suspended for the next three acquisitions in case a transaction fails without any
hope that it can eventually commit. The other combination of parameters

1. skip_lock_busy=0

2. skip_lock_internal_abort=0

3. skip_trylock_internal_abort=0

4. retry_try_xbegin=5

was radically different. Indeed, setting the first three values to zero causes the lock
elision to be tempted on all the locks, even when the it seems pretty clear that the
transaction will never commit. Also, the limit for the maximum number of attempts
was brought from 3 to 5, in order to give a transaction more chances to commit.
Given the substantial differences in the setting of the elision algorithm, the expecta-
tion was to observe some differences in the relative results, but Fig. 4.17 and Fig.
4.18 show no. Is to be noted also that in both cases the speedup is the same obtained
with the HTM configuration. One possible explanation for this is that none of the
locks in TF can be elided except for the one that protects the application of the
updates. Indeed, the critical section protected by the latter is very short, and its
memory occupancy was reduced bypassing the Eigen library. On the contrary, for
the rest of the locks, the critical section is more complex and, as consequence, not
“HTM-friendly’, causing a high percentage of capacity aborts.

60 4. Experiments and Results

Figure 4.8. Failures with HTM elision on POWER ISA - mnist_softmax - size:784

Figure 4.9. Accuracy with HTM elision on POWER ISA - mnist_softmax - size:784

4.7 Global TLE 61

Figure 4.10. Speedup with HTM elision on Intel TSX - mnist_deep - size:784, batch:1

Figure 4.11. Speedup with HTM elision on Intel TSX - mnist_deep - size:784, batch:15

62 4. Experiments and Results

Figure 4.12. Accuracy with HTM elision on Intel TSX - mnist_deep - size:784, batch:1

Figure 4.13. Speedup with STM - default c.m., size:784, batch:1

4.7 Global TLE 63

Figure 4.14. Speedup with STM - default c.m., size:784, batch:5

Figure 4.15. Speedup with STM - backoff c.m., size:784, batch:1

64 4. Experiments and Results

Figure 4.16. Speedup with STM - backoff c.m., size:784, batch:5

Figure 4.17. Speedup with Global TLE - default elision configuration

4.7 Global TLE 65

Figure 4.18. Speedup with Global TLE - custom elision configuration

67

Chapter 5

Conclusions

The objective of this thesis was providing an answer to the question whether the usage
of the transactional memories, either in their software and hardware implementation,
is convenient for training machine learning algorithms on TensorFlow.
Looking at the results of the tests executed to answer this question, it is difficult
to provide a definitive answer. On one hand, there are clear signs indicating that
the integration of hardware transactional memories in TensorFlow is convenient. In
particular:

1. compared to the default lock-based implementation, the implementation of
TensorFlow that features the hardware transactional memories requires a lower
training time when the size of the batches read from the dataset is minimal
(mini-batches)

2. on a POWER 8 machine, the usage of the hardware transactional support
allows to achieve an average increment of the speedup around 25% in the
training of the linear model, with a unitary batch size

3. on a machine featuring Intel Haswell, the usage of the hardware transactional
support allows to increment the average speedup by two times in the training
of the convolutional neural network, with a unitary batch size

On the other hand, it also seems pretty clear that:

1. it is not convenient to use software transactional memories for the update
of the parameters of a model. The intrinsic overhead, due to the detection
of conflicts and the maintenance of the read and write sets, represents a big
limitation for their performances

2. there is no advantage in using the hardware transactional support to elide all
the locks of TensorFlow with respect to focusing on the elision of the single
lock that guards the application of the results of the gradient descent algorithm

Moreover, the results regarding the average accuracy of the two trained models
don’t show any clear difference between the lock-based and the lock-free scenario. A
possible justification for this unexpected result, is that in none of the two models,
although quite different, the synchronization of the application of the updates is not

68 5. Conclusions

necessary. This suggests that it is not possible yet to give a definitive response to
the original question. Because of this, in conclusion, this work is to be regarded as a
preliminary step that laid out the foundations for an innovative approach, based on
transactional memories, to parallel training.

69

Bibliography

[1] Abadi, M., et al. Tensorflow: A system for large-scale machine learning. In
OSDI, vol. 16, pp. 265–283 (2016).

[2] Abadi, M., et al. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, (2016).

[3] Alpaydin, E. Introduction to machine learning. MIT press (2014).

[4] Bahrampour, S., Ramakrishnan, N., Schott, L., and Shah, M.
Comparative study of deep learning software frameworks. arXiv preprint
arXiv:1511.06435, (2015).

[5] Coates, A., Ng, A., and Lee, H. An analysis of single-layer networks in
unsupervised feature learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp. 215–223 (2011).

[6] Dean, J., et al. Large scale distributed deep networks. In Advances in neural
information processing systems, pp. 1223–1231 (2012).

[7] Dice, D., Lev, Y., Moir, M., Nussbaum, D., and Olszewski, M. Early
experience with a commercial hardware transactional memory implementation.
(2009).

[8] Dice, D., Shalev, O., and Shavit, N. Transactional locking ii. In DISC,
vol. 6, pp. 194–208. Springer (2006).

[9] Felber, P., Fetzer, C., Marlier, P., and Riegel, T. Time-based software
transactional memory. IEEE Transactions on Parallel and Distributed Systems,
21 (2010), 1793.

[10] Felber, P., Fetzer, C., and Riegel, T. Dynamic performance tuning of
word-based software transactional memory. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming, pp.
237–246. ACM (2008).

[11] Goldsborough, P. A tour of tensorflow. arXiv preprint arXiv:1610.01178,
(2016).

[12] Hall, B., et al. Performance optimization and tuning techniques for IBM
Power Systems processors including IBM POWER8. IBM Redbooks (2017).

70 Bibliography

[13] Hammarlund, P., et al. Haswell: The fourth-generation intel core processor.
IEEE Micro, 34 (2014), 6.

[14] Harris, T., Larus, J., and Rajwar, R. Transactional memory. Synthesis
Lectures on Computer Architecture, 5 (2010), 1.

[15] Herlihy, M. and Moss, J. E. B. Transactional memory: Architectural
support for lock-free data structures, vol. 21. ACM (1993).

[16] James, G., Witten, D., Hastie, T., and Tibshirani, R. An introduction
to statistical learning, vol. 112. Springer (2013).

[17] Kleen, A. Adding lock elision to linux. In Linux Plumbers Conference, August
(2012).

[18] Langford, J., Smola, A. J., and Zinkevich, M. Slow learners are fast.
Advances in Neural Information Processing Systems, 22 (2009), 2331.

[19] Le, H. Q., Guthrie, G., Williams, D., Michael, M. M., Frey, B.,
Starke, W. J., May, C., Odaira, R., and Nakaike, T. Transactional
memory support in the ibm power8 processor. IBM Journal of Research and
Development, 59 (2015), 8.

[20] Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., and Ng,
A. Y. On optimization methods for deep learning. In Proceedings of the 28th
International Conference on International Conference on Machine Learning,
pp. 265–272. Omnipress (2011).

[21] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86 (1998),
2278.

[22] Mitchell, T. M. Machine learning. McGraw Hill (1997).

[23] Nair, A., et al. Massively parallel methods for deep reinforcement learning.
arXiv preprint arXiv:1507.04296, (2015).

[24] Nakaike, T., Odaira, R., Gaudet, M., Michael, M. M., and Tomari, H.
Quantitative comparison of hardware transactional memory for blue gene/q, zen-
terprise ec12, intel core, and power8. In ACM SIGARCH Computer Architecture
News, vol. 43, pp. 144–157. ACM (2015).

[25] Rajwar, R. and Goodman, J. R. Speculative lock elision: Enabling
highly concurrent multithreaded execution. In Proceedings of the 34th an-
nual ACM/IEEE international symposium on Microarchitecture, pp. 294–305.
IEEE Computer Society (2001).

[26] Recht, B., Re, C., Wright, S., and Niu, F. Hogwild: A lock-free approach
to parallelizing stochastic gradient descent. In Advances in neural information
processing systems, pp. 693–701 (2011).

Bibliography 71

[27] Schrimpf, M. Should i use tensorflow. arXiv preprint arXiv:1611.08903,
(2016).

[28] Shavit, N. and Touitou, D. Software transactional memory. Distributed
Computing, 10 (1997), 99.

[29] Sousa, T. B. Dataflow programming concept, languages and applications. In
Doctoral Symposium on Informatics Engineering, vol. 130 (2012).

[30] Stone, J. M., Stone, H. S., Heidelberger, P., and Turek, J. Multiple
reservations and the oklahoma update. IEEE Parallel & Distributed Technology:
Systems & Applications, 1 (1993), 58.

	Introduction
	Motivations
	Goal

	Background
	Transactional Memories
	Introduction
	Implementation
	Software Transactional Memories
	Hardware Transactional Memories
	POWER8
	Intel Haswell

	Transactional Lock Elision
	Intel Transactional Synchronization Extensions
	POWER ISA Transactional Memory Support
	GCC Transactional Memory Interface

	TensorFlow
	Introduction
	Building the Dataflow Graph
	Executing the Dataflow Graph
	Visualizing the Dataflow Graph
	Architecture

	Statistical Learning
	Overview
	Linear Regression
	Logistic Regression
	Gradient Descent

	Artificial Neural Networks
	Perceptrons
	Training Perceptrons
	Multilayer Perceptrons
	Variations to the Gradient Descent Algorithm
	Convolutional Neural Networks

	Integrating Transactional Memories in TensorFlow
	Parallel Gradient Descent
	Gradient Descent in the TensorFlow
	Python API
	Back-end Implementation

	Transactional Application of the Gradient Descent
	Lock Elision with Hardware Transactional Memory
	Application of the Updates with Software Transactional Memory

	Eliding All the Locks in TensorFlow

	Experiments and Results
	The MNIST dataset
	Training of the Models
	Evaluation of the Models
	MNIST Softmax Regression (mnist_softmax)
	MNIST Convolutional Network(mnist_deep)
	TLE of the Lock for the Application of the Updates
	Elision with HTM
	Elision with STM

	Global TLE

	Conclusions

