
Enhancing locality via caching in the GMU protocol

Hugo Gomes Pimentel

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Examination Committee

Chairperson: Professor Mário Rui Fonseca dos Santos Gomes

Supervisor: Professor Paolo Romano

Member of the Committee: Professor João Pedro Faria Mendonça Barreto

October 2013

Acknowlegments

I would like to start by thanking my advisor, Prof. Paolo Romano, not only for this opportunity, but also

for his guidance and advices during the elaboration of the thesis.

I want to thank Pedro Ruivo and Sebastiano Peluso, for all the help they provided throughout the

development of this work.

Last, but not least, I also want to thank my parents, my godmother, my brothers and my friends for

their endless support, encouragement and patience.

This work has been partially supported by the project ”Cloud-TM” (co-financed by the European

Commission through the contract no. 257784).

i

ii

Resumo

Os protocolos de replicação parcial possuem um enorme potencial para escalabilidade, no entanto a

eficiência destes sistemas pode ser fortemente prejudicada caso os padrões de acesso a dados das

aplicações não exibam um bom grau de localidade. Estes sistemas normalmente recorrem a uma

função de dispersão consistente para determinar a colocação dos dados, porque estas soluções per-

mitem pesquisas locais muito eficientes e além disso, garantem que a entrada/saı́da de uma máquina

só necessite de uma pequena mudança no mapeamento do sistema. No entanto, devido à natureza

aleatória da colocação dos dados (que é independente dos padrões de acesso aos dados), também po-

dem levar a colocações de dados sub-ótimas que prejudicam a localidade. Uma possı́vel solução para

melhorar a eficiência destes sistemas é o chamado caching, que guarda a informação que é pedida a

outras máquinas para que possa ser usada futuramente e evitar novos pedidos.

Nesta dissertação, eu proponho um mecanismo de caching para o GMU [38], um protocolo de

replicação parcial genuı́no introduzido recentemente. Eu integrei este mecanismo numa plataforma de

armazenamento de dados open-source muito popular chamada Infinispan [31], pertencente à Red Hat.

Eu avalio a eficiência e a eficácia da solução apresentada através de uma extensa análise experimental,

baseado tanto em ambientes de teste sintéticos como em ambientes de teste conhecidos para este tipo

de sistema através da instalação dos mesmos em grandes sistemas públicos de cloud computing. Os

resultados mostram que é possı́vel obter performances 14 vezes superiores às actuais.

Keywords: replicação parcial, função de dispersão consistente, localidade, caching

iii

iv

Abstract

Partial replication protocols possess high potential for scalability but their actual efficiency can be seri-

ously hindered if the applications’ data access patterns do not exhibit a good degree of locality. These

solutions usually adopt a data placement strategy based on consistent hashing, that allows very efficient

local lookups and guarantees that the join/leave of a node incurs in a limited change in the mapping of

the system. However, due to the random nature of data placement (oblivious to the access frequencies

of nodes to data), it may lead to sub-optimal data placements thus hurting the locality of data. A possible

approach to maximize the efficiency of these protocols is to rely on caching techniques, which replicate

items frequently accessed by a node and not locally owned, in order to spare them from the costs of

remote accesses.

In this dissertation, I introduce a caching protocol for GMU [38], a recent genuine partial replication

protocol. I integrated the proposed caching protocol into a popular open-source transactional key-value

store, namely Infinispan [31] by Red Hat. I assess the efficiency and effectiveness of the presented so-

lution by means of an extensive experimental analysis, based on both synthetic and well known bench-

marks for transactional platforms and on large scale deployments on public cloud infrastructures. The

results show speed-ups up to 14 times in read dominated workloads.

Keywords: partial replication, consistent hashing, locality, caching

v

vi

Contents

List of Tables . xi

List of Figures . xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Structure of the document . 3

2 Related Work 5

2.1 Introduction . 5

2.2 The transaction abstraction . 5

2.3 Transactional Consistency Models . 7

2.3.1 (One Copy) Serializability . 7

2.3.2 Opacity . 7

2.3.3 (Parallel) Snapshot Isolation . 7

2.3.4 (Extended) Update Serializability . 7

2.3.5 Other models . 8

2.4 Transactional Systems . 8

2.4.1 Data Base Management Systems . 8

2.4.2 Software Transactional Memories . 9

2.4.3 Distributed Transactional Platforms . 9

2.5 Group Communication Systems . 10

2.5.1 Atomic Broadcast . 10

2.5.2 Optimistic Atomic Broadcast . 10

2.5.3 Atomic Multicast . 11

2.6 Transactional Replication Techniques . 11

2.6.1 Full vs Partial Replication . 11

2.6.2 Primary Backup . 12

2.6.3 State Machine Replication . 12

2.6.4 Certification Based Replication . 13

2.7 Data placement . 14

vii

2.7.1 Global Mapping . 14

2.7.2 Consistent Hashing . 14

2.7.3 Grouping . 15

2.8 Eviction . 15

2.8.1 Least Recently Used . 15

2.8.2 Most Recently Used . 15

2.8.3 Least Frequently Used . 15

2.8.4 Low Inter-reference Recency Set . 15

2.9 Caching . 16

2.9.1 Dynamic Load Management . 16

2.10 Overview of existing transactional systems . 17

2.10.1 Centralized DBMS . 17

2.10.2 Fully replicated and certification based DBMS . 17

2.10.3 Centralized STM . 18

2.10.4 Fully replicated and certification based DSTM . 18

2.10.5 Fully replicated and state machine based DSTM 18

2.10.6 Partial Replicated and Certification Based DSTM 19

2.10.7 Geo-Replicated Systems . 19

3 The GMU protocol 21

3.1 Infinispan . 21

3.2 Model of the target system . 22

3.3 Overview of the GMU protocol . 23

4 Caching in GMU protocol 27

4.1 The caching protocol . 27

4.1.1 Ensuring data consistency . 27

4.1.2 Why the algorithm is necessary? . 30

4.1.3 Maximizing data freshness . 32

4.1.4 Freshness of the initial transaction vector clock . 34

5 Evaluation 37

5.1 Goal . 37

5.2 Environments . 37

5.2.1 CloudTM . 37

5.2.2 FutureGrid . 38

5.3 Configuration . 38

5.4 TPCC Benchmark . 38

5.4.1 Description . 38

5.4.2 Results . 43

viii

5.5 Vacation Benchmark . 48

5.5.1 Description . 48

5.5.2 Results . 48

5.6 Synthetic Benchmark . 49

5.6.1 Description . 49

5.6.2 Results . 49

5.7 Discussion . 54

6 Conclusions 55

6.1 Future Work . 55

Bibliography 57

ix

x

List of Tables

5.1 Best speedups in TPCC. Red: EAGER, Blue: BATCH, Green: LAZY 43

5.2 Best speedups in Vacation. Red: EAGER, Blue: BATCH, Green: LAZY 49

5.3 Best speedups in Synthetic. Red: EAGER, Blue: BATCH, Green: LAZY 49

xi

xii

List of Figures

2.1 The transaction lifetime . 6

2.2 Primary-Backup in a Fully Replicated System: A Simple Execution Example 12

2.3 State Machine Replication in a Fully Replicated System: A Simple Execution Example . . 13

2.4 Certification Based Replication in a Partially Replicated System: A Simple Execution Ex-

ample . 14

3.1 Read Operations in GMU: Application of the Reading Rules 24

3.2 Read Operations in GMU: Application of the Reading Rules 2 25

4.1 Merging and maximizing two VCs: A simple example . 28

4.2 The caching mechanism: A cache miss example . 31

4.3 The caching mechanism: A cache miss example 2 . 32

5.1 TPCC results obtained in FutureGrid for Workload A. Top to Bottom: Throughput, Cache

Hit Percentage, Total Bandwidth . 39

5.2 TPCC results obtained in FutureGrid for Workload B. Top to Bottom: Throughput, Cache

Hit Percentage, Total Bandwidth . 40

5.3 TPCC results obtained in CloudTM for Workload A. Top to Bottom: Throughput, Cache

Hit Percentage, Total Bandwidth . 41

5.4 TPCC results obtained in CloudTM for Workload B. Top to Bottom: Throughput, Cache

Hit Percentage, Total Bandwidth . 42

5.5 Vacation results obtained in CloudTM for Workload A. Top to Bottom: Throughput, Cache

Hit Percentage, Total Bandwidth . 44

5.6 Vacation results obtained in CloudTM for Workload B. Top to Bottom: Throughput, Cache

Hit Percentage, Total Bandwidth . 45

5.7 Vacation results obtained in FutureGrid for Workload A. Top to Bottom: Throughput,

Cache Hit Percentage, Total Bandwidth . 46

5.8 Vacation results obtained in FutureGrid for Workload B. Top to Bottom: Throughput,

Cache Hit Percentage, Total Bandwidth . 47

5.9 Synthetic results obtained in CloudTM for Workload A. Top to Bottom: Throughput, Cache

Hit Percentage, Total Bandwidth . 50

xiii

5.10 Synthetic results obtained in CloudTM for Workload B. Top to Bottom: Throughput, Cache

Hit Percentage, Total Bandwidth . 51

5.11 Synthetic results obtained in FutureGrid for Workload A. Top to Bottom: Throughput,

Cache Hit Percentage, Total Bandwidth . 52

5.12 Synthetic results obtained in FutureGrid for Workload B. Top to Bottom: Throughput,

Cache Hit Percentage, Total Bandwidth . 53

xiv

Chapter 1

Introduction

The advent of the cloud computing paradigm has empowered programmers with the ability to scale out

their applications easily to hundreds of nodes. However, developing applications capable of effectively

exploiting the computational capabilities offered by large scale distributed cloud platforms is far from

being a trivial task. This is also a consequence of the design choices characterizing many of the first

generations of distributed data platforms (DTPs) for the cloud [14]. These typically maximize scalability

by adopting very weak consistency models, such as eventual consistency. By relaxing consistency, these

systems have been shown to achieve impressive scalability levels. However, they also shift additional

burden from the platform architects to the application developers, who are exposed to the idiosyncrasies

associated with concurrency and failures. Indeed, the inherent complexity of building applications on

top of weakly consistent systems has been recently recognized by some of the pioneers of eventual

consistency [10], and has motivated a flurry of works aimed to enforce strong consistency semantics in

large scale distributed platforms [2, 12, 46, 38, 37].

By relying on multi-version concurrency control algorithms, these solutions [38, 37, 12] allow for a

very efficient management of read-only transactions, sparing them from the possibility of aborting as

well as from the costs of any validations. Another key property of these systems, aimed precisely to

maximize their scalability is the, so called, genuine partial replication, according to which the execution

of a transaction can only involve nodes that replicate data items it accessed [43]. This property is of

the utmost importance to enable high scalability, as it rules out non-scalable solutions based either on

centralized components (which may turn into bottlenecks/single point of failures) or on full-replication

(which induces unacceptable overheads to propagate updates across the entire system).

1.1 Motivation

While partial replication protocols possess high potential for scalability, the actual efficiency of these

systems can be seriously hindered if the applications’ data access patterns do not exhibit a good degree

of locality. In fact, as in these systems data is distributed across the entire set of nodes in the platform and

replicated only on relatively small number of them, it follows that, in order to process a transaction’s read

1

request, it may be necessary to fetch data remotely. This problem is particularly exacerbated since many

popular key-value stores (transactional or not), such as Cassandra [29], Dynamo [14], Infinispan [31],

use random placement based on consistent hashing. By relying on random hash functions to determine

the location of data across nodes, these solutions allow lookups to be performed locally, in a very efficient

manner [14]. Furthermore, consistent hashing guarantees that the join/leave of a node incurs in a limited

change in the mapping of keys to buckets. However, due to the random nature of data placement

(oblivious to the access frequencies of nodes to data), solutions based on consistent hashing may result

in sub-optimal data placements. Indeed, assuming random placement of data, it is easy to see that the

probability of finding a requested data item locally is inversely proportional to the number of nodes in the

system. In other words, unless appropriate techniques are employed to enhance locality in the access

to data, as the scale of the system grows, the number of remote read operations is destined to grow

linearly, ultimately saturating the network and, consequently, hindering scalability.

A possible approach to maximize the efficiency of these protocols is to rely on caching techniques,

which replicate items frequently accessed by a node and not locally owned, in order to spare them

from the costs of remote accesses. However, integrating a caching mechanism in strongly consistent

genuine partial replication protocols is far from being an obvious task, as it requires designing highly

scalable cache consistency protocols capable of preserving transactional consistency while allowing

read operations targeting data items not owned by the current node to be performed locally (based on

cached data), i.e. without contacting the actual data owner.

1.2 Contributions

In this dissertation I introduce a caching protocol for GMU [38], a recent, genuine partial replication

protocol that employs a fully distributed multiversioning scheme based on vector clocks. GMU has

several noteworthy properties: i) it spares read-only transactions from the risk of aborts, as well as

from the cost of expensive remote validations, ii) it ensures that every transaction (including update

transactions that have to be aborted eventually) always observes a consistent snapshot of data, that is a

snapshot producible by some linearization of a prefix of the history of committed transactions, a property

called Extended Update Serializability [1] (EUS).

The presented protocol has two main innovative building blocks:

• the mechanism used to preserve the consistency guaranteed by GMU, while allowing reads tar-

geting remote data to be served from a local cache. The proposed solution extends the vector

clock-based version management and visibility logic of GMU by: i) determining a conservative up-

per bound on the validity of data to be inserted in the cache, and ii) exploiting this upper bound

during future accesses to that cache, in order to determine whether it is safe or not for a transaction

to observe cached data;

• the mechanism used to maximize the freshness of cached versions everywhere in the system, that

can be used by different propagation techniques.

2

I integrated the proposed distributed caching scheme into a popular open-source transactional key-

value store, namely Infinispan by Red Hat [31]. I assess the efficiency and effectiveness of the presented

solution by means of an extensive experimental analysis, based on both synthetic and well known bench-

marks for transactional platforms and on large scale deployments on public cloud infrastructures. The

results speed-ups up to 14 times in read dominated workloads.

1.3 Structure of the document

The rest of this document is organized as follows. Chapter 2 provides an introduction to the different

technical areas related to this work. Chapter 3 introduces GMU and the proposed caching protocol and

Chapter 4 presents the results of the experimental evaluation study. Finally, Chapter 5 concludes this

document by summarizing its main points and future work.

3

4

Chapter 2

Related Work

2.1 Introduction

Understanding the problems addressed in this thesis implies knowing the fundamentals of different ar-

eas in distributed systems. I start this chapter by recalling the notion of atomic transaction (Section

2.2) and several alternative consistency models proposed in existing literature on transactional systems

(Section 2.3). Then, I give an overview on several different classes of transactional systems (Section

2.4). Afterwards, I describe two fundamental building blocks on the construction of distributed transac-

tional systems (which represent the focus of my thesis), namely group communication systems (Section

2.5) and replication techniques (Section 2.6). Other important features of this types of systems are data

placement strategies (Section 2.7) and eviction techniques (Section 2.8). I also overview same of the

basic principles of caching mechanisms (Section 2.9). Finally, I discuss more in detail specific instances

of systems belonging to the categories described above (Section 2.10).

2.2 The transaction abstraction

The transaction abstraction was originally introduced in the context of DBMSs, as a way to batch multiple

data manipulation operations into a single unit of work. The unit of work is treated in a coherent and

reliable way by the underlying transactional system. Once started, a transaction must be ended either

with commit or abort.

During its life-cycle, a transaction can pass through four distinct, well-defined states:

• Executing: the transaction’s operations are executing;

• Committing: the transaction has completed the execution of its operations, and therefore, the client

requested the transaction’s commit;

• Committed : the transaction was committed;

• Aborted : the transaction was aborted.

5

Executing CommitedCommiting

Aborted

Figure 2.1: The transaction lifetime
.

Both the executing and committing states are transitory, while both the aborted and committed states

are final. A committed transaction records its results in the database. A failed and then aborted trans-

action ends with rollback to undo its effects on the database.

Regarding properties, database transactions satisfy those commonly referred to as ACID [23]: atom-

icity, isolation, consistency and durability. Their description is the following:

• Atomicity : ensures that modifications must follow an ”all or nothing rule”, i.e., either all the modifi-

cations made by a committed transaction are made visible or none is;

• Consistency : ensures that each transaction changes the database from one consistent state to

another consistent state;

• Isolation: ensures that individual memory updates within a memory transaction are hidden from

concurrent transactions;

• Durability : ensures that once a transaction is committed, its updates will survive any subsequent

malfunctions.

Transactions can also be categorized as read-only (only perform read operations) or update (perform

read and/or write operations). The values obtained from read operations are stored in a structure called

the read set while the values introduced by write operations are stored in a structure called the write set.

6

2.3 Transactional Consistency Models

2.3.1 (One Copy) Serializability

(One Copy) Serializability [5] states that the outcome of a concurrent execution of a set of transactions

must be the same as the outcome of some serial execution of the same transactions. Moreover, the

transactions issued by a node, which are included in this ordering, must respect the order defined in the

program.

In a replicated system, a concurrent execution of transactions in multiple nodes is serializable if the

outcome is equivalent to that of some serial execution of the same transactions in a single node.

2.3.2 Opacity

Opacity [21] was introduced in the context of STMs (later explained in Section 2.4.2). While the strongest

coherence model of DBMSs is serializability, in STMs both serializability and opacity need to be ensured.

Opacity can be viewed as an extension of serializability, with the additional requisite that even non-

committed transactions are prevented from accessing inconsistent states (DBMSs only guarantee that

committed transactions do not see inconsistent states), thus avoiding the occurrence of anomalies due

to concurrent data accesses that can lead to arbitrary application behaviors (such as infinite loops or

unhandled exceptions) and the probable crash of the entire application.

2.3.3 (Parallel) Snapshot Isolation

Snapshot Isolation [4] (SI) is a more relaxed model of consistency that allows transactions to observe

a state of the system that does not necessarily reflect the updates of all transactions that have been

committed. If two transactions concurrently read an overlapping set of values from the same state and

make disjoint updates to different subsets of these values this will cause an ”anomaly” (with regard to the

idealized system) called write skew, which never happens with serializability. However, like serializability,

if the update was on same the same value, one of the transactions will be aborted.

Parallel Snapshot Isolation [46] (PSI) is a variation of this model aimed at replicated systems that

allows update transactions to be applied in different orders at different nodes therefore providing better

performance that SI because it does not have the cost of making update transactions be commited by

the same order at different nodes.

2.3.4 (Extended) Update Serializability

Update Serializability [24] (US) is another relaxed model of consistency. US applies the same principles

of serializability to update transactions. The relaxation is on the read-only transactions. Two read only

transactions may read the same values but be commited by different order, a situation that does not

happen in serializability.

7

Extended Update Serializability [1] extends the US semantic not only to transactions that commit,

but to any executing transaction providing similar guarantees to the ones provided by Opacity.

2.3.5 Other models

As described in [4], there are more three models of consistency. They can be defined according to

whether they suffer or not from the following phenomenons:

• Dirty Read: Transaction T1 modifies a data item. Another transaction T2 then reads that data item

before T1 performs a COMMIT or ROLLBACK. If T1 then performs a ROLLBACK, T2 has read a

data item that was never committed and so never really existed.

• Non-repeatable Read: Transaction T1 reads a data item. Another transaction T2 then modifies

that data item and commits. If T1 then attempts to reread the data item, it receives a modified

value.

• Phantom Read: Transaction T1 reads a set of data items. Transaction T2 then overwrites the data

items that T1 has read. If T1 reads again the same data items, it gets a set of data items different

from the first read.

In the Read Uncommitted model all this phenomenons occur, while in the Read Committed model

there are only Non-repeatable and Phantom Reads. Repeatable Read model only suffers from

Phantom Reads. Note that in the models present above this phenomenons do not happen.

2.4 Transactional Systems

In this section, I describe several categories of systems that rely on the notion of atomic transaction. For

each of these categories, I will describe in more detail specific instances that can be seen as represen-

tative of this class of transactional systems.

2.4.1 Data Base Management Systems

A Data Base Management System (DBMS) is a set of programs that enable users to store, modify, and

extract information from a database. As mentioned in Section , the transaction abstraction was originally

introduced in the context of DBMSs as concurrency control mechanism that allow correct execution of

those operations.

DBMSs can be categorized according to the model they support or the query language or languages

that are used to access the database. The relational model has been the reference model for data

storage for decades and consists of three major components:

• the set of relations and set of domains that defines the way data can be represented (data struc-

ture);

• integrity rules that define the procedures to protect the data (data integrity);

8

• what can be done with the data (data manipulation).

A relational database supports relational algebra, consequently supporting the relational operations

of the set theory. In addition to mathematical set operations namely, union, intersection, difference

and Cartesian product, relational databases also support select, project, relational join and division

operations. These operations are unique to relational databases.

SQL was one of the first commercial languages for this model and became the most widely used.

This model has several advantages relatively to other models, namely the ease of use and flexibility.

However, the expressiveness of the relation data model, as well as the richness of the data manipulations

supported by SQL, make it extremely difficult to develop systems capable of scaling horizontally to a

large number of nodes [33], which nowadays is very important. This has led to the development of

alternative, simpler data models, which are commonly known as NoSQL, which I will describe later on

Section 2.4.3.

2.4.2 Software Transactional Memories

One of the challenges of parallel programming is synchronizing concurrent access to shared memory

by multiple threads. Programmers have traditionally used locks for synchronization, but lock-based

synchronization has well-known pitfalls. Simplistic coarse-grained locking does not scale well, while

more sophisticated fine-grained locking risks introducing deadlocks and data races.

Software Transactional Memory [45] (STM) was introduced to allow the programmer to compose scal-

able applications safely out of thread-safe libraries. As DBMS, it supports the transaction abstraction as

an high-level concurrency control mechanism, so the notions of atomicity, consistency and isolation are

also provided. However, unlike DMBs, STMs do not need to ensure data persistence, which allows trans-

action execution times typically several orders of magnitude smaller. Also, STMs can perform generic

memory manipulations directly in the address space of user applications. This led to the development of

new concurrency control mechanisms specifically tailored for STM environments focused on multi-core

architectures, such as [8, 16, 25].

2.4.3 Distributed Transactional Platforms

With the advent of cloud computing, which is the use of computing resources (hardware and software)

that are delivered as a service over a network (typically the Internet), there has been a proliferation of a

new generation of platforms, often called Distributed Transactional Platforms (DTPs), that rely on a sim-

pler data models, lightweight application interfaces and efficient mechanisms to achieve data durability.

The data models (key-value, column-oriented, document, graph) are often called NoSQL (Not only

SQL). NoSQL is identified by the non-adherence to the use of the relational model and its query language

SQL. NoSQL platforms are designed to manage large volumes of data that do not necessarily follow a

fixed schema. The reduced run time flexibility compared to full SQL systems is compensated by large

gains in scalability and performance.

9

The application of the same principles of STMs for large-scale commodity clusters (usually knowned

as DSTM, i.e., Distributed Transactional Memories) is also adopted by some of this platforms because

they try to leverage the fact that information stored in-memory can be retrieved much faster than from

persistent storage. However, there are also new challenges posed by this non-shared memory and non-

cache-coherent domain, such as communication between different machines (later described in Section

2.5), data locality management (Section 2.7), and data replication (Section 2.6).

2.5 Group Communication Systems

Group communication [11, 39] is a powerful paradigm for performing multi-point to multi-point commu-

nication by organizing nodes in groups. Typically, a system that implements this paradigm is called a

Group Communication System (GCS) and offers membership and reliable broadcast services with differ-

ent ordering guarantees. GCSs are used at the heart of a large plethora of distributed systems, including

transactional systems. They allow programmers to concentrate on what to communicate rather than on

how to communicate. Typically, broadcast services ensure all or some of the following properties:

• Validity : if a correct node broadcasts/multicasts a message m, then it eventually delivers m;

• Uniform Agreement : if a node delivers m, then all correct nodes eventually deliver m;

• Uniform Integrity : for any message m, every node delivers m at most once, and only if m was

previously broadcasted/multicasted by its sender;

• Uniform Total Order : if nodes p and q both deliver messages m and m’, then p delivers m before

m’ only if q delivers m before m’.

Uniform properties make life easier for application developers, as they apply to both correct and faulty

nodes. However, enforcing uniformity often has a cost and for this reason it is important to consider

whether uniformity is strictly necessary.

In the following, I overview several broadcast primitives, as these are at the basis of several transac-

tional replication techniques, which will be the subject of Section 2.6.

2.5.1 Atomic Broadcast

Atomic Broadcast [22] (AB), also known as Total Order Broadcast, is a communication primitive that en-

sures that every participant receives all messages by the same order. A set of messages is broadcasted

by invoking AB-broadcast and when their final order is known, they are AB-delivered. AB ensures all of

the above properties.

2.5.2 Optimistic Atomic Broadcast

Optimistic Atomic Broadcast [36] (OAB) is a variant of AB that exploits the fact that in a LAN, messages

normally arrive at different sites exactly in the same order. This assumption is called optimistic delivery

10

order. A set of messages is broadcasted by invoking AB-broadcast and OAB-delivered as soon as they

arrive, but only when their final order is known, they are AB-delivered. The OAB deliver primitive enables

applications to overlap computation with communication. OAB ensures all of the above properties and

one more:

• Optimistic Order : if a node p AB-delivers message m, then p has previously OAB-delivered m.

2.5.3 Atomic Multicast

Atomic Multicast [15] (AMcast), also knowned as Total Order Multicast, is also a variant of AB. While

AB sends messages to all the nodes, AMcast just sends messages to a subset of nodes. For every

message m, m.dst denotes the groups to which m is multicasted. A message m is multicasted by

invoking A-multicast(m) and delivered with A-deliver(m). AMcast ensures all of the above properties for

m.dst.

2.6 Transactional Replication Techniques

Replication is a fundamental building block in the construction of highly available, fault-tolerant systems.

Two important aspects that allow the classification of existing systems and that have a significant impact

on several of their key design choices is whether data is fully or partially replicated and how they replicate

the data.

In the next sections I will discuss the advantages of full and partial replication. Then I will describe

some of the properties of three very known replication techniques. All of them can leverage either full or

partial replication. Some of the research published so far using those techniques will also be presented.

2.6.1 Full vs Partial Replication

Full replication places copies of data items at all nodes of the system. It has the advantage of not

needing expensive remote data accesses (all data is local) but is inherently unscalable, especially in

presence of write-dominated workloads, because all the nodes need to be contacted upon commit.

Partial replication only assigns copies of an individual data item to a set of nodes. Ideally, when

committing a transaction, the only nodes that will be contacted are the ones that maintain the data

accessed by the transaction, making the system highly scalable because a node only has to execute

the updates on existing data items. On the other hand, it needs to deal with expensive remote data

accesses that can be very detrimental especially in presence of workloads that promote them.

Partial replication protocols can be divided in three groups [42]:

• Genuine: for each transaction T, the nodes that certificate T are the ones that have the data

accessed by T;

• Quasi-genuine: for each transaction T the correct nodes that do not have data accessed by T, only

store permanently the identifier of T;

11

Replica 2
Slave
Item X

Client

Replica 1
Master
Item X

Replica 3
Slave
Item X

Update X

Update X

ACK

ACK

ACK

Update X

Figure 2.2: Primary-Backup in a Fully Replicated System: A Simple Execution Example
.

• Non-genuine: for each transaction T, every node stores information about T, even if they do not

have data accessed by T.

Non-genuine protocols go against the goal of partial replication, because all the nodes have to be

involved in a transaction, thus leading to similar problems as full replication.

2.6.2 Primary Backup

Primary backup [6], also known as master-slave or passive replication, is characterized by the existence

of a node, known as the master, that nodes all requests and transfers the state updates to the remaining

nodes, known as the slaves or backups. A simple execution example using this approach is depicted in

Figure 2. In most cases, slaves can also nodes read-only transactions.

Primary backup often assumes the fail-stop model [7]. When the master fails one of the slaves is

elected to replace it, becoming the new master. One of the problems of this technique is that in write

intensive workloads the master may become a bottleneck in the system, as it is responsible for all the

computation, since the slaves do not share any workload.

2.6.3 State Machine Replication

State machine replication [44], also knowned as active replication, is characterized by having all nodes

processing the same sequence of requests, by the exact same order, issued by the client. To ensure the

consistency of the replicated data, state machine replication requires all operations to be deterministic,

otherwise the state of each node could diverge. A simple execution example is depicted in Figure 3.

Requests are processed according to the global serialization order (GSO), which is normally defined

by the AB protocol used to disseminate requests or by a atomic commit protocol such as 2PC. One of the

12

Replica 1
Item X

Client

Replica 2
Item X

Replica 3
Item X

Update X

ACK ACK

Update X Update X

ACK

Figure 2.3: State Machine Replication in a Fully Replicated System: A Simple Execution Example
.

problems of using AB is the relatively slow communication between nodes, as it requires that consensus

is reached among all nodes. Moreover, since all nodes have to execute all update requests, the ability

to process them does not increase. On the contrary, it does in fact decrease, as the cost of group

communication increases with the number of peers. However, as happens with passive replication, read-

only requests can be processed in parallel at different nodes. In order to improve performance several

state machine based schemes normally use OAB instead of AB because, as described in Section 2.5.2,

OAB allows to partial overlap the transaction processing and the node coordination phases.

2.6.4 Certification Based Replication

Certification algorithms allow that the execution of a transactional request can take place at a single

node, guaranteeing data coherency in the end, differently from the replication techniques described

above. Specifically, these algorithms ensure that every node agree on the outcome of a transaction at

commit time relying on a distributed transaction certification algorithm.

They are usually based on the deferred update model [20] and use group communication primitives.

According with this model, transactions are processed locally in one node and then sent to the other

nodes, at confirmation time. It was first introduced in [35], as a scheme designed to synchronize a

cluster of database servers in a multi-master environment.

Existing certification-based replication algorithms can be classified into two main categories:

• Non-voting schemes: solutions that allow each node to certify transactions locally, by sending both

the read-set and write-set via an AB primitive;

• Voting schemes: solutions that avoid broadcasting the read-set of transactions by sending (via AB)

only the write-set.

13

Replica 1
Item X

Client

Replica 2
Item Y

Replica 3
Item Z

Update Y

ACK

ACK

Update Y

Update Z

ACK

Figure 2.4: Certification Based Replication in a Partially Replicated System: A Simple Execution Exam-
ple

.

Non-voting schemes are optimal in terms of communication steps but it also makes them prone to

generate very large messages and to overload the network. Voting schemes drastically reduce the

network bandwidth consumption but they incur into the costs of an additional coordination phase along

the critical path of the transaction commit, which can reduce significantly the performance.

2.7 Data placement

In this section, I provide an overview on data placement strategies used by several transactional dis-

tributed systems.

2.7.1 Global Mapping

Global mapping is a data placement strategy that uses a data structure such as an HashMap 1 to map

data items to the nodes they belong. Global mapping offers maximum opportunity for perfect resource

balancing and correlation-free data placement. However, this flexibility comes at a high cost for making

global decisions and consistently maintaining the map on multiple servers.

2.7.2 Consistent Hashing

Consistent Hashing [28] eliminates the cost of maintaining global maps by providing a deterministic

mapping between data and nodes. There are two key issues in hashing-based schemes: (i) how to

dynamically adjust the hash function in face of server failures and server additions, and (ii) how to

1http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html

14

achieve load and storage balance. Consistent hashing requires minimal data relocation during server

failures and expansions but it provides poor balance in data placement.

2.7.3 Grouping

Grouping is also a consistent hashing based scheme that shifts the burden of data placement to the

developer. The developer has to implement an hashing scheme that groups data items by nodes. Data

placement is done accordingly to where the developer wants the data to go.

2.8 Eviction

In this section, I overview some of the eviction strategies that can be used by this systems.

2.8.1 Least Recently Used

Least Recently Used (LRU) discards the least recently used items first. This algorithm requires keeping

track of what was used when, which is expensive if one wants to make sure the algorithm always discards

the least recently used item. LRU is tailored for environments where the data access patterns exclusively

target the most recent items in the system.

2.8.2 Most Recently Used

Most Recently Used (MRU) discards, in contrast to LRU, the most recently used items first. It is fit for

systems with random access patterns and repeated scans over large datasets (sometimes known as

cyclic access patterns). MRU algorithms are most useful in situations where the older an item is, the

more likely it is to be accessed.

2.8.3 Least Frequently Used

Least Frequently Used (LFU) discards, in contrast to LRU and MRU, the less frequently used items first.

LFU counts how often an item is requested and the ones used the least often are discarded first. LFU is

optimal for environments where there is an access pattern that targets more frequently the same set of

items.

2.8.4 Low Inter-reference Recency Set

Low Inter-reference Recency Set [27] (LIRS) is an improvement over LRU that makes eviction decisions

based on the reuse distance (the number of unique memory locations referenced between a memory

address’ use and reuse) and recency of pages. This allows a more precise evaluation on which items to

evict that only using recency as a reference.

15

2.9 Caching

Caching is a very general technique for improving computer system performance. Based on the prin-

ciple of locality of reference, it is used in a computer’s primary storage hierarchy, its operating system,

networks, databases and, of course, distributed systems. Caching improves access time and reduces

data traffic to data sources that have limited throughput. The work on [19] serves as reference for the

arguments presented in the rest of this section.

When data is requested and can be found in the cache (cache hit), this request can be served by

simply reading the cache. Otherwise (cache miss), the data has to be recomputed or fetched from its

original storage location, which takes more time. Such mechanism must ensure that accessing cached

data does not result in the violation of the application semantics, so a cache consistency maintenance

algorithm is required to ensure that there is no access to stale (i.e., out-of-date) data.

Many caching algorithms have been proposed in the literature and, as all provide the same function-

ality, performance is a primary concern in choosing among them. They can be divided into two classes

according to whether their approach to preventing stale data access is detection-based or avoidance-

based. The key difference between them is that detection-based schemes are lazy, requiring transac-

tions to check the validity of accessed data, while avoidance-based schemes are eager, as they ensure

that invalid data is quickly (and atomically) removed from client caches. Both schemes allow data prop-

agation (the newly updated value is installed at the remote site in place of the stale copy) or invalidation

(removal of the stale copy from the remote cache so that it will not be accessed by any subsequent

transactions).

There is no such algorithm that fits perfectly all the scenarios possible in these type of environments

because there are often complex trade-offs among competing factors such as the amount of generated

network traffic or the probability of transaction aborts. The avoidance/detection choice has seen to have

a large impact on the number of messages sent, where detection leads to more messages.

Several of the systems already mentioned use caching schemes to improve their performance like

Walter, Spanner (described in Section 2.10.7) and Infinispan (later described in Section 3.1), although

applied for different purposes. Walter and Spanner use in-memory caching for fast processing of remote

requests, while Infinispan uses it for enhancing data locality, which in some sense is interesting for the

work that I propose to do, however it cannot be applied to GMU due to their consistency models being

different.

2.9.1 Dynamic Load Management

Dynamic load management is a different strategy to enhance data locality. It differs from caching be-

cause the goal is not to store data for faster future use. Instead, the request execution or the data itself

is shifted from the current place to another place that should provide better performance.

The work on [30] applies this paradigm to Massively Multiplayer Online Games (MMOGs) where

servers usually employ static partitioning of their game world into distinct mini-worlds that are hosted on

separate servers. They have designed and implemented an architecture that handles transient crowding

16

by adaptively dispersing or aggregating regions from servers in response to quality of service violations,

such as the movement of many players to one area or hotspot in the game world.

Autoplacer [26] applies a similar idea to optimize data location aimed at systems that use consistent

hashing as the default data placement policy by executing, cyclically, a sequence of optimization rounds.

As a result of each round, a number of data items may be relocated depending if those data items pass

a set of rules to determine if the expected gains of moving them are above a minimum threshold.

Tashkent+ [18] is a work focused on a load balancing technique for a replicated database that ex-

ploits knowledge of the size and contents of the working set of transactions to assign them to other

nodes, focusing specifically on the ones were this transactions can be executed in-memory. This way

transactions are allocated to nodes where it is more profitable their execution.

2.10 Overview of existing transactional systems

In the following, I will describe in more detail specific instances that can be seen as representative of the

several building blocks described above.

2.10.1 Centralized DBMS

PostgreSQL 2, often simply Postgres, is an object-relational database management system (ORDBMS)

based on POSTGRES, Version 4.2, developed at the University of California at Berkeley Computer Sci-

ence Department 3. Postgres pioneered many concepts that only became available in some commercial

database systems much later. It supports a large part of the SQL standard and offers many modern

features such as complex queries, foreign keys, triggers, updatable views, transactional integrity, multi-

version concurrency control. Also, it can be extended by the user in many ways, for example by adding

new data types, functions, operators, aggregate functions, index methods, and procedural languages.

2.10.2 Fully replicated and certification based DBMS

The Data Base State Machine [35] (DBSM) approach leverages the idea that all replicas receive and

process the same set of inputs in exactly the same order by making the commit of a transaction a com-

mand to the replicated state-machine. More precisely, an update transaction is first executed locally at

one replica. When the transaction is ready to commit, its read set and write set are broadcast to all

replicas. Totally ordered broadcast is used, which means that all sites receive the same sequence of

requests in the same order. When the transaction information is delivered in total order, all replicas exe-

cute a global deterministic certification procedure. The purpose of the certification is to confirm that the

transaction commit respects the target database consistency criteria (typically, one-copy serializability).

If the transaction passes the certification test, its write-state is applied deterministically at each replica.

2http://www.postgresql.org/
3http://www.cs.berkeley.edu/

17

This approach was where a certification based algorithm (later described in Section 2.6.4) was used for

the first time.

2.10.3 Centralized STM

The Java Versioned STM [8] (JVSTM) is a word-based, multi-version STM that was specifically designed

to optimize the execution of read-only transactions: In the JVSTM, read-only transactions have very low

overheads, and never contend against any other transaction. In fact, once started, the completion of

read-only transactions is wait-free in the JVSTM. To achieve this result, JVSTM uses the concept of

Versioned Box (VBox) to represent transactional locations. Each VBox holds a history of values for a

transactional location, by maintaining a list of bodies (VBoxBody), each with a version of the data. The

access to VBoxes is always mediated by a transaction, which is created for that sole access if none is

active at that moment.

2.10.4 Fully replicated and certification based DSTM

The Distributed Dependable Software Transactional Memory [13] (D2STM) is another DSTM. It provides

a conventional STM interface that transparently ensures non-blocking and strong correctness guaran-

tees (i.e., one-copy serializability) even in the presence of failures. By using JVSTM, D2STM inherits

opacity and strong atomicity guarantees. It leverages a novel node synchronization scheme called

Bloom Filter Certification (BFC). This is a non-voting certification scheme that exploits a Bloom filter

based encoding of the transactions read-set, in order to reduce the overhead of the coordination phase.

However, the probabilistic nature of the Bloom filter encoding induces false positives in the certification

phase, increasing the transaction abort rate.

Speculative Certification [9] (SCert) is a fully replicated certification based replication protocol that

also exploits the optimistic deliveries made by an OAB service to propagate the write-sets of commit-

ted transactions, before their GSO is established. This scheme lowers the chances of accessing a

stale snapshot compared to schemes using the AB service, thus minimizing the abort rate of transac-

tions. It also features early conflict detection, thus reducing the amount of computation and/or waiting

time of transactions doomed to abort. However, (cascading) abort events are also a problem when a

misspeculation occurs. SCert inhibits the creation of new transactions while the transactional state is

being patched and it requires changes to already committed snapshots. This may lead to temporary

inconsistencies, as these changes may not be immediately visible to concurrent threads, and to a great

performance degradation, as well.

2.10.5 Fully replicated and state machine based DSTM

AGGRessively Optimistic [34] (AGGRO) is a state machine replication protocol that exploits the opti-

mistic deliveries made by an OAB service. The key idea underlying AGGRO is the propagation of the

write-sets of committing transactions to their following transactions, according to a serialization order

18

that is compliant with the message delivery order defined by the OAB service. When the optimistic se-

rialization order and the GSO are not equivalent, the system triggers a (cascading) abort event for all

the transactions that have directly or indirectly read from the write-set of an aborted transaction which

causes a great performance degradation.

2.10.6 Partial Replicated and Certification Based DSTM

Genuine Multiversion Update Serializability [38] (GMU) is a certification based and genuine partial repli-

cation protocol for transactional systems, which exploits a distributed multi-versioning scheme that relies

on a vector clock based synchronization mechanism to track both data and causal dependency relations

among transactions. It guarantees EUS (Section 2.3). Unlike previous multi-version based solutions,

GMU does not rely on a global logical clock, which represents a contention point and can limit system

scalability. Also, GMU never aborts read-only transactions and spares them from distributed validation

schemes, which is a major source of inefficiency on other systems. However, when scaling to a large

number of nodes, the overhead of the messages exchanged increases, because the size of the vector

clocks also increases. GMU is the focus of the work presented in this report and will be explained in

more detail in Section 3.2.

SCore [37] is another certification based and genuine partial replication protocol for transactional

systems. Like GMU, it leverages a multi-version concurrency control algorithm and never aborts read-

only transactions and spares them from distributed validation schemes. However, unlike GMU, SCore

uses a distributed logical-clock synchronization scheme that only requires the exchange of a scalar

clock value among the nodes involved in the handling of a transaction thus providing less overhead than

a vector clock based solution. Also, unlike GMU, SCore provides 1CS (Section 2.1).

2.10.7 Geo-Replicated Systems

Walter [46] is a partial geo-replicated and certification based DSTM that provides the PSI (Section 2.3.3)

consistency model. It introduces two novel mechanisms that are also used to implement PSI: preferred

sites and counting sets. Each object has a preferred site that corresponds to the datacenter closer to

the owner of that object. This enables transactions that are local to the preferred site to be committed

more efficiently using a Fast Commit protocol. This protocol allows for a transaction to commit at the

preferred site without contacting other sites. However, if the transaction is not local it must execute a Slow

Commit protocol. This protocol consists in a two-phase commit protocol between the preferred sites of

the objects being written. The counting sets are a new data type, similar to commutative replicated data

types , that allows to avoid write-write conflicts. Operations where counting sets are acceptable can be

quickly committed using the Fast Commit protocol, improving the throughput in those cases. However,

the fact that transactions are executed and committed by a central server at each site corresponds to a

bottleneck in performance. Moreover, if transactions are not local, then they must be committed by the

Slow Commit protocol, which can limit the throughput and scalability.

Google has recently introduced Spanner [12], a fully geo-replicated datastore. This system has

19

evolved from Bigtable [10] and has the purpose of covering the flaws of Megastore [2], which provides

low write performance over the wide-area. Spanner shards data across many nodes all over the world

in order to provide global availability and geographic locality to clients. The data shards are maintained

in many Paxos state machines that are responsible for guaranteeing the consistency of the data. This

system also provides linearizable transactions by using globally-meaningful commit timestamps that

guarantee the total order of operations. These timestamps are based on uncertainty bounds and are

assigned by a service called TrueTime, which makes use of GPS and atomic clocks as reference.

20

Chapter 3

The GMU protocol

In this chapter, I present an overview of the baseline protocol for the proposed caching mechanism,

GMU (Section 3.2), but without first introducing the distributed transactional platform behind it, Infinispan

(Section 3.1) and the model of the target system (Section 3.2).

3.1 Infinispan

Infinispan [31] by RedHat, is a highly scalable NoSQL data transactional platform that maintains data

entirely in-memory relying on replication as its primary mechanism to ensure fault-tolerance and data

durability. It exposes a key-value store data model and supports both partial and full data replication.

As other recent NoSQL platforms, Infinispan opts for weakening consistency in order to maximize

performance. It uses the classical 2PC algorithm to maintain data coherence and provides weak con-

sistency guarantees: Read Committed (RC) and Repeatable Read (RR) (Section 2.2.4). However, as

mentioned in the introduction of this work, the inherent complexity of building applications on top of

weakly consistent systems is a big limitation in this systems and this is one of the reasons I choose

GMU as the base protocol for the caching mechanism.

In Infinispan architecture, each one of its nodes is composed by the following components:

− Transaction Manager : this component is responsible for the execution of transactions, either local

or remote;

− Lock Manager : this component is responsible for managing the locks acquired by the transactions

and is also able to detect distributed deadlocks. If there is a distributed deadlock between two

transactions, one of them will be canceled;

− Replication Manager : this component is responsible for the maintenance of data coherence be-

tween nodes. It certifies transactions through the 2PC algorithm and the Transaction Manager;

− Persistent Storage: this component is responsible for guaranteeing that the storing and loading of

data in a persistent manner (in a disk or a DB, local or remote). If this component is active, it can

work on one of the following execution modes:

21

• Activation/Passivation: the data is stored persistently or in memory. When a item of that data

is needed, it is moved to the memory (and is deleted from the disk/DB). When it is needed no

more, that item is deleted from memory and stored again persistently;

• Load/Store: the data is stored in both memory and persistently. When a data item is needed,

a copy of that item is sent to memory.

− JGroups: the GCS of Infinispan that is responsible for the maintenance of group members infor-

mation (including fault detection) and for the support of the communication between nodes.

In the context of the Cloud-TM Project1, Infinispan has been extended with the GMU protocol,

which is described in detail in Section 3.3.

3.2 Model of the target system

I consider a classic asynchronous distributed system model composed of Π = {p1, . . . , pn} nodes.

Nodes communicate through message passing and do not have access to a shared memory nor a

global clock. Messages may experience arbitrarily long (but finite) delays and I assume no bound on

relative site speeds or clock skews. I consider the classic crash-stop failure model: sites may fail by

crashing, but do not behave maliciously. A site that never crashes is correct; otherwise it is faulty.

Each node pi stores a partial copy of data, for which I assume a simple key-value model. Each data

item d is a sequence of versions 〈k, val, ver〉, where k is a key representing d’s identifier, val is its value

and ver is a scalar, monotonically increasing logical timestamp that identifies (and totally orders) the

versions of a data item d. For the sake of brevity, I will use the notation v to denote the v-th version of

the value associated with key k.

I abstract over the data placement policy by assuming that data is subdivided across m partitions,

and that each partition is replicated across r nodes (in other words, r represents the replication degree

for each data item). I denote with Γ = {g1, . . . , gm} the set of groups of nodes gj that replicate the j-th

data partition. Each group is composed of exactly r nodes (to ensure the target replication degree),

of which at least one is assumed to be correct. In order to maximize flexibility of the data placement

strategy, I do not require groups to be disjoint (they can have nodes in common), and assume that a

node may participate to multiple groups, as long as
⋃

j=1...m gj = Π. I denote with groups(pi) the set of

groups to which pi belongs, and with proc(gj) the set of node that replicate data belonging to partition j.

I model transactions as a sequence of read and write operations on data items, preceded by a begin,

and followed by a commit or abort operation. Transactions originate on a node pi ∈ Π, and can read/write

data belonging to any partition. Also, I do not assume any a-priori knowledge on the set of data items

read or written by transactions. Given a data item d, I denote as owners(d) the set of nodes that maintain

a replica of d (namely the nodes of the group gj that replicate the data partition containing d).

1http://www.cloudtm.eu/

22

3.3 Overview of the GMU protocol

As classical multiversion concurrency control schemes, GMU maintains a chain of totally ordered com-

mitted versions for each data item on every node and the versions are associated to scalar version

numbers.

The order is determined by the version numbers that follow the order of commits on a given node

hence determining a relationship between a snapshot locally committed on a node pi and all the versions

written with that commit on pi. A snapshot committed on multiple nodes is globally identified by a

vector clock (with size equals to the cardinality of Π) that univocally determines the versions written in

that snapshot and keeps track of the dependencies with the other commits on the involved nodes. In

addition each node pi maintains (i) a scalar logical clock, i.e., LastPrepSC, used during the commit of a

transaction to assemble its commit vector clock and (ii) the history of the committed vector clocks on pi

stored in a list named CLog and ordered in accordance with the order of commits on pi.

During execution, a transaction T maintains (i) a reading vector clock, i.e. T.V C, used as a visibility

reference during read operations, that keeps track of the causal and data dependencies created by T

during its execution and (ii) a vector of boolean values, i.e. T.hasRead, that maintains at the i-th entry

the information on whether the current transaction has read on the node pi or not.

Read operations require the determination of which version among the versions maintained by the

data platform should be visible to the transaction. In general, GMU determines which version of a item

should be returned upon the execution of a read operation on node pi by transaction T according to the

following rules:

• Rule 1 - Reading Lower Bound : as data is replicated among multiple nodes, it is possible that

node N may have not yet finalized the commit of a transaction T∗ whose effects have been already

observed by transaction T (during a previous operation) on another node. In order to avoid con-

sistency issues, because the vector clock limiting the visibility range cannot precede causally the

current T.V C reading vector clock, T is blocked until the N-th entry of T ’s vector clock is larger

than the i-th entry of the most recent vector clock in the cLog of pi;

• Rule 2 - Reading Upper Bound : in order to maximize data freshness, if transaction T is reading

for the first time on node pi, the vector clock of T is updated in its i-th entry with the i-th entry

of the vector clock retrieved from the read. However, during subsequent read operations the i-th

entry of the vector clock of T cannot be advanced anymore, meaning that GMU establishes an

upper bound on the freshness of the snapshot that can be observed by T , that avoids the reading

of versions created by transactions serialized after T ;

• Rule 3 - Data Version Selection: as in a classic, non-distributed multi-version concurrency control

schemes [5], whenever there are multiple entries of some data item, the entry selected will be the

most recent one that has a vector clock smaller or equal than the vector clock of T .

Figure 3.5. and 3.6. depict two different scenarios where the reading rules are applied. Starting

with the scenario in Figure 3.5., it represents a system with three nodes where Node 1 and Node 2

23

Node 0 Node 1
(stores X)

Node 2
(stores Y)

X(2)

X(2)T1:R(X)

(1,1,1)

(1,2,2)

(1,1,1)

Y(2)
(1,2,2)

T0:W(X,v)

T0:W(Y,w)

(1,1,1)

T1:R(Y)
Y(2)

(1,2,2)

Most recent VC in CLog

T1.VC

T0:Commit

Commit

(1,2,2)T1.VC

X(1) Y(1)

blocked

Figure 3.1: Read Operations in GMU: Application of the Reading Rules
.

store items X and Y, respectively. All the nodes have the most recent vector clock in their cLog equal

to (1,1,1), when transaction T0 starts its execution on Node 1 with T:VC (1,1,1) and commits with T.VC

equal to (1,2,2), creating a new version of both X and Y. The logic behind the execution of the commit

phase of a transaction will be explained in detail later, because in this case I just want to show the use

of the reading rules. After the commit of T0 in Node 1, T1 starts its execution on Node 0 where its first

operation is to read X from Node 1. Applying Rule 2, after reading X(2) from Node 1, T.VC will become

(1,2,2). More in detail, on the first read operation on Node 1, the T.V C and the T.hasRead vectors are

used to determine in the cLog the freshest committed vector clock MaxV C whose associated snapshot

can be still readable by T in accordance with its past history and without incurring in a violation of the

correctness criteria. This property guarantees that read-only transactions are always correctly serialized

within histories of committed update transactions, without the need for incurring in expensive distributed

validations or aborts (thanks to the multi-version scheme, read-only transactions are allowed to observe

previously committed versions of data). Going back to the scenario, after the reading of X(2) by T1 there

is a read for Y that belongs to Node 2. However, because the commit of T0 takes longer in Node 2 than

in Node 1, the new version of Y is not visible yet for T1. Applying Rule 1, T1 waits for the commit of T0

on Node 2 and only after that returns the new version of Y, Y(2). In both reads Rule 3 is also applied

because X and Y are the most recent versions in both nodes and are visible for T0.

Figure 3.6. shows a different application of the rules. In this case the configuration is similar to the

one in Scenario 1, however T0 starts in Node 0 with T.VC equal to (1,1,1) and wants to read X. Applying

Rule 2, when reading X, T.VC will stay the same because the retrieved version, X(1), is the most recent

version of X in Node 1 and the most recent vector clock in the cLog is (1,1,1). After the reading of X, T0

24

Node 0 Node 1
(stores X)

Node 2
(stores Y)

X(3)

Y(2)

X(1)T0:R(X)

(1,1,1)

(1,3,3)

(1,1,1)

Y(3)

(1,3,3)

T2:W(X,v)

T2:W(Y,w)

X(1)

(1,1,1)

T0:R(Y) Y(2)

(1,1,1)

Most recent VC in CLog

T0.VC

T2:Commit
Commit

(1,1,2)T0.VC

(1,1,2)

Y(1)

T1:W(Y,w)

T1:Commit

Figure 3.2: Read Operations in GMU: Application of the Reading Rules 2
.

will read Y, however, in the meanwhile, T2 starts its execution and commits new version of X and Y, X(3)

and Y(3), respectively. The most recent vector clock in the cLog of Node 1 and 2 becomes (1,3,3). When

T0 reads Y, the retrieved version is Y(2) and not Y(3) because applying Rule 3, the most recent version

of Y for T according to its vector clock is Y(2). Regarding Rule 1, because there are no dependencies

between transactions, there is no need to block them until the dependencies are solved.

Moving on to the write operations, when an update transaction T executes, it only stores the identifier

and the version to be written in its write-set. However, when T commits, it is assigned a commit vector

clock commitV C that is the outcome of a genuine consensus phase executed by only the nodes that

replicate items read or to be written by T , i.e. the participants. commitV C represents the identifier

of the new snapshot created by T and defines a serialization order of T among the committed update

transactions that conflict with T . The consensus is reached by means of a Two-Phase Commit run in

which the coordinator, i.e. the node that executes T , computes the commitV C combining the proposals

sent by the participants upon the reception of a prepare message from the coordinator. Then it sends

the commitV C to all the participants via a commit message. Each participant computes its proposal by

combining the information in its CLog and LastPrepSC, but only after having (i) acquired shared locks

on T ’s read-set and exclusive locks on T ’s write-set and (ii) validated T ’s read-set; afterwards upon

the T.commitV C is received, T is inserted in a queue that contains pending transactions waiting for

the commit and ordered according to their commitV C. The actual commit of a transaction is executed

according to the order defined in the queue and entails (i) adding the associated commitV C in the CLog

and (ii) writing a new version for each key in the write-set by associating a version number derived from

commitV C. When the validation of T fails, T is aborted. Also, since update transactions need to read

25

the most recent version of the data items, when this does not happen, the transaction is early aborted,

i.e., aborted on the execution phase.

26

Chapter 4

Caching in GMU protocol

In this chapter, I introduce the proposed caching mechanism (Section 3.1) by explaining in detail the

design choices made and by providing some examples on why those choices were necessary.

4.1 The caching protocol

There are two main problems that need to be addressed while designing a caching mechanism:

• it is necessary to ensure that accessing cached data does not result in the violation of the correct-

ness properties;

• it is important that the employment of the caching algorithm does not have a negative impact on

the freshness of the data observed by transactions, or it may end up hindering performance, rather

than improving it.

In the following, I discuss how I plan to solve this problems specifically for GMU by presenting:

• a cache consistency algorithm, that allows to determine whether a transaction can safely read

a cached version of data, i.e. without compromising the consistency criterion provided by GMU

(namely Extended Update Serializability [1], see Section 2.2.3);

• an invalidation scheme that can use different dissemination techniques aimed at maximizing the

freshness of the data maintained in cache and, hence, at enhancing the profitability of the caching

mechanism.

I also provide a discussion on why reading from the caching mechanism is similar to reading in a

remote node (Section 4.2.2).

4.1.1 Ensuring data consistency

To ensure that data is safely read, the cached data is maintained, analogously to non cached data

in GMU, in a multi-version data container. However, unlike the non cached data container, each data

27

210 5 7 9

29 12 4 13

10 12 7 13

VC 1

Merged VC

VC 2

2

Figure 4.1: Merging and maximizing two VCs: A simple example
.

item d, is a sequence of versions 〈k, val, creationV C, validityV C〉, where k and val identify exactly the

same as before and creationV C is the vector clock of the transaction that originated this version, and

validityV C is a vector clock that represents up to when this version is valid.

As it will be discussed in the following, by using these two pieces of information, it is possible to

implement the same set of rules determining version visibility as in GMU without compromising consis-

tency.

The pseudo code describing the behavior of a read from the cached data container is reported in

Algorithm 1. When a transaction T needs to read a data item d that is not local, with the introduction

of the caching mechanism, now T first searches the cached data container for d and if d is not found,

than T issues a remote request for it. Specifically, when searching the cached data container, first (line

4) T checks if d exists. If it exists, then to use d it needs to make sure that d has a version v that

was created before T . This is simple done by checking the creationV C of v and the vector clock of

T and if T has already read from some node in the system (line 5). If T has not read from any node

(this is the first read of T), T can read v (lines 7-9). If not, it is necessary to compare the entries in

creationV C where T has already read from with T’s vector clock on the same entries (lines 11-12). In

case this check fails, an older version will be checked, in case there are older versions (lines 13-14),

because versions are ordered by their creationV C. When v is found, additional checks are performed

to determine whether it is safe for T to read v. First, T gets the entry of the owner of v, lets say j, in

the validityV C and compares it to T ’s vector clock in the j-th position (line 8). If this check succeeds, it

means that v is valid for T and can read by it, but T still needs to compare the entries in the validityV C

from where T has already read from with T ’s vector clock in the same entries (lines 27-31). This check

is done to make sure that the reading Rule 2 of GMU (described in Section 3.3.) is not violated, i.e.,

to avoid that T observes a too fresh snapshot and violates consistency. If it succeeds, the merged and

28

Algorithm 1: Read operations on local node
1 [Key, V er, V C] getValidVersion(Key k, V C T.V C, bool[] hasRead)

2 V ersions vers← getVersions(k);
3 if vers 6= null then
4 V er v ← findVisibleVersion(vers, T.V C, hasRead);
5 if v 6= null then
6 V C validityV C ← v.validityV C;
7 if validityV C[j] ≥ T.V C[j] then // pj = owner(k)
8 V C updatedV C;
9 if checkMaxVCCondition(validityV C, T.V C, hasRead) then

10 updatedV C ← mergeAndMax(validityV C, T.V C);

11 else
12 updatedV C ← mergeAndMax(v.creationV C, T.V C);

13 return [key, v, updatedV C];

14 return null;

15 V er findVisibleVersion(V ersions vers, V C T.V C, bool[] hasRead)

16 V er v ← vers.mostRecent;
17 if 6 ∃j: hasRead[j] = true then
18 return v;

19 while v 6= null do
20 if ∀j: hasRead[j] = true ∧ v.creationV C[j] ≤ T.V C[j] then
21 return v;
22 else
23 v ← v.prev;

24 return null ;

25 bool checkMaxVCCondition(V C validityV C, V C T.V C, bool[] hasRead)

26 if 6 ∃j: hasRead[j] = true then
27 return true;

28 if ∃j: validityV C[j] > T.V C[j] ∧ hasRead[j] = true then
29 return false;

30 return true;

31 V C mergeAndMax(V C vc1, V C vc2)

32 V C mergedV C ← V C.newV C;
33 for i = 0 to vc1.size do
34 if vc1[i] > vc2[i] then
35 mergedV C[i]← vc1[i];

36 else
37 mergedV C[i]← vc2[i];

38 return mergedV C;

29

maximized vector clock (lines 31-38 and depicted in Figure 4.7.) between the validityV C and T’s vector

clock becomes the new T ’s vector clock. If not, the new T ’s vector clock is the merged and maximized

vector clock between the creationV C and T ’s vector clock. Going back to line 8, if the check fails, v is

considered too old because it may exist a new version on the remote node that it is not known yet in the

current node. When some of the checks do not succeed (lines 4, 6, 8), a cache miss is forced and the

remote request for d is executed.

Algorithm 2: Read operations on remote node (node pj)

1 on receive READREQ[Key k, V C T.V C, bool[] T.hasRead] from pi

2 [V er readV, V er nextV, V C updatedXactV C, bool last]← GMURead(k, T.V C, T.hasRead);
3 V C creationV C ← getCreationVC(readV);
4 V C validityV C]← getValidityVC(readV , nextV);
5 send [readV, updatedXactV C, validityV C, creationV C, last] to pi

6 V C getValidityVC(V er readV , V er nextV)

7 if nextV = null then
8 return CLog.mostRecentV C;

9 else
10 foreach vc ∈ CLog do
11 if vc[j] < nextV.value then
12 return vc;

13 return null ;

14 V C getCreationVC(V er readV)

15 foreach vc ∈ CLog do
16 if vc[j] = readV.value then
17 return vc;

18 return null ;

Algorithm 2 describes the remote operations introduced with the caching mechanism to retrieve the

creationV C and validityV C from a remote node. As already explained, when a node pi needs a data

item d owned by node pj , it issues a remote request to pj . In addition to the normal execution of this

remote request (line 2), it also always gathers the creationV C and valitityV C of the version v returned

by the remote node(lines 3-4).

Since v is known, getting v’s creationV C is simply done by searching in the cLog for the transaction

that created v (lines 15-18).The validityV C is calculated by using either i) the most recent entry in CLog,

if the v is the freshest one (lines 7-8), or ii) the vector clock that identifies the snapshot existing on pj

before the commit of the transaction that overwrote v (lines 9-12).

4.1.2 Why the algorithm is necessary?

In this section, I will describe two scenarios (depicted in Figure 4.8 and 4.9) that will help understand

why reading from the cache using the cache consistency algorithm presented above does not lead to a

violation of the Reading Rules of the GMU protocol (see Section 3.3). Starting by Figure 4.8, it shows an

30

Node 0 Node 1
(stores X and Y)

(0,0)

(0,2)

Most recent VC in CLog

X(1)
Y(1)

X(1) cached
CVC=(0,1)
VVC=(0,1)

Y(2) cached
CVC=(0,2)
VVC=(0,2)

T0:R(X)

T0:R(Y)

X read from cache

Y cache miss
T0.VC[1] < CVC[1]

 1 < 2

(0,1)T0.VC

Y(1)

Y(2)

T0:Commit
(0,1)T0.VC

Figure 4.2: The caching mechanism: A cache miss example
.

execution example where line 4 and subsequently line 5 of Algorithm 1 are needed to maintain reading

consistency. In this scenario, there are two nodes, Node 0 and Node 1, where items X and Y belong

to Node 1 and were previously written by some transactions that created versions X(1), Y(1) and Y(2),

but are not important for the goal of this demonstration. Version X(1) is stored in the cache of Node 0

with creationV C equal to (0,1) and validityV C equal to (0,1) and Y(2) with creationV C equal to (0,2)

and validityV C equal to (0,2). Note that Y(1) is not cached. The most recent vector clock in the cLog

of Node 0 is equal to (0,0) and in Node 1 is equal to (0,2). T0 starts its execution in Node 0 with T.VC

equal to (0,0), by reading X. Since X(1) is in the cache, T0 will try to read it and, algorithm aside, it can

and would not cause an inconsistency, because looking at Node 1 there is only X(1) there. After that,

T0 reads Y and because there is Y(2) in cache, T0 will try to read it too. However,if T0 was allowed

to observe Y(2) from the cache, this would cause the violation of Rules 2 and 3 because Y(2) was

serialized after T0 and is not the most recent version visible by T0. By applying lines 4-5, T0 will force a

cache miss and retrieve Y(1) from Node 1.

Figure 4.9 shows an execution example where line 7 of Algorithm 1 is also needed to maintain

reading consistency. In this scenario, there are also two nodes, Node 0 and 1, however item X belongs

to Node 0 and item Y to Node 1. Also, they were previously written by some transaction that created

versions X(1) and Y(1). Y(1) is cache in Node 0 with creationV C equal to (1,1) and validityV C equal

to (1,1). The most recent vector clock in the cLog of Node 0 and Node 1 is equal (1,1). T0 starts its

execution in Node 1 and commits two new versions of X and Y, X(2) and Y(2), respectively, making the

most recent recent vector in the cLog of both nodes equal to (2,2). The most recent vector clock in the

cLog of Node 0 is (0,0) and in Node 1 is (0,2). T1 starts its execution on Node 0 with T.VC equal to (2,2)

31

Node 0
(stores X)

Node 1
(stores Y)

(1,1) (1,1)

Most recent VC in CLog

Y(1)

Y(1) cached
CVC=(1,1)
VVC=(1,1)

T1:R(Y)

Y cache miss
T0.VC[1] < VVC[1]

 1 < 2

Y(2)

T1:Commit

(2,2)T1.VC

X(1)

T0:W(X,v)

T0:W(Y,w)

T0:Commit

X(2) Y(2)
Commit

(2,2) (2,2)

Figure 4.3: The caching mechanism: A cache miss example 2
.

by reading Y. If T1 was allowed to access the Y(1) in cache it would cause the violation of Rule 1 and

3 because T0 was serialized after Y(1) and Y(1) is not the most recent version that is visible by T0. By

applying line 7, T1 will force a cache miss and retrieve Y(2) from Node 1. In lines 8-13, Rule 2 is also

enforced.

4.1.3 Maximizing data freshness

The employment of the caching algorithm should also not have a negative impact on the freshness of

the data observed by transactions, or it may end up hindering performance, rather than improving it.

Using just the algorithm I described so far is not enough to achieve this goal. Going back to the scenario

depicted in Figure 4.9., because of the commit of transaction T0 that touches both nodes, the version of

Y that is in cache in Node 0 is no longer visible when T1 starts. Now imagine that instead of having just

Y, Node 0 had 50000 data items that belong to Node 1 with the same validityV C as Y. This would mean

that all those 50000 data items would be no longer visible after the increase of the vector clock attributed

to transactions upon their start (as a consequence of the commit of T0) and the only way to make them

visible again would be doing remote requests to all of them. This is a big problem in systems with a very

large number of data items and with a lot of transactions that touch more than one node, because the

caching mechanism would not be exploited effectively. Worse, the performance of the system would be

even worse than in a system not using caching, because now it also incur in overheads for checking and

enforcing the validity of cached data.

To solve this problem, I designed an additional protocol that allows the caches of each node to

32

invalidate versions that were overwritten and advance the validityV Cs of all the other ones, making

them the freshest possible. Note that the term invalidation does not mean the removal of those versions.

In this case, my goal is to make those versions maintain the same validityV C while advancing the

others.

Algorithm 3: Invalidation operations on sender node(node pi)
1 [long, Set, V C] getInvalidationSet(ID j)

2 V C mostRecentV C ← CLog.mostRecentV C;
3 long lastSentV alue← CLog.lastSentV alues[j];
4 long mostRecentV alue← mostRecentV C[i];
5 Set iSet← ∅;
6 if mostRecentV alue > lastSentV alue then
7 if compareAndSet(CLog.lastSentV alues[j], lastSentV alue, mostRecentV alue) then
8 foreach vc ∈ CLog do
9 if vc[i] > lastSentV alue then

10 foreach w ∈ vc.keysCommitted do
11 if isPrimaryOwner(i, w) then
12 iSet.add(w);

13 return [lastSentV alue, iSet, mostRecentV C];

14 return null ;

Algorithm 3 describes how this is done. The idea is to gather what I named an invalidation set (iSet),

i.e., a set of keys to invalidate (lines 8-12) and the most recent vector clock on the cLog (line 2). But

because the cLog is constantly changing we do not need to gather all the keys there, just the ones from

the most recent entry up to the last ones that were gathered before (line 9). Furthermore, there are two

situations in which it is possible to try to gather the iSet but it returns nothing. First (line 6), it can happen

that there is nothing to gather. On the other hand, if there is, when more than one thread tries to gather

an iSet, only one thread will get it (line 7), because there is no need to have duplicate iSets.

Having the scheme to invalidate keys is not enough because this information needs to be sent to

the other nodes. I implemented three different dissemination strategies, named and described in the

following:

• EAGER: an iSet is disseminated everytime a transaction is committed at some node to all the other

nodes even if the node has no keys belonging to the sender node;

• BATCH: an iSet is disseminated at a fixed time based rate to all the other nodes even if a node

has no keys belonging to the sender node;

• LAZY: an iSet is only disseminated when a node receives a remote request from other node. The

iSet is then piggybacked in the remote request response.

I evaluate the effectiveness of those strategies in Chapter 5.

Other important important aspect to consider when using the invalidation mechanism is its efficiency.

As already mentioned, these systems usually stored a large number of keys, so, when a node receives

an iSet to process, invalidating the keys present in the iSet should be a fast process because the amount

33

Algorithm 4: Invalidation operations on receiver node(node pj)

1 void invalidateKeys(ID i, Set iSet, V C mostRecentV C)

2 foreach invalidKey ∈ iSet do
3 V ersions vers← getVersions(invalidKey);
4 if vers 6= null then
5 V er v ← vers.mostRecent;
6 if v.validity.isShared() then
7 v.validity ← [v.validity.V C, false];

8 V alidity mostRecentV alidity ← mostRecentV alidities.get(i);
9 if mostRecentV alidity 6= null then

10 V alidity validity ← [mostRecentV C, true];
11 mostRecentV alidities.put(i,validity);

12 else
13 mostRecentV alidity.V C ← mostRecentV C;

of keys is small in most cases. However, because there is a need to advance the validityV Cs of all the

other keys belonging to that node, updating each key by itself will be a major source of inefficiency.

To solve this problem, I developed a scheme that groups keys that belong to some node with a com-

mon shared validityV C. Specifically, I added a new data structure called V alidity that contains the

validityV C and a flag shared to better control the linking and unlinking of VCs. Each node will stored

a number of shared validity values equal to all the other nodes in the system. Because all the nodes

are primary owners of a disjoint set of keys, it is possible to link those keys to the valitity value of each

node. The linking and unlinking process is done in the invalidation mechanism but also when storing

a new item in the cache to make sure that older versions do not remain linked to their shared validity

value.

Algorithm 4 shows how the invalidation process works. First, the most recent version (line 5) of each

key that is present in the iSet (line 2) and on the cache (3-4) is invalidated if it has a shared validity

value (lines 6-7). Then the shared validity value is created if it does not exist (lines 8-11), otherwise

its validityV C is advanced (lines 12-13). In in this case, there is only the need to update the shared

validity value and all the keys linked to it are automatically updated.

4.1.4 Freshness of the initial transaction vector clock

In normal GMU, when a transaction starts on a node its first vector clock is the most recent one in cLog.

However, because I introduced the caching mechanism with the invalidation scheme, each node has

now a global vision on what are the most recent committed vector clocks in all the other nodes because

of the validity values. This means that using those values, transactions can start with fresher vector

clock than the most recent one in the local cLog. For read-only transactions this only matters if freshness

is an important requisite of the system, because they can be, thanks to multi-versioning, serialized in

the past. However, update transactions are forced to read the most recent version of the data items they

will update, or they will abort. There is a critical situation that can happen when caching a version that

is not the most recent one. Imagine a scenario where some update transaction T originated on Node N

34

with the most recent vector clock in cLog equal to mrv, reads for the first time item X that has a cached

version X(1) that when was retrieved was not the most recent one,i.e., X(2) already existed but was not

visible by the transaction. Assuming that X(1) is visible by T , T will early abort because thats the rule

in GMU (Section 3.2). In a workload were aborted transactions are repeated until they succeed, this

situation will lead to an spiral of aborts and will not let the workload resume its normal execution mainly

because the initial transaction vector clock will always be mrv until some other transaction commits on

N and changes it. However, if instead of using mrv, T uses a vector clock equal to gmrv, that is the

freshest global vector clock calculated using the validity values, this situation does not happen, because

X(2) will now be visible by T .

Algorithm 5: Transaction initialization on local node(node pi)
1 void initLocalTransaction(LocalTransaction tx)

2 V C gmrv ← computeGlobalMostRecentVC();
3 V C mrv ← CLog.mostRecentV C;
4 if gmrv = null then
5 tx.V C ← mrv;

6 else
7 tx.V C ← mergeAndMax(mrv, gmrv);

8 V C computeGlobalMostRecentVC()

9 V C gmrv ← V C.newV C;
10 foreach validity ∈ mostRecentV alidities do
11 gmrv ← mergeAndMax(gmrv,validity.V C);

12 return gmrv;

Algorithm 5 exploits precisely this idea. Instead of starting the transaction vector clock with mrv, that

probably did not see most of the commits on other nodes, thus being less fresh in a global sense, it

is easy to used all those validity values gathered by the invalidation scheme and merge and maximize

them to gmrv. If gmrv is not present (line 4-5), because the node has not received invalidation messages

from the other nodes, the transaction starts exactly like it did before. If it is (lines 6-7), the new transaction

will get the vector clock created by the merge and maximize of mrv with gmrv.

35

36

Chapter 5

Evaluation

In this chapter, I provide an experimental study of the proposed caching mechanism for GMU that,

as mentioned before, was integrated into Infinispan, a mainstream in-memory distributed transactional

platform developed by Red Hat. First, I present the goals of this study (Section 5.1). After that, I

overview the environments were the experimental study was conducted (Section 5.2) and the workload

configurations used (Section 5.3). Then, I present each benchmark by describing their main properties

and the results obtained (Sections 5.4, 5.5, 5.6). At last, I wrap up this section by providing a discussion

of the pros and cons of the caching mechanism using different invalidation strategies (Section 5.7).

5.1 Goal

With this experimental study I aim to answer the following questions:

• How much can the caching protocol enhance GMU scalability in different scenarios?

• How much impact it has on the abort rate?

• How high is the cache hit percentage in different scenarios?

• How much overhead does the caching protocol introduce?

5.2 Environments

In the following, I provide a description of the environments where this experimental study was con-

ducted.

5.2.1 CloudTM

CloudTM is an OpenStack-based cloud computing infrastructure, deployed in a dedicated cluster. Each

machine is equipped with two 2.13 GHz Quad-Core Intel(R) Xeon(R) E5506 processors, 40 GB of RAM

and interconnected via a private Gigabit Ethernet. The VMs instantiated via OpenStack were allocated

37

1 physical core plus 4GB Ram and the virtualization took advantage of the hardware support provided

by the Intel(R) processors.

5.2.2 FutureGrid

FutureGrid 1 is a public distributed test-bed for parallel and cloud computing. This platform allows us to

an evaluation in environments representative of public cloud infrastructures, which are typically charac-

terized by more competitive resource sharing, ample usage of virtualization technology, and relatively

less powerful nodes. In the FutureGrid platform it was performed experiments using 16 to 80 virtual

machines, equipped with 4GB RAM, one 2.93GHz core Intel Xeon CPU X5570, running CentOS 5.5

x86 64. All the VMs were deployed in the same physical data-center and interconnected via InfiniBand,

a switched fabric computer network communications link used in high-performance computing and en-

terprise data centers.

5.3 Configuration

For all the benchmarks runned I used two workloads:

• Workload A - a read-only dominated workload with 90% read-only and 10% update transactions.

This workload will help me see how the caching mechanism performs in environments very similar

to the ones in a large number of real world applications that exhibit read-dominated workloads [40];

• Workload B - a mixed workload with 50% read-only and 50% update transactions. This workload

will help me evaluate the impact of an increase on the number of updates in the system.

Also, I configured the default broadcast rate of the BATCH strategy to 50 ms for all the bench-

marks. Regarding the results, I compare the three invalidation strategies described in Section 4.3. with

the normal execution of GMU, i.e., a execution without any caching mechanism. I consider three key

performance indicators (KPIs) in the experimental study: throughput, cache hit percentange and total

bandwidth consumed in the system.

5.4 TPCC Benchmark

5.4.1 Description

TPCC benchmark is a well-known On-Line Transaction Processing (OLTP) benchmark that portraits the

activities of a whole-sale supplier that operates out of a number of warehouses and their associated

sales districts. It is designed to scale just as the Company expands and new warehouses are created.

The TPCC version used in this experimental study was adapted to run on top of transactional key-value

stores (and used, in previous works to evaluate the performance of strongly consistent partial replication

1www.futuregrid.com

38

 0

 50

 100

 150

 200

 250

 300

 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 10 15 20 25 30 35 40

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0

 2000

 4000

 6000

 8000

 10000

 10 15 20 25 30 35 40

B
an

dw
id

th
(M

b)

Number of nodes

EAGER
LAZY
NoCache
BATCH

Figure 5.1: TPCC results obtained in FutureGrid for Workload A. Top to Bottom: Throughput, Cache Hit
Percentage, Total Bandwidth

.

39

 0

 50

 100

 150

 200

 250

 300

 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0

 2000

 4000

 6000

 8000

 10000

 10 15 20 25 30 35 40

B
an

dw
id

th
(M

b)

Number of nodes

EAGER
LAZY
NoCache
BATCH

Figure 5.2: TPCC results obtained in FutureGrid for Workload B. Top to Bottom: Throughput, Cache Hit
Percentage, Total Bandwidth

.

40

 0

 50

 100

 150

 200

 250

 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10 15 20 25 30 35 40

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0

 1000

 2000

 3000

 4000

 5000

 10 15 20 25 30 35 40

B
an

dw
id

th
(M

b)

Number of nodes

EAGER
LAZY
NoCache
BATCH

Figure 5.3: TPCC results obtained in CloudTM for Workload A. Top to Bottom: Throughput, Cache Hit
Percentage, Total Bandwidth

.

41

 0

 50

 100

 150

 200

 250

 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0

 1000

 2000

 3000

 4000

 5000

 10 15 20 25 30 35 40

B
an

dw
id

th
(M

b)

Number of nodes

EAGER
LAZY
NoCache
BATCH

Figure 5.4: TPCC results obtained in CloudTM for Workload B. Top to Bottom: Throughput, Cache Hit
Percentage, Total Bandwidth

.

42

protocols) and was configured to simulate an environment where each node corresponds to a ware-

house and clients access the local warehouse with probability 75% and the neighbor warehouse with

probability 25%. In other words, every transaction originated in a node accesses with probability 75%

data local to that node and with 25% probability data remotely on the neighbor node. There are three

distinct operations that can be done in this version of TPCC: OrderStatus, Payment and NewOrder. For

Workload A I configured this three parameters with 90% OrderStatus, 5% Payment and 5% newOrder

and for Workload B, 50%, 25% and 25%, respectively. Regarding the size of transactions, read-only

transactions are very big so it is expected that the throughput will not be very high. Update transactions

are relatively smaller than read-only transactions, however they are the biggest of all the benchmarks.

5.4.2 Results

Analyzing the results obtained in this benchmark, depicted in Figures 5.9., 5.10., 5.11. 5.12., it is clearly

visible, in the throughput plots and in Table 1 (shows the best speedups and which strategy achieved

them) in TPCC, that the EAGER strategy outperforms all the others. Looking at the cache hit percentage

plots it is also clearly visible why, it has over 99% cache hits. BATCH is the second better strategy, also

with over 99% cache hits but with slightly less throughput than EAGER. The LAZY strategy performs

relatively well for the first set of nodes in all throughput plots however it does not scale. Looking at the

cache hit percentage plot, it is also clearly visible why, the cache hits drops significantly when the size

of the system grows. This happens because update transactions in TPCC invalidate a big number of

keys and since LAZY is always waiting for a cache miss to apply the invalidation scheme, the probability

of having cache miss is bigger when the number of keys invalidated is bigger. Also, the overhead

introduced by the caching mechanism on the remote node can explain the drop on performance since the

the construction and transmission of the invalidation messages lies on the critical path of transactions’

execution. Regarding the total amount of bandwidth consumed by all the strategies, LAZY is where

less bandwidth is consumed while EAGER and BATCHING have similar results. As expected NoCache

consumes the most amount of bandwidth since it has to do remote requests whenever some data item

is remote. Comparing the results on CloudTM and FG, as expected in CloudTM they are better in terms

of speedup since caching provides higher throughput compared with no caching because the network is

much more slower in CloudTM than in FutureGrid. However, even in FutureGrid the caching mechanism

shows very decent speedups.

Regarding the abort rate, that was not presented in the plots because it was very low, it shows an

increase of 2% in the LAZY strategy when using Workload B, which is expected for this strategy. The

other strategies show similar abort rate (less than 4%).

8 16 24 32 40
Workload A - CloudTM 14.3 11.5 9.5 8.5 7.8
Workload B - CloudTM 7.3 5.9 4.6 4.3 4.1
Workload A - FutureGrid 6.2 4.7 4.1 3.9 3.4
Workload B - FutureGrid 3.4 2.5 2.4 2.2 1.8

Table 5.1: Best speedups in TPCC. Red: EAGER, Blue: BATCH, Green: LAZY

43

 0

 100

 200

 300

 400

 500

 600

 700

 800

 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 30 40 50 60 70 80

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0

 2000

 4000

 6000

 8000

 10000

 20 30 40 50 60 70 80

B
an

dw
id

th
(M

b)

Number of nodes

EAGER
LAZY
NoCache
BATCH

Figure 5.5: Vacation results obtained in CloudTM for Workload A. Top to Bottom: Throughput, Cache
Hit Percentage, Total Bandwidth

.

44

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 30 40 50 60 70 80

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0

 2000

 4000

 6000

 8000

 10000

 20 30 40 50 60 70 80

B
an

dw
id

th
(M

b)

Number of nodes

EAGER
LAZY
NoCache
BATCH

Figure 5.6: Vacation results obtained in CloudTM for Workload B. Top to Bottom: Throughput, Cache Hit
Percentage, Total Bandwidth

.

45

 0

 200

 400

 600

 800

 1000

 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 30 40 50 60 70 80

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0

 2000

 4000

 6000

 8000

 10000

 12000

 20 30 40 50 60 70 80

B
an

dw
id

th
(M

b)

Number of nodes

EAGER
LAZY
NoCache
BATCH

Figure 5.7: Vacation results obtained in FutureGrid for Workload A. Top to Bottom: Throughput, Cache
Hit Percentage, Total Bandwidth

.

46

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 30 40 50 60 70 80

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0

 2000

 4000

 6000

 8000

 10000

 12000

 20 30 40 50 60 70 80

B
an

dw
id

th
(M

b)

Number of nodes

EAGER
LAZY
NoCache
BATCH

Figure 5.8: Vacation results obtained in FutureGrid for Workload B. Top to Bottom: Throughput, Cache
Hit Percentage, Total Bandwidth

.

47

5.5 Vacation Benchmark

5.5.1 Description

Vacation is a well known benchmark from the STAMP [32]. It simulates an on-line travel agency in which

several types of resources can be manipulated by customers or by the agency. There are three distinct

types of sessions: reservations, cancellations, and updates. Like TPCC, I used a port of this benchmark

for distributed key-value stores that is also designed to scale as the number of agencies grows. However,

unlike the ported version of TPCC, the information of an agency is randomly placed in all nodes of

the system using the default data placement scheme of Infinispan based on consistent hashing. The

benchmark was configured to generate very little data contention, as the purpose of the experimental

study is to analyze the effects of data locality on performance and scalability. Hence, by minimizing the

likelihood of data contention, it is possible to evaluate more accurately the benefits achievable thanks to

the usage of the caching mechanism proposed in this work. Furthermore, Workload A was configured

using the parameter reservation, where a reservation can be an read-only transaction with probability

90% and an update transaction with probability 10%, while in Workload B the probabilities are 50%

and 50%, respectively. The other parameters were configured to not be used. Regarding the size

of transactions, both read-only and update transactions can be considered medium size comparing to

TPCC.

5.5.2 Results

Analyzing the results obtained in this benchmark, depicted in Figures 5.13., 5.14., 5.15. 5.16., it is visible

in the throughput plots and in Table 2, that the EAGER strategy outperforms all the others in CloudTM

however, the margin is very small compared with the one in TPCC. Looking at the cache hit percentage

plots is also visible why, it has over 96% cache hits. BATCH is again the second better strategy, also

with over 96% cache hits but will slightly less throughput than EAGER. As in TPCC, the LAZY strategy

performs relatively well for the first set of nodes in all throughput plots however it does not scale. Looking

at the cache hit percentage plot, it is also clearly visible why, the cache hits drops significantly when the

size of the system grows. In FutureGrid, BATCH is the better strategy but comparing it with NoCache

it only has some speedup in Workload A. In Workload B, using either one of the strategies results in

a similar or even worse performance than with NoCache. Looking at the amount bandwidth consumed

by all the strategies, LAZY is again where less bandwidth is consumed, however EAGER, BATCHING

and NoCache have very similar results. This is explained by the fact that transactions in this benchmark

touch multiple nodes since data is place all around so every time a transaction commits on multiple

nodes each one of them will issue an invalidation message. Also, the size of the keys can be an aspect

to take in account since in Vacation they are 10 times bigger than in TPCC.

Regarding the abort rate, the results are negligible mainly due to how the benchmark was configured.

48

16 32 48 64 80
Workload A - CloudTM 3.9 3.1 2.5 2.2 2.13
Workload B - CloudTM 1.8 1.4 1.3 1.3 1.3
Workload A - FutureGrid 1.7 1.4 1.4 1.3 1.3
Workload B - FutureGrid 1 1 1 1 0.9

Table 5.2: Best speedups in Vacation. Red: EAGER, Blue: BATCH, Green: LAZY

5.6 Synthetic Benchmark

5.6.1 Description

The synthetic benchmark was created by me to contain very small transactions (i.e., performs a very low

number of read/write operations). Keys are randomly selected to fill up the transaction, so there is no

actual business logic between two data access operations, which makes these transactions extremely

short. I added the same notions of locality and neighbor node as in TPCC and configure it the same

way, a transaction will access local data with probability 75% and remote data on the neighbor node

with probability 25%. The amount of keys in the workload was configured to be 50000. Regarding the

configuration of Workload A and B, it is used a parameter called readOnlyPercentage with the values

90% and 50%, respectively.

5.6.2 Results

Analyzing the results obtained in this benchmark, depicted in Figures 5.17., 5.18., 5.19. 5.20., it is

visible, in the throughput plots and in Table 3 that that the LAZY strategy outperforms all the others in

CloudTM and in Workload A of FutureGrid. Looking at the cache hit percentage plots it shows that LAZY

and EAGER have very similar cache hits, however EAGER has much less throughput. This is clearly a

result of the overhead introduced by the invalidation scheme of EAGER which can be seen in the total

bandwidth consumption plots. Also, the BATCH strategy performs worse when compared to the other

two benchmarks mainly because its cache hit percentage is not that high, which is clearly a sign that

50ms is not an ideal broadcast value in this benchmark. Regarding the abort rate, as in Vacation, the

results are negligible due to the configuration of the benchmark.

16 32 48 64 80
Workload A - CloudTM 2 2.8 3.1 3.8 3.8
Workload B - CloudTM 1.4 1.6 1.8 1.7 1.7
Workload A - FutureGrid 1.7 2.1 1.9 1.8 2
Workload B - FutureGrid 1 1.1 1.2 1.1 1.1

Table 5.3: Best speedups in Synthetic. Red: EAGER, Blue: BATCH, Green: LAZY

49

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 20 30 40 50 60 70 80

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0

 5000

 10000

 15000

 20000

 25000

 20 30 40 50 60 70 80

B
an

dw
id

th
(M

b)

Number of nodes

EAGER
LAZY
NoCache
BATCH

Figure 5.9: Synthetic results obtained in CloudTM for Workload A. Top to Bottom: Throughput, Cache
Hit Percentage, Total Bandwidth

.

50

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 30 40 50 60 70 80

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0

 5000

 10000

 15000

 20000

 25000

 20 30 40 50 60 70 80

B
an

dw
id

th
(M

b)

Number of nodes

EAGER
LAZY
NoCache
BATCH

Figure 5.10: Synthetic results obtained in CloudTM for Workload B. Top to Bottom: Throughput, Cache
Hit Percentage, Total Bandwidth

.

51

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 20 30 40 50 60 70 80

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0

 5000

 10000

 15000

 20000

 25000

 20 30 40 50 60 70 80

B
an

dw
id

th
(M

b)

Number of nodes

EAGER
LAZY
NoCache
BATCH

Figure 5.11: Synthetic results obtained in FutureGrid for Workload A. Top to Bottom: Throughput, Cache
Hit Percentage, Total Bandwidth

.

52

 0

 1000

 2000

 3000

 4000

 5000

 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 30 40 50 60 70 80

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0

 5000

 10000

 15000

 20000

 25000

 20 30 40 50 60 70 80

B
an

dw
id

th
(M

b)

Number of nodes

EAGER
LAZY
NoCache
BATCH

Figure 5.12: Synthetic results obtained in FutureGrid for Workload B. Top to Bottom: Throughput, Cache
Hit Percentage, Total Bandwidth

.

53

5.7 Discussion

Summing up the evaluation chapter and answering to the questions in Section 5.1, it is clearly visible

that GMU benefits a lot with the introduction of the caching mechanism. However, the various presented

invalidation schemes used in the caching mechanism exhibit different trade-offs.

LAZY is attractive in network intensive workloads, where it allows for effectively saving bandwidth.

However, by introducing in the critical path of transaction execution the construction and transmission

of the invalidation messages, it can incur in large overheads in workloads that generate large iSet mes-

sages.

EAGER is more effective in ensuring high hit rate, especially for applications where read-only trans-

actions are long and the number of keys in update transactions is big, but for smaller transactions the

overhead introduced can be detrimental even when having a very good cache hit rate.

BATCH, despite having the potential for reducing communication and, hence, enhance efficiency,

did not prove to be particularly beneficial in the considered workloads. The gains in terms of reduced

bandwidth with respect to eager, in fact, are normally outweighed by the drop in the cache hit rate

imputable to the delays induced by batching the cache invalidation messages.

The abort rate had relatively no impact on the results presented, however this happened mainly due

to how the environments and workloads were configured.

54

Chapter 6

Conclusions

The potential for scalability of partial replication protocols that use consistent hashing data placement

can be severely hampered when the applications’ data access patterns do not exhibit a good degree of

locality. GMU is one of those cases.

In this dissertation, I introduced in GMU a caching mechanism that relies on an invalidation scheme

that can use multiple dissemination strategies to maintain the data fresh, to help enhance the locality of

data.

I conducted an extensive experimental study to analyze the efficiency and effectiveness of the pro-

posed caching mechanism. From the experimental results it is visible that the different strategies used

have different performances depending on the environment and the workload, motivating further re-

search in the area of adaptive caching schemes.

Concluding, it is clearly visible that with the introduction of the caching mechanism, data locality was

enhanced thus the overall performance of the system was also improved.

6.1 Future Work

There is so much that can be done to improve this work. The strategies described in Section 5.3 can

be used as basis for exploring different trade-offs in the design of cache invalidation schemes, which

are not as eager as EAGER an not as lazy as LAZY. Specifically, EAGER disseminates everything that

is committed even to nodes where that information is not needed, so the new strategy should know

what is the information that each node has and disseminate only that information. On the other hand,

LAZY always waits for a cache miss to leverage the invalidation scheme. For instance, a new strategy

could be a mix of EAGER and LAZY that disseminates information only to nodes where transactions that

touch multiple nodes commit, at commit time, to diminish the probability of having a cache miss in the

next transaction originated on those nodes. Regarding BATCH, since the results did not show particu-

larly beneficial in the considered workloads, a more comprehensive study could be carried out. In this

sense, it would be interesting to assess to what extent performance could increase by adopting adaptive

strategies for self-tuning the batching dissemination rate. This problem has indeed resemblances with

55

the problem of tuning the batching latency in total-order broadcast protocols, and has been approached

using techniques from control theory [17, 3] and machine learning [41]. It is expected that such schemes

may be particularly beneficial in presence of dynamic workloads.

Another interesting aspect is to explore a similar idea to the one described in Section 4.2.3. but

with the purpose of minimizing the chances of incurring in a cache miss by allowing to initialize the

transaction vector clock of read-only transactions with a conservative value obtained as the minimum

of all the validity values gathered by the invalidation scheme. The vector clock is also ”blocked”, i.e., it

is marked as if the transaction had already ready from all nodes in the system, which guarantees that

it will not be advanced during the transaction’s execution. Setting the transaction’s value in this way

corresponds to serialize it before the oldest snapshot present in the local cache node. This can enhance

the likelihood that the transaction can access ”fresh enough” data in the cache.

In general, the use of an adaptive caching scheme using all the strategies described above and the

ones already implemented, would be an interesting research subject.

56

Bibliography

[1] ADYA, A. Weak consistency: A generalized theory and optimistic implementations for distributed

transactions. Tech. rep., PhD Thesis, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 1999.

[2] BAKER, J., BOND, C., CORBETT, J. C., FURMAN, J., KHORLIN, A., LARSON, J., LEON, J.-M.,

LI, Y., LLOYD, A., AND YUSHPRAKH, V. Megastore: Providing scalable, highly available storage

for interactive services. In Proceedings of the Conference on Innovative Data system Research

(CIDR) (2011), pp. 223–234.

[3] BARTOLI, A., CALABRESE, C., PRICA, M., ANTONIUTTI, E., MURO, D., AND MONTRESOR, A.

Adaptive message packing for group communication systems. In In On The Move to Meaningful

Internet Systems 2003: OTM 2003 Workshops, volume 2889/2003 of Lecture Notes in Computer

Science (2003), Springer-Verlag GmbH, pp. 912–925.

[4] BERENSON, H., BERNSTEIN, P., GRAY, J., MELTON, J., O’NEIL, E., AND O’NEIL, P. A critique

of ansi sql isolation levels. In Proceedings of the 1995 ACM SIGMOD international conference on

Management of data (1995), SIGMOD ’95, ACM, pp. 1–10.

[5] BERNSTEIN, P. A., AND GOODMAN, N. Concurrency control in distributed database systems. ACM

Comput. Surv. 13, 2 (June 1981), 185–221.

[6] BUDHIRAJA, N., MARZULLO, K., SCHNEIDER, F. B., AND TOUEG, S. Distributed systems (2nd ed.).

ACM Press/Addison-Wesley Publishing Co., 1993, ch. The primary-backup approach, pp. 199–216.

[7] CACHIN, C., GUERRAOUI, R., AND RODRIGUES, L. Introduction to Reliable and Secure Distributed

Programming (2. ed.). Springer, 2011.

[8] CACHOPO, J., AND RITO-SILVA, A. Versioned boxes as the basis for memory transactions. Sci.

Comput. Program. 63 (December 2006), 172–185.

[9] CARVALHO, N., ROMANO, P., AND RODRIGUES, L. Scert: Speculative certification in replicated

software transactional memories. In The 4th Annual International Systems and Storage Conference

(2011), IBM Research.

[10] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH, D. A., BURROWS, M., CHANDRA,

T., FIKES, A., AND GRUBER, R. E. Bigtable: a distributed storage system for structured data. In

57

Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation -

Volume 7 (2006), OSDI ’06, USENIX Association, pp. 15–15.

[11] CHOCKLER, G. V., KEIDAR, I., AND VITENBERG, R. Group communication specifications: a com-

prehensive study. ACM Comput. Surv. 33, 4 (Dec. 2001), 427–469.

[12] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST, C., FURMAN, J. J., GHEMAWAT,

S., GUBAREV, A., HEISER, C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E., LI, H.,

LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D., QUINLAN, S., RAO, R., ROLIG, L., SAITO,

Y., SZYMANIAK, M., TAYLOR, C., WANG, R., AND WOODFORD, D. Spanner: Google’s globally-

distributed database. In Proceedings of the 10th USENIX conference on Operating Systems Design

and Implementation (2012), OSDI’12, USENIX Association, pp. 251–264.

[13] COUCEIRO, M., ROMANO, P., CARVALHO, N., AND RODRIGUES, L. D2STM: Dependable distributed

software transactional memory. In Proc. of PRDC (2009), IEEE CS, pp. 307–313.

[14] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A.,

SIVASUBRAMANIAN, S., VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly available

key-value store. In Proceedings of twenty-first ACM SIGOPS symposium on Operating systems

principles (2007), SOSP ’07, ACM, pp. 205–220.

[15] DÉFAGO, X., SCHIPER, A., AND URBÁN, P. Total order broadcast and multicast algorithms: Taxon-

omy and survey. ACM Comput. Surv. 36, 4 (Dec. 2004), 372–421.

[16] DICE, D., SHALEV, O., AND SHAVIT, N. Transactional locking ii. In Proceedings of the 20th inter-

national conference on Distributed Computing (2006), DISC’06, Springer-Verlag, pp. 194–208.

[17] DIDONA, D., CARNEVALE, D., GALEANI, S., AND ROMANO, P. An extremum seeking algorithm for

message batching in total order protocols. In Self-Adaptive and Self-Organizing Systems (SASO),

2012 IEEE Sixth International Conference on (2012), pp. 89–98.

[18] ELNIKETY, S., DROPSHO, S., AND ZWAENEPOEL, W. Tashkent+: memory-aware load balancing

and update filtering in replicated databases. In Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007 (New York, NY, USA, 2007), EuroSys ’07, ACM,

pp. 399–412.

[19] FRANKLIN, M. J. Caching and memory management in client-server database systems. PhD

thesis, 1993.

[20] GRAY, J., HELLAND, P., O’NEIL, P., AND SHASHA, D. The dangers of replication and a solution. In

Proceedings of the 1996 ACM SIGMOD international conference on Management of data (1996),

SIGMOD ’96, ACM.

[21] GUERRAOUI, R., AND KAPALKA, M. On the correctness of transactional memory. In Proc. of

PPOPP (2008).

58

[22] HADZILACOS, V., AND TOUEG, S. Distributed systems (2nd ed.). ACM Press/Addison-Wesley

Publishing Co., 1993, ch. Fault-tolerant broadcasts and related problems, pp. 97–145.

[23] HAERDER, T., AND REUTER, A. Principles of transaction-oriented database recovery. ACM Com-

put. Surv. 15, 4 (Dec. 1983), 287–317.

[24] HANSDAH, R. C., AND PATNAIK, L. M. Update serializability in locking. In ICDT 86, International

Conference on Database Theory, Rome, Italy, September 8-10, 1986, Proceedings (1986), vol. 243

of Lecture Notes in Computer Science, Springer, pp. 171–185.

[25] HERLIHY, M., LUCHANGCO, V., AND MOIR, M. A flexible framework for implementing software

transactional memory. In Proceedings of the 21st annual ACM SIGPLAN conference on Object-

oriented programming systems, languages, and applications (2006), OOPSLA ’06, ACM, pp. 253–

262.

[26] J. PAIVA, P. RUIVO, P. R., AND RODRIGUES, L. Autoplacer: scalable self-tuning data placement in

distributed key-value stores. In In Proceedings of the 10th International Conference on Autonomic

Computing (ICAC ’13) (San Jose, CA, USA, June 2013).

[27] JIANG, S., AND ZHANG, X. Lirs: an efficient low inter-reference recency set replacement policy to

improve buffer cache performance. In Proceedings of the 2002 ACM SIGMETRICS international

conference on Measurement and modeling of computer systems (New York, NY, USA, 2002), SIG-

METRICS ’02, ACM, pp. 31–42.

[28] KARGER, D., LEHMAN, E., LEIGHTON, T., PANIGRAHY, R., LEVINE, M., AND LEWIN, D. Consistent

hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide

web. In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing (New

York, NY, USA, 1997), STOC ’97, ACM, pp. 654–663.

[29] LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized structured storage system. SIGOPS

Oper. Syst. Rev. 44, 2 (Apr. 2010), 35–40.

[30] LIM, J., CHUNG, J., KIM, J., AND SHIM, K. A dynamic load balancing for massive multiplayer online

game server. In ICEC (2006), R. H. R. Harper, M. Rauterberg, and M. Combetto, Eds., vol. 4161

of Lecture Notes in Computer Science, Springer, pp. 239–249.

[31] MARCHIONI, F., AND SURTANI, M. Infinispan Data Grid Platform. Packt Publishing.

[32] MINH, C. C., CHUNG, J., KOZYRAKIS, C., AND OLUKOTUN, K. Stamp: Stanford transactional

applications for multi-processing. In IISWC (2008), IEEE, pp. 35–46.

[33] OOI, B. C. Cloud data management systems: Opportunities and challenges. Semantics, Knowl-

edge and Grid, International Conference on 0 (2009).

[34] PALMIERI, R., QUAGLIA, F., AND ROMANO, P. AGGRO: Boosting stm replication via aggressively

optimistic transaction processing. Proc. of NCA (2010), 20–27.

59

[35] PEDONE, F., GUERRAOUI, R., AND SCHIPER, A. The database state machine approach. Dis-

tributed and Parallel Databases 14, 1 (July 2003), 71–98.

[36] PEDONE, F., AND SCHIPER, A. Optimistic atomic broadcast: a pragmatic viewpoint. Theor. Comput.

Sci. 291, 1 (Jan. 2003), 79–101.

[37] PELUSO, S., ROMANO, P., AND QUAGLIA, F. Score: a scalable one-copy serializable partial repli-

cation protocol. In Proceedings of the 13th International Middleware Conference (New York, NY,

USA, 2012), Middleware ’12, Springer-Verlag New York, Inc., pp. 456–475.

[38] PELUSO, S., RUIVO, P., ROMANO, P., QUAGLIA, F., AND RODRIGUES, L. When scalability meets

consistency: Genuine multiversion update-serializable partial data replication. In ICDCS (2012),

IEEE, pp. 455–465.

[39] POWELL, D. Group communication. Commun. ACM 39, 4 (Apr. 1996), 50–53.

[40] ROMANO, P., CARVALHO, N., AND RODRIGUES, L. Towards distributed software transactional

memory systems. In Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and

Middleware (New York, NY, USA, 2008), LADIS ’08, ACM, pp. 4:1–4:4.

[41] ROMANO, P., AND LEONETTI, M. Self-tuning batching in total order broadcast protocols via analyti-

cal modelling and reinforcement learning. In Computing, Networking and Communications (ICNC),

2012 International Conference on (2012), pp. 786–792.

[42] SCHIPER, N., SCHMIDT, R., AND PEDONE, F. Optimistic algorithms for partial database replication.

In Proceedings of the 10th international conference on Principles of Distributed Systems (2006),

OPODIS’06, Springer-Verlag, pp. 81–93.

[43] SCHIPER, N., SUTRA, P., AND PEDONE, F. P-store: Genuine partial replication in wide area net-

works. In Proc of SRDS (2010), IEEE CS, pp. 214–224.

[44] SCHNEIDER, F. B. Implementing fault-tolerant services using the state machine approach: a tuto-

rial. ACM Comput. Surv. 22, 4 (Dec. 1990), 299–319.

[45] SHAVIT, N., AND TOUITOU, D. Software transactional memory. In Proceedings of the fourteenth

annual ACM symposium on Principles of distributed computing (1995), PODC ’95, ACM, pp. 204–

213.

[46] SOVRAN, Y., POWER, R., AGUILERA, M. K., AND LI, J. Transactional storage for geo-replicated

systems. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles

(2011), SOSP ’11, ACM, pp. 385–400.

60

	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure of the document

	2 Related Work
	2.1 Introduction
	2.2 The transaction abstraction
	2.3 Transactional Consistency Models
	2.3.1 (One Copy) Serializability
	2.3.2 Opacity
	2.3.3 (Parallel) Snapshot Isolation
	2.3.4 (Extended) Update Serializability
	2.3.5 Other models

	2.4 Transactional Systems
	2.4.1 Data Base Management Systems
	2.4.2 Software Transactional Memories
	2.4.3 Distributed Transactional Platforms

	2.5 Group Communication Systems
	2.5.1 Atomic Broadcast
	2.5.2 Optimistic Atomic Broadcast
	2.5.3 Atomic Multicast

	2.6 Transactional Replication Techniques
	2.6.1 Full vs Partial Replication
	2.6.2 Primary Backup
	2.6.3 State Machine Replication
	2.6.4 Certification Based Replication

	2.7 Data placement
	2.7.1 Global Mapping
	2.7.2 Consistent Hashing
	2.7.3 Grouping

	2.8 Eviction
	2.8.1 Least Recently Used
	2.8.2 Most Recently Used
	2.8.3 Least Frequently Used
	2.8.4 Low Inter-reference Recency Set

	2.9 Caching
	2.9.1 Dynamic Load Management

	2.10 Overview of existing transactional systems
	2.10.1 Centralized DBMS
	2.10.2 Fully replicated and certification based DBMS
	2.10.3 Centralized STM
	2.10.4 Fully replicated and certification based DSTM
	2.10.5 Fully replicated and state machine based DSTM
	2.10.6 Partial Replicated and Certification Based DSTM
	2.10.7 Geo-Replicated Systems

	3 The GMU protocol
	3.1 Infinispan
	3.2 Model of the target system
	3.3 Overview of the GMU protocol

	4 Caching in GMU protocol
	4.1 The caching protocol
	4.1.1 Ensuring data consistency
	4.1.2 Why the algorithm is necessary?
	4.1.3 Maximizing data freshness
	4.1.4 Freshness of the initial transaction vector clock

	5 Evaluation
	5.1 Goal
	5.2 Environments
	5.2.1 CloudTM
	5.2.2 FutureGrid

	5.3 Configuration
	5.4 TPCC Benchmark
	5.4.1 Description
	5.4.2 Results

	5.5 Vacation Benchmark
	5.5.1 Description
	5.5.2 Results

	5.6 Synthetic Benchmark
	5.6.1 Description
	5.6.2 Results

	5.7 Discussion

	6 Conclusions
	6.1 Future Work

	Bibliography

