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Resumo

Os fornecedores de serviços de computação na nuvem têm vindo a aumentar a diversidade
das plataformas que disponibilizam, nomeadamente em termos de poder de cálculo, quantidade de
memória, capacidade de armazenamento e de largura de banda da rede. Por um lado, esta diversi-
dade oferece mais opções ao utilizador mas, por outro, torna a tarefa de escolher a configuração certa
muito mais complexa, visto que configurações com desempenho semelhante podem ter custos muito
diferentes, e nem sempre é fácil antecipar qual a configuração mais barata que satisfaz os requisitos da
aplicação. Neste contexto, o estudo de técnicas que permitam automatizar o processo de seleção da
melhor configuração para executar uma dada aplicação na nuvem tem vindo a ganhar relevo.

As abordagens recentes para identificar a configuração ótima para correr trabalhos na nuvem
baseiam-se numa fase de exploração durante a qual a aplicação é executada num conjunto diverso
de configurações. Estes sistemas conseguem encontrar a configuração próxima da ótima. No entanto,
não consideram o custo da fase de exploração, que pode ser significativo.

Esta dissertação estuda técnicas de procura que têm em conta o custo de exploração. Propo-
mos um algoritmo que permite reduzir o custo da exploração através de uma criteriosa escolha das
configurações a experimentar, que tem em conta o custo de cada experiência e a contribuição esper-
ada da mesma para a exatidão do modelo que prevê as próximas explorações. Os resultados da nossa
avaliação mostram que a solução proposta é capaz de encontrar configurações perto da ótima com
baixo custo.





Abstract

In recent years we have witnessed a trend for the cloud providers to increase the diversity of the
platforms they offer, namely with respect to computational power, memory, storage capacity and network
bandwidth. If it’s true that this diversity allows users to choose amongst a broader set, it is also a true
that such diversity renders the process of selecting the right configuration much more complex. This
happens because configurations with similar performance may possess very different costs. Moreover,
it is not always easy to anticipate which is the cheaper configuration that complies with the application re-
quirements. Thus, the study of techniques for automating the process of selecting the best configuration
to execute cloud applications has gained relevance.

Recent approaches to identify the optimal configuration to execute cloud applications are based on
an exploration phase, during which the application is executed in a set of configurations. These systems
have been shown to identify near-optimal configurations. However, the cost of the exploration phase,
which can be rather high, is not taken into account.

This dissertation studies search techniques that consider the cost of the exploration phase. We
propose an algorithm which allows to reduce the cost of the exploration phase through a judicious
choice of the configurations to explore. This choice accounts both for the cost of each experiment
and the expected improvement they will bring to the predictive model that guides the exploration. Our
evaluation results show that our algorithm is able to identify near-optimal configurations at a low cost.
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1Introduction
Cloud computing is an abstraction that allows users to deploy, configure, and execute services on

shared pools of resources, which can be rented according to the needs of each application. Many of
the services provided over the internet, such as sending e-mails, editing documents, listening to music
or watching TV are now supported by cloud computing. Cloud computing services started to be offered
by Amazon in 2006 and, since then, have been increasingly adopted by public and private organization
worldwide.

Amazon (with Amazon Web Services (AWS) Elastic Compute Cloud (EC2) [3]), Google (with Google
Compute Engine (GCE) [31]), and Microsoft with Microsoft Azure [48], are some of the main current
cloud computing providers. They offer a wide range of platforms and virtual machine types, that vary in
terms of computational, memory, and network capacities. When deploying an application in the cloud, it
is critical to select the appropriate resources. For instance, running a memory intensive job in a machine
that does not have enough memory will lead to poor performance, regardless of the CPU capacity.
Unfortunately, it is not always easy to anticipate which is the cheaper configuration that complies with
the application requirements. Thus, the study of techniques for automating the process of selecting the
best configuration to execute cloud applications has gained significant relevance in this context.

1.1 Motivation

A large number of research efforts [66, 2, 69, 35, 21, 20, 66, 15, 18] have addressed the problem of
selecting the best configuration for deploying a given application in the cloud. A configuration consists
of a set of virtual machines’ parameters, such as the number of Virtual Machines (VMs) and their sizes,
and of a set of application specific parameters which, for example in the case of a neural network training
job, may be the learning rate or the batch size.

Existing approaches target different objective functions (e.g., minimizing user [66, 2, 69, 35] vs
provider [21, 20, 66] costs) and employ a wide range of predictive techniques. Despite their differences,
though, they share a key common mechanism: an exploratory phase during which the target application
is deployed and tested over a diverse set of configurations in order to build a model that maps the
possible system’s configurations to the corresponding application’s performance. Which and how many
configurations will have to be explored before a final recommendation for the system’s configuration is
outputted is typically established in a dynamic fashion, based on the shape of the performance function
over which the model is being fitted and on the expected accuracy of the model learnt so far.

State-of-the-art systems have been shown to be able to identify near-optimal configurations for
the final application deployment (i.e., its steady state). Unfortunately, existing solutions aim solely at
optimizing the efficiency of the final configuration. As such, they neglect the cost of the exploration
phase. As a matter of fact, the cost of the exploration phase can be quite expensive not only for short
running jobs, but also for long running applications that are subject to frequent workload changes. In this



case, the system has to undergo frequent re-optimization phases in order to adapt to workload changes
and pursue optimal efficiency.

Since existing systems are mainly focused on optimizing performance and minimizing deployment
cost, usually at the expense of the exploration cost, a problem remains: what configuration provides
users with a workload performance above some desirable threshold while maintaining both the deploy-
ment cost and the cost for finding that solution below some desirable limit?

1.2 Objectives and Proposed Methodology

The goal of this work is to build a self-tuning system for cloud applications that aims to optimize the
cost efficiency not only of the final system’s configuration but also of the exploration phase performed
as part of the tuning process, while ensuring the user imposed Quality of Service (QoS) restrictions
(such as the maximum running time for a job) are complied with. This is a non-trivial problem as the
exploration cost depends not only on the configurations that are being tested but also on the duration
of the test. Furthermore, the configurations that are explored influence how the model is updated and
therefore modify the next choices/predictions of configurations to explore. Exploring configurations that
are both cheap and provide good workload performance is paramount for the improvement of the model,
for the discovery of the optimal configuration and for the reduction of the overall costs.

We argue that, in order to tackle this problem, the optimization process should explicitly take into
account the cost dynamics of the exploration phase. Current state-of-the-art systems reason/plan the
next exploration steps using a greedy strategy that only looks at the immediate expected ”reward” from
visiting a given configuration, say c. Instead of considering only the expected reward, in our work we
also consider the expected cost of visiting c. Furthermore, we also account for the subsequent expected
cost of visiting, after c, other configurations deemed also potentially interesting, that is, we use a long-
sighted, budget-aware approach. Looking-ahead d explorations in the future allows for an estimation
of the evolution of the model, which depends on the sampled configurations. For example, at a given
moment, considering the predictive model M , if configuration C1 is explored, it will lead to the model M1;
while exploring configuration C2 leads to the model M2. Thus, by simulating the outcome of future ex-
plorations, and the resulting updates of the model, the system can decide to explore a configuration that
may not be the best at that moment, but that, in the end (or in the near-future), leads to a near-optimal
configuration that might otherwise not be explored, e.g., using a greedy policy that always explores the
configuration that is currently predicted to be the best by the model.

In order to cope with large search spaces (as it is the case for cloud systems), the methodology
employed in our work to predict the candidate set of configurations to be explored in the future is based
on recent non-myopic extensions [42, 43] of the Bayesian Optimization (BO) approach [51, 14], which
incorporate the notion of look-ahead. The candidate set/path is determined on the basis of the model
built so far and of its uncertainty regarding untested configurations. The cardinality of this set represents
the look-ahead factor, i.e., the number of future exploration steps that are simulated by exploiting the
knowledge currently embodied by the model. After having found the candidate set/path, the first config-
uration is tried and the model is updated. This might lead to changes in the candidate set which is then
recomputed.

2



1.3 Contributions

The main contribution of this thesis is Lynceus, a novel system for optimizing the choice of configu-
rations for the execution of cloud applications, which takes into consideration in its performance model
not only the cost of the exploitation phase, but also, and unlike previous systems, the cost of the explo-
ration phase. The configurations found by Lynceus aim at minimizing the overall cost that the user has
to pay while ensuring the user imposed Quality of Service (QoS) restrictions are complied with.

We have also gathered extensive datasets representative of the performance and cost of machine
learning jobs deployed over large scale platforms in the Amazon EC2 public cloud. More in detail, the
datasets were obtained running the training phase of state-of-the-art Neural Networks (NNs). The NNs
were implemented using Google’s Tensorflow framework and deployed over cloud platforms spanning
a minimum of 8 and a maximum of 112 (virtual) cores, considering four different VM flavours, and three
application level parameters (affecting the training process of the NNs). This yields a vast configura-
tion space, with each dataset encompassing a total of 384 configurations, whose exploration requires,
globally, 64 hours (worst case scenario) and a cost (at current EC2 rates) of 90 USD, approximately.
The datasets have been made publicly available and can represent a valuable asset for future works
targeting the problem of self-tuning in the cloud.

Lynceus was evaluated using the aforementioned datasets as well as other publicly available
datasets, and compared with CherryPick [2], a state-of-the-art approach based on a (shortsighted) BO
technique. Our results show that, at parity of budget, Lynceus consistently finds solutions approximately
two times closer to the optimum than CherryPick.

1.4 Research History

This work was develop in the Distributed Systems Group of INESC-ID Lisboa. During this period, I
benefited from the valuable contributions of several members of the group. In particular I’m grateful to
Diogo Barradas, Manuel Reis and Pedro Joaquim for the help with the construction and acquisition of the
datasets and to Professor Luı́s Rodrigues for the fruitful dicussions and comments regarding Lynceus
and all work around it.

A paper that describes part of this work and some results has been published in the “Atas do Décimo
Simpósio de Informática, INForum 18”.

This work has been partially supported by Fundação para a Ciência e Tecnologia (FCT) through
projects with references UID/CEC/50021/2013 and PTDC/EEIS-CR/1743/2014. Also, the extensive
evaluation presented in this dissertation was possible due to the grant received from the AWS Program
for Research and Education.

1.5 Structure of the Document

This thesis is structured as follows: Chapter 2 analyses related work on systems for the self-tuning
of cloud applications and on techniques for optimization of expensive objective functions; Chapter 3 de-
scribes Lynceus, detailing its main features, design goals and challenges; Chapter 4 presents the results

3



of the experimental evaluation and finally Chapter 5 concludes this document with some observations
and remarks as well as with possible future research directions to further improve and extend Lynceus.
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2Related Work

This chapter begins by providing, in Section 2.1, an overview of the alternatives made available
by modern cloud providers in terms of both diverse platforms, as well as costs and pricing schemes.
Based on this analysis, we motivate the need for the current state-of-the-art systems that analyze the
large space of machines in order to provide users with the best configurations for the deployment of their
applications. Section 2.2 overviews some of the most relevant modelling and optimization methodologies
that are used by recent systems for self-tuning of cloud applications. Concrete systems that make use
of these methodologies are then reviewed in Section 2.3.

2.1 Pricing Models for Resource Provisioning in the Cloud

This section provides an overview of the large offer of Virtual Machine (VM) types and pricing
schemes made available by modern cloud providers. The following data considers, in particular, three of
the main cloud providers: Google, Amazon and Microsoft, since these providers are the most targeted
by the reviewed systems [66, 2, 69, 21, 20, 34, 35].

The existence of multiple providers allows for competition and, therefore, for the prices to come
down. However, the huge amount of choice makes it difficult for users to know, first of all, which provider
they should select and then which instance type(s) and how many instances they should choose in order
to obtain a good enough performance for a reasonable price.

To choose a machine for deployment of an application, a user must first reason on which are the
most predominant higher level characteristics of the job and that have more influence in the overall per-
formance. Providers usually offer a choice of machines in 5 broad categories: general purpose, compute
optimized, memory optimized, accelerated computing or storage optimized machines. Depending on the
providers, some differences may be spotted, for instance, Google has shared-core machine types and
doesn’t have specific types for accelerated computing.

After choosing the broad category that best fits his job, the user will have to analyze all families that
exist in that category, e.g., instances of type ’F1’, for Amazon’s accelerated computing machine types.
Each family has certain specific categories, such as the processors of the machines and the optimiza-
tions they provide, for example in terms of network bandwidth or support for enhanced networking.

Once the family with the characteristics that best fit the job has been discovered, the user is required
to choose the size of the machine that he wants. Sizes vary between 1 to 96 virtual CPUs (vCPUs) and,
typically, a higher vCPU count translates into an increase in available memory.

Usually, all these characteristics are fixed, however some providers, such as Google, allow users
to customize their machines [32]. Although there are some rules for the number of vCPUs of each pro-
cessor and for the amount of memory that can be chosen, the user is still left with a huge amount of



Amazon Google Microsoft
Use Cases 5 5 6

Instance Family ≥ 3 ≥ 1 ≥ 1
Sizes ≥ 2 ≥ 1 ≥ 3

Customized — 3080 —
TOTAL 83 25 (3105) 133

Table 2.1: Amount of virtual machines of each cloud provider

combinations that, if correctly chosen, provide configurations that give optimal performance. Nonethe-
less, being able to choose wisely is a key factor which, given the range of available possibilities, may be
a hard task even for an expert, let alone for a user recently introduced to the cloud environment.

Table 2.1 shows the number of VMs offered by each provider. Disregarding custom machine types,
GCE doesn’t have such a broad choice. However, when they are taken into account, there are more than
3000 possible machines one can choose from. This count was made based on the assumption that each
vCPU must have the same memory. Both Amazon and Microsoft don’t offer the option of customizing
machines, yet have a large selection. The values for the instance families and for the sizes show the
lowest value existent for one case. For example in Amazon’s case, there is at least one use case with
3 instance families and several use cases with more. For the sizes, the reasoning is the same: at least
one family has 2 sizes available while others have more. All the machines add up to a total showed in
the homonymous row.

To differentiate between machine prices, the first telltaling characteristic is the period for which
resources are acquired. A user can buy one of two types of resources: on-demand resources, for short
running, unpredictable jobs or reserved resources, for long running and predictable jobs. While most
machines are available for both types of resources, some can only be acquired for one of the two types.
Regarding on-demand resources, the user pays for what he uses, with no long-term commitment. Billing
can be per hour or per second, however there is always a minimum payment of one minute, even if only
a few seconds are used. As for reserved resources, these imply a commitment of one or three years
and offer some discounts when compared to on-demand prices.

Depending on the providers, some more machine types are available. For instance, Amazon also
provides EC2 spot instances. These instances are spare compute capacity in the AWS cloud that users
can acquire by specifying bids. A bid corresponds to the price a user is willing to pay for the instance.
A machine is acquired when the bid specified by the user is higher than the current market price for
that instance. These instances run either until the user stops them or until the spot price exceeds the
price that was specified. Another possible way through which the machines may be stopped is if the
machines are revoked. This happens when EC2 needs that compute capacity back. However, in such a
situation, users get a two minutes warning before being evicted. These machines also offer the option
of specifying a duration of up to 6 hours, with hourly increments. In this case, they will run until that
time has passed or until the user terminates them. These resources are known as revocable resources
and although they are prone to evictions and uncertainty, the cost savings they offer make up for those
disadvantages when good provisioning strategies are employed, like in the work of Shivaram et al. [66].

After the type of resource has been chosen, the availability zone, which corresponds to where the
machines actually are physically, and the operating system that is chosen also influence the prices.

Table 2.2 shows the ranges of prices for each provider and for the two payment options. These
values reflect the prices of the cheapest and most expensive machines, independently of their use case,
family, size, operating system and availability zone. The cheapest machine has the cheapest operating

6



Payment choice
Providers Price by hour in $$

Amazon Google Microsoft
On-Demand 0.0058 — 92.5760 0.0076 — 12.3620 0.0110 — 94.4900

Reserved 1 year 0.0030 — 79.4750 0.0300 — 6.6500 0.0070 — 75.2600
3 years 0.0020 — 66.8660 0.0210 — 4.6800 0.0050 — 64.2900

Table 2.2: Range of prices of each cloud provider

system, is in the cheapest availability zone, belongs to the cheapest family and has the smallest size.
The same reasoning, but on the other way round, applies for the most expensive machine.

By analyzing both tables it is clear that there is an enormous number of combinations of instances
that can offer the same performance but that have different costs. Choosing between use cases, families,
sizes and types of resources is a choice between hundreds of machines. This task’s difficulty is further
increased by the fact that the performance of the job in each configuration is only known after trying it.
Therefore, if a non-ideal configuration is chosen, this will only be known a posteriori, after renting the
machines and trying the workload.

This motivates the need for systems, such as the one we propose in Chapter 3, that are able to
predict how many instances and of which model should be acquired, given a specific workload and
thresholds for performance and cost.

2.2 Background on Modelling and Optimization Techniques

Current work on self-tuning of complex applications aims to find the best values for tuning specific
parameters of those applications, and state-of-the-art work on optimizing resource allocation in the cloud
has as its objective the discovery of the best configurations for the deployment of applications in the
cloud. These optimizations are application specific. Either of these lines of work requires the use of
modelling and optimization techniques that may be interesting and valuable to our work and ergo shall
be briefly described in the next sub sections.

In this section, we first describe in detail the Bayesian Optimization (BO) technique (Section 2.2.1.1)
and the modelling technique Bagging Ensemble of Decision Trees (Section 2.2.2.1), which were em-
ployed in our work. Then, the remaining sections refer to relevant optimization and modelling techniques
exploited by state-of-the-art solutions for cloud optimization, but which are only briefly overviewed since
they do not feature in our solution.

2.2.1 Optimization Techniques

In the following sections we describe in detail the Bayesian Optimization (BO) technique, which
is used in our work, and briefly overview the relevant optimization technique of Optimal Experimental
Design (OED), which is utilized by state-of-the-art systems.

2.2.1.1 Bayesian Optimization

Bayesian Optimization (BO) [14, 51, 59] is a model based method for finding the optimum value for
expensive black-box functions. It is especially efficient in situations where the closed-form expression
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of the function being evaluated is unknown, but wherein samples can be extracted at certain points.
Furthermore, this technique not only transforms complex problems into a series of simpler ones but also
converges to the optimum with a small number of explorations, while also trying to minimize it. Much of
BO’s efficiency stems from the ability to incorporate previous knowledge about the problem to direct the
search process.

This technique rests on the famous “Bayes Theorem”, hence the name. Simply put, this theorem
defines the probability of an event, given prior knowledge of conditions that might be related to said
event. The prior represents the space of possible objective functions, that is, several options for the
function that is being optimized. During the optimization process, samples are collected and utilized
to update the prior, therefore forming the posterior, which represents the updated beliefs regarding the
unknown objective function. An acquisition function guides the search process and the most common
of these will be introduced later on.

Sequential Model Based Optimization. Sequential Model Based Optimization (SMBO) [36] is
a particular case of BO, which leverages a performance model to guide the search for the optimal
configurations/parameters. It is a sequential and iterative process through which models are fitted,
samples are collected according to the models’ predictions and the models are then updated with the
real values obtained through the experiments. SMBO behaves in the following way: (i) evaluate the
target function f at n initial points and build a training set S with the resulting {xi, f(xi)} pairs, where xi
are the evaluated points and f(xi) is the observed performance at xi; (ii) fit a probabilistic model M over
S; (iii) use an acquisition function to determine the next point xm to sample; (iv) evaluate f at xm and
update the model M with the observed performance; (v) repeat steps (ii) to (iv) until a stopping criteria
is met, for example, until the improvement over the current best obtained by further explorations is below
some tunable limit. This is a sequential process, as the name states, which, in some situations, and in
contrast with parallel optimization techniques, may slow down the search for the optimum. Moreover,
fitting an inaccurate probabilistic model over the initial samples can be disastrous, since it introduces an
enormous overhead of sampling until the model is restored and improved.

Gaussian Distribution. In most practical applications of the SMBO methodology [24, 7], it is as-
sumed that the performance predictions follow a Gaussian distribution. A Gaussian (Normal) distribution
is a continuous probability distribution which is used to represent real-valued random variables whose
distributions are not known. The Normal distribution is defined by a mean value µ and a standard devia-
tion k: f(x) ∼ N (µ, k). This assumption allows for tractable Bayesian modelling of functions and for the
derivation of closed-form solutions for many problems.

Common Acquisition Functions. The models fitted over the samples provide relevant informa-
tion regarding the untested configurations, raising the question of whether to explore highly uncertain
configurations, i.e., configurations where the real observation has a great deviation from the predicted
observation, or to exploit configurations that are predicted to have a high quality expected value. The
trade-off between these types of observations is balanced by the acquisition function that is utilized to
select the next point to sample. There are two common improvement based acquisition functions: the
Probability of Improvement (PI) [41] and the Expected Improvement (EI) [50, 38].

PI aims to maximize the probability of improvement (Equation 2.1), that is, to find the point x which
has the highest probability of being better than the current best, x∗, i.e.,

PI(x) = P (f(x) ≥ f(x∗)) = Φ

(
µ(x)− f(x∗)

σ(x)

)
(2.1)
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where Φ(·) is the normal cumulative distribution function, under the assumption that the model’s
predictions follow a Gaussian distribution with parameters (µ(x), σ(x)). PI has the drawback of only
exploiting, that is, PI discards points that do not have a high probability of being better than the current
best, independently of the uncertainty between their predicted and real values. Hence, PI falls prey to
the problem of solely sampling points which are certain to offer improvements, even if only marginal,
instead of gambling and trying a point which is more uncertain. A more uncertain point has a lower
probability of improving over the current best, but has the advantage of improving more over the current
best, when the real value is similar to the predicted one. There are variations of PI which consider a
tunable trade-off parameter ξ [65, 37] to balance exploration and exploitation.

EI, on the other hand, takes into account the magnitude of the improvement along with the probabil-
ity of improvement, thus balancing out the exploration/exploitation trade-off. The improvement of a new
point is defined as I(x) = max{0, ft+1(x) − f(x∗)} and can be computed due to the predictions of the
performance model fitted over past observations. The EI acquisition function (Equation 2.2) selects as
the next point to sample the one that is expected to give the maximum positive improvement, that is

EI(I) = E[I(x)] =

∫ I=∞

I=0

(f(x)− f(x∗))PM (x|x∗) (2.2)

where PM (x|x∗) represents the density function of the probability of improvement I on a normal
posterior distribution characterized by mean µ(x) and variance σ2(x). Therefore, and by assuming
that the performance predictions follow a Normal distribution, the EI can be computed in closed-form
according to Equation 2.3

EI(x) =

(µ(x)− f(x∗))Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0
(2.3)

where Z = µ(x)−f(x∗)
σ(x) and φ(·) and Φ(·) denote the Probability Distribution Function (PDF) and Co-

mulative Distribution Function (CDF) of the standard normal distribution, respectively. A particular case
of the EI is the constrained Expected Improvement (EIc) [29], which is particularly useful in situations
where there are constraints to the optimization problem, such as when one wishes to minimize the de-
ployment cost of a cloud application subject to additional QoS constraints. In this case, the EIc can be
computed as shown in Equation 2.4.

EIc(x) = EI(x)× P (x complies with the constraint) (2.4)

Besides these acquisition functions, there are also some others based on confidence intervals
(Equation 2.5) [19, 4], namely Lower Confidence Bound (LCB) and Upper Confidence Bound (UCB),
which consider the negative and positive maximum deviations from the mean, respectively. The UCB
algorithm has several different forms, due to the various possible distribution assumptions on the noise.
It is based on the principle of Optimism in the Face of Uncertainty, that is, the actions are chosen as if
the environment is as as nice as plausibly possible.LCB(x) = µ(x)− kσ(x) with k ≥ 0

UCB(x) = µ(x) + kσ(x) with k ≥ 0
(2.5)
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However, all aforementioned acquisition functions are greedy and thus consider only one step look-
ahead, which can lead to sub-optimal choices in the long term, as discussed next.

Bayesian Optimization with Look-ahead. Recently, researchers have proposed some new al-
gorithms [42, 43] for the purpose of using BO in fixed budget settings (with respect to the number of
explorations) so as to minimize some overall cost. These proposals improve and extend the base BO
method by attempting to leverage those greedy acquisition functions while combining them with look-
ahead heuristics so as to move towards a long-term reward. More precisely, BO is formulated as a
Dynamic Programming (DP) [5] problem. In order to do so, these approaches are based on three
common modules: a statistical model, used to represent the unknown objective function; a policy that
encodes how the model is updated when new information is gathered; a goal/final quantifiable reward
which defines the improvements attained by sampling a given point or ending at a certain state. For
instance, a reward function can be defined as the maximization of the acquisition function. However, DP
problems have some limitations. The problem of state explosion, which stems from the need to consider
all possible subsets of cardinality “look-ahead” at each iteration, leads to the problems of nested expec-
tations and maximizations. The DP recursive algorithm (Equation 2.6), which is used to compute the
optimal reward R∗ to go, works backwards, i.e., from the end state N up to the initial state n. As can be
observed in Equation 2.6, to use the algorithm one needs to compute the chained maximizations and
expectations for which there are no known closed-form expressions.

R∗N = max E
[
rewardN (stateN , sampleN , resultN )

]
Rk = max E

[
rewardk(statek, samplek,resultk) +Rk+1(statek, samplek+1, resultk+1)

] (2.6)

Interesting approaches proposed by recent work [42, 43] use the rollout technique [8, 53] to tackle
these problems. Rollout is a look-ahead algorithm that approximates the optimal reward to go by selec-
tively cutting off regions of the search space using a heuristic that avoids the prohibitive costs that would
otherwise be incurred by a provably optimal, exhaustive search strategy. Nonetheless, although the
nested maximizations problem is solved with this algorithm, there are still nested expectations. These
are approximated using Gauss-Hermite (G-H) quadrature [46]. This is a type of Gaussian quadrature
used to approximate integrals of the shape

∫∞
−∞ e−x

2

f(x)dx where N points are sampled, each with a
distinct weight wi and, therefore, we get

∫∞
−∞ e−x

2

f(x)dx ≈
∑N
i=1 wif(xi). In this work, we adapt these

approaches in order to reduce the cost of the exploration phase.

Stopping Criteria. Usually, and independently of the acquisition function, the exploration ends and
the optimum is considered to have been found when the improvement that can be achieved by sampling
new points is smaller than some given threshold, like it is done in CherryPick [2]. There are also further
stopping conditions, such as stopping upon unavailability of budget in fixed budget settings, like Lynceus,
or, for instance, when the EI decreased in the last 2 iterations, the EI for the k-th exploration was marginal
and the relative performance improvement in the k − 1-th iteration did not exceed some threshold [24].

2.2.1.2 Optimal Experimental Design

Another relevant methodology for self-tuning systems, e.g., Ernest [66], is OED [63, 61]. OED
establishes a methodology to determine which experimental runs should be performed to estimate a
statistical model in an optimal way. Optimality is defined with respect to some statistical criterion and to
a given statistical model. Roughly speaking, an optimal experiment design requires a smaller number of
experimental runs to estimate the parameters with the same precision as a non-optimal design, hence
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reducing the costs of experimenting. OED also works well in constrained design spaces, nonetheless, it
is not easy to generalize or to use with non-linear settings, which may be the case when predicting costs
of configurations in the cloud.

Experimental designs are evaluated through the use of statistical models. By computing the vari-
ance of an estimator we know by how much it is deviated from its mean value. Through the minimization
of its variance we get a more accurate estimator. According to the estimation theory for statistical models
with one real parameter, the reciprocal of the variance of an estimator is the Fisher’s Information [27] of
that estimator. The Fisher’s Information is a way of measuring the amount of information that an observ-
able random variable X carries about an unknown parameter θ of a distribution that models X. Due to
this reciprocity, minimizing the variance corresponds to maximizing the information. When the statistical
model has several parameters the mean of the estimator is a vector and its variance becomes a matrix.

Therefore, it is necessary to evaluate the covariance matrix of the estimator in order to choose
amongst several possible designs, select the optimal one and build a better model. There are sev-
eral optimality criterions, a popular one, for instance, is D-optimality [17], which seeks to minimize the
determinant of the covariance matrix.

2.2.2 Modelling Techniques

This section describes briefly the most relevant modelling techniques employed by state-of-the-art
systems and provides a more detailed explanation on the modelling technique employed for our system’s
performance model.

2.2.2.1 Decision Trees

A decision tree [11] is a decision-support tool that uses a tree-like graph/structure to make predic-
tions about or to classify events according to their likelihood and to previously gathered knowledge from
past experiments. A tree is composed of three types of nodes: decision nodes, that correspond to fixed
characteristics that determine each tree path; chance nodes, which are nodes associated with undefined
events that have some probability; end nodes, that correspond to the final possible predictions. Deci-
sion trees allow to go from observations, represented in the branches, to final conclusions regarding the
point’s target value and enable the construction of models for classification (deciding to which category
an input belongs) and regression (predicting the value of an input based on previous learnt values).

Each tree is grown in the following way: given the set of features and their values, decide which
feature is the most representative and apply it as the root of the tree; perform this step recursively,
until there are no more features left. The quality of each split is measured by the amount that each
feature improves the overall model performance, weighted by the number of observations the node is
responsible for: typical performance measures [49, 55] are the Gini Index or the Information Gain.

The Gini Index [11] measures the impurity of a set. A high value means the set is impure and
contains a plethora of different elements; a low value means the set is pure and possesses a majority of
elements of the same type. The best split is one that gives a subset with a very low Gini Index and the
other with quite a high index. The one with the high index will be iterated upon to perform the upcoming
splits.

The Information Gain [54] assesses the quantity of knowledge that is extracted from a particular
feature regarding the class or the final model prediction, that is, the contribution of that feature for the
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final output of the ensemble. Decision trees aim to maximize the Information Gain in order to achieve
the best splits and therefore higher model accuracy.

The use of a single decision tree to predict the value or the class of a given input may render the
learning method prone to overfitting issues, which leads to an inaccurate and imprecise model. In order
to deal with this issue, ensemble methods that resort to several trees for prediction have been developed.

Random Forests. A common technique proposed to deal with overfitting issues and that can be
applied to a plethora of Machine Learning (ML) learners is the Bagging Ensemble method [10]. It is
a collection of weak learners, trained over different subsets of the training set, and whose outputs are
reconciled through some form of voting or averaging. The most voted of these is the final prediction of
the ensemble.

A drawback of the general bagging algorithm is that the learners may be too correlated, since,
although they get different samples for training, the features considered when building them are the
same. This leads to the initial problem of overfitting of the decision trees: having the same tree repeated
n times will give the same output as having only that one tree.

The Random Forest [12] technique is conceptually similar to the Bagging Ensemble method. It
is applied to the specific case of decision trees and, just like the ensembles, is capable of doing both
regression and classification. This technique was developed to reduce the correlation between the
learners, that in this particular case are trees. It differs from the general bagging algorithm in that the
split point is chosen between a small subset of randomly picked features. This technique is called
feature bagging. This way, the trees will observe different features when deciding the splitting point and,
although they will always aim for the best point, it varies from tree to tree according to the selected
subset. Although decision trees are fast and easy to train, having a single decision tree may damage the
performance model. Its predictions are accepted without question because there is no way of confirming
their accuracy, i.e, they provide no guarantees on uncertainty. This is a drawback of decision trees
which can be reduced through the use of ensembles. With a group of trees, only one amongst several
predictions is outputted and therefore those further from a consensus are discredited. This leads to
more accurate predictions.

2.2.2.2 Gaussian Processes

A Gaussian Process (GP) [68, 56] is a stochastic process, that is, a set of random variables sampled
over time, that follows a multivariate Gaussian distribution. This distribution is a generalization of the
one-dimensional normal distribution to higher dimensions. While a Gaussian distribution is a distribution
over a random variable, a GP is a distribution over functions that has mean function m, usually set to 0,
and a covariance function K.

GPs are often used as a prior function for Bayesian Optimization (BO). After sampling a search
space, GPs are used to fit the sampled points in order to create a model. Each sampled point is
associated with a normal distribution and the group of all the distributions that are fitted to all the data
points makes the GP, which, in turn, creates the model. Predictions of the best next points to sample are
then made with the help of the uncertainty estimations provided by the model. Although the predictions of
a GP model follow a Gaussian distribution by nature, which obliterates the need to make this assumption
when applying such a model to the BO setting, GP models are tricky to implement [59]: not only are the
GP parameters hard to tune, but selecting the right covariance function (critical for good performance)
is also not trivial. Moreover, dealing with discrete features, as in the case of cloud (e.g., type of VMs),

12



introduces additional challenges with GPs, whose original formulation assumes that both the output and
input variables are continuous [28].

Current systems, such as CherryPick [2] and iTuned [25], use this technique to estimate a model
for predicting the best points to sample next.

2.2.2.3 Recommender Systems and Collaborative Filtering

Recommender System (RS) are systems designed to provide users with recommendations on items
they may like [26, 57]. In the past years, the use of such systems has increased, namely being used by
applications such as Amazon [45], Netflix [6, 30], Twitter [40] or Spotify. In order to know which items
to recommend, the system uses an algorithm, for example Content-Based Filtering or Collaborative
Filtering (CF) [60]. In this thesis, CF will be briefly explained since it is a technique used by several
state-of-the-art systems in the area of self-tuning for the cloud, like ProteusTM [24] and Quasar [21].

CF works by finding a set of users that are similar in terms of their past ratings to the user whom
we want to recommend something to. After these users have been found, their ratings for the items
are analyzed and the ones that have high ratings and that haven’t been rated by the target user, are
recommended to him.

The similarity between users can be computed in several ways. The most common two are the
Euclidean Distance Score and the Pearson Correlation Coefficient. The former corresponds to the
length of the line segment that connects two points. As an example, if we consider the ratings of two film
series, for instance Star Wars and Lord of the Rings, then each point would correspond to the ratings
that a certain user had given to both those movies. The closer two of those points are, the more similar
those users are likely to be. In order to be able to make comparisons, the distances must be normalized.
Alternatively, the Pearson Correlation Coefficient takes the common ranked items between two users
into account and considers the correlation between those data sets. The correlation can vary between[
− 1, 1

]
, where 1 is total linear correlation, 0 is no correlation and −1 is total negative correlation.

RS systems were shown to be very effective with very sparse info, making them a valuable asset for
all sorts of applications. However not only do they require offline availability of the gathered dataset (how
different applications perform on several configurations), which can be expensive/time consuming to
acquire. RS assume also to operate on normalized data, which is not easy to obtain in some scenarios.
For instance in the context of com. sys. optimization problems, where we don’t have an a priori idea
of what are the min - max performances of diverse applications (corresponding to users) in different
configurations (corresponding to movies) [24].

2.3 Self-tuning of Complex Systems

Broadly speaking there are two classes of self-tuning systems that are worth discussing: systems
for optimizing application specific parameters and systems for optimizing resource allocation in the cloud.
The former search for the best values for tuning parameters that are specific to those applications, for
example, the best values for the learning rate in a neural network training job. The latter focus on the
virtual resources that are needed so as to achieve higher QoS, for instance lower application running
time, at a lower cost. This section introduces several such state-of-the-art systems, starting with systems
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for optimizing application specific parameters in Section 2.3.1 and later discussing multiple systems for
optimizing resource allocation in the cloud in Section 2.3.2.

2.3.1 Tuning Application Specific Parameters

Analyzing state-of-the-art systems for tuning application specific parameters is relevant for this the-
sis not only due the techniques employed in the optimization process, but also since the configurations
considered this work encompass application specific parameters as well as cloud parameters.

iTuned. The first system that will be analyzed is iTuned [25]. The goal of this system is to automat-
ically find the best settings for database parameters. iTuned is composed of a planner, that determines
the next best experiments to run, and an executor that conducts the experiments.

iTuned’s planner chooses the experiments based on a technique called Adaptive Sampling. This
technique is very similar to the Bayesian Optimization (BO) technique described in Section 2.2.1.1.
In order to get the first samples, Latin Hyper-Cube Sampling (LHS) [62, 47] is used. This sampling
technique selects m samples from each of m sub-domains of a parameter. These sub-domains are
generated by partitioning the domain of a parameter into m equal sub-domains.

To pick the next experiment, iTuned starts by building a Gaussian Process (GP) model (c.f. Sec-
tion 2.2.2.2) on top of the initial samples. Then, the Expected Improvement (EI) is computed for the
next possible points to experiment. The point to experiment next is the one that exhibits the highest EI.
This process ends either when the user is satisfied with the improvements or when the improvement
offered by more explorations is below a certain threshold. Because the GP model may be flawed, a
cross-validation technique, like the one used by Ernest [66], is used to check how trustworthy the model
is. Therefore, the EI threshold is only utilized to stop the search when the cross-validation verification
guarantees that the model is sufficiently good.

The executor runs experiments either on resources specified by the user for that effect or on un-
derutilized resources of the database so as not to harm the production workload. To determine whether
the resources are underutilized or not, the following policy is employed ”if the CPU, memory, and disk
utilization of the resource for its home use is below 10% (threshold t1) for the past 10 minutes (threshold
t2), then the resource can be used for experiments”. iTuned’s efficiency can be improved by adding
some features such as eliminating parameters that do not have a significant impact on the performance,
focusing more on those which are deemed critical, and using several resources in parallel for running
experiments. A drawback of this system is that the exploration cost is not taken into account.

ProteusTM. Another system for self-tuning of applications, that aims to tune Transactional Memory
(TM) implementations for specific workloads and that, just like iTuned [25] doesn’t consider exploration
cost, is ProteusTM [24]. This system is composed of two components: PolyTM, which is a TM library
that dynamically adjusts itself and changes TM implementations according to current requirements and
RecTM, that is in charge of finding the optimal TM configuration for a specific workload.

PolyTM has a large variety of TM implementations. Having concurrent transactions executing dif-
ferent TM implementations is usually not safe, therefore, for transactions to safely change the TM im-
plementation they are using, PolyTM defines a policy which prevents two different transactions from
executing two different TM implementations in parallel.

RecTM has three elements: a recommender, that rates unexplored target configurations according
to similar explored configurations; a controller, that chooses the configurations to be tried and notifies
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PolyTM to make changes accordingly; a monitor, which controls the quality of the explored configurations
and that informs the controller of workload changes so as to initiate new optimization phases.

The recommender uses Collaborative Filtering (CF), described in Section 2.2.2.3. In order to rate
configurations a Key Performance Indicator (KPI) is used. This indicator needs to be normalized because
there is no information as to the maximum value it can reach for a given workload. To solve this problem,
the authors of ProteusTM [24] developed a new technique called rating distillation. This technique maps
KPI values to a known scale so that CF can use them to rate configurations.

The controller uses BO, with EI as acquisition function, to select the next point to sample. The
samples are modelled using CF and, to ensure there is a balance between exploration and exploitation,
the search stops when:

• the EI is lower than some threshold;

• the performance achieved in the previous exploration was lower than some bound;

• the EI of the best experiments to choose decreased in the previous 2 experiments.

The monitor, on the other hand, gathers KPIs from the current implementations in order to provider
some feedback to the controller. By monitoring the KPIs it also detects workload changes. If the per-
formance indicator for the current workload drops suddenly and significantly, the monitor notifies the
controller of the need for a change in the TM implementation.

The methodologies used by systems like iTuned [25] and ProteusTM [24] can be applied for tuning
the configuration of any system (including cloud based systems). However, they do not take into account
specific challenges of cloud systems, which are targeted by systems like CherryPick [2], PARIS [69] or
Quasar [21]. These systems will now be described.

2.3.2 Optimizing Resource Allocation in the Cloud

Several systems for optimizing resource allocation try to solve the problem: ”In which instances
should a given workload be deployed in order to maximize either performance or resource utilization?”.
This problem can be addressed from the perspective of the users, directing the aim at finding the best
configurations for deployment of those users’ applications, i.e. the cheapest ones and that offer the
best performance with respect to some metric, or from the perspective of the cloud providers, trying to
achieve an efficient utilization of available resources.

Systems focusing on providers tend to disregard exploration and deployment costs, while focusing
on finding which resources are needed for each workload and how the several workloads that are running
on the same machine may interfere with each other. An example of such a system is Quasar [21].

Quasar. Quasar tries to maximize the utility of cloud facilities by determining the resources needed
for each workload. When a workload is received, data is collected according to four different cate-
gories: scale-up (number of resources per server), scale-out (number of servers), heterogeneity (types
of servers) and interference.

When the profiling results are ready to be used, CF techniques, as described in Section 2.2.2.3, are
used for classification purposes. The system compares the profiling results with the available labels so
as to decide how to fully characterize the workload. This characterization is then used to map the work-
load to the available machines, following a policy of allocating the least amount possible of resources
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for a given job. This policy allows the search space to be reduced, since the biggest resources are ex-
amined first. If smaller resources were analyzed at the beginning, there would be an enormous number
of combinations of those resources that would satisfy the constraints. By starting off with the biggest
resources, fewer combinations exist, because fewer resources are needed for the deployment.

As the system uses CF techniques, the more jobs it analyzes, the more it learns and the better it
can get over time. Moreover, it tries to maximize resource utilization. However, not only the allocations
that it suggests may not be close to optimal when it comes to allocation costs, but also there is no
differentiation between reserved and on-demand resources. As a result, to overcome these limitations,
researchers suggested HCloud [20]

HCloud. HCloud is a system for determining which jobs should be allocated to on-demand re-
sources versus reserved resources. In such hybrid systems, as two types of resources are used, know-
ing how many of each should be acquired is a problem. Another problem is deciding when to map jobs
to the on-demand resources versus to the reserved resources. To address the former problem, the au-
thors use Quasar’s [21] estimations for resource needs and measure a job’s sensitivity to interference,
by analyzing its quality, in the same way that is done in Tarcil [22]. As for the latter problem, a policy was
defined to map jobs between the resources. This policy was built on top of three principles:

• Reserved resources are utilized before on-demand resources;

• Applications that can be deployed on on-demand resources ought not delay the scheduling on
interference sensitive jobs;

• The utilization limits of the reserved instances should be adjusted dynamically so as to reduce the
queuing.

Therefore, the dynamic policy that was built devises two limits. To begin with, a soft limit, below
which all jobs are mapped to reserved resources. When this limit is reached, the system starts to
differentiate between interference prone and insensitive jobs. To make this distinction, the target quality
the jobs need and the quality of previously obtained on-demand resources are calculated. If the quality
of the on-demand instances is higher than the one needed by jobs, then they are mapped on on-demand
resources. Otherwise, they are deployed in the reserved resources. The second limit that is defined by
the policy is a hard limit which defines when jobs need to be queued before reserved resources become
available. The soft limit is adjusted based on the queuing ratio.

Although this system already takes into account both types of resources, it is still geared towards
maximizing efficiency and utilization of resources, which is beneficial for providers, while still neglecting
allocation and deployment costs for users.

Proteus. Directed towards users are systems like Proteus [34], whose goal is to exploit the avail-
ability of transient excess idle resources that providers make available. These resources can be revoked
when cloud providers need them back.

Proteus considers as target application domain the so called parameter server framework. This
is a popular approach for distributed machine learning jobs, which subdivides available resources in
workers and servers. The workers share the current parameter values and the training data is divided
between them so that they can execute applications concurrently and adjust model parameter values.
The servers keep the current values and the workers interact with them to fetch and update these values.

The architecture of Proteus comprises two main components: AgileML, a reconfigurable parameter
server system, and BidBrain, which is responsible for managing resources.
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AgileML takes care of promoting and demoting nodes according to their reliability, by working in
three stages. Initially, a list of the reliable and transient nodes is received. Transient nodes are those
that can be revoked, namely spot instances in the case of Amazon Web Services (AWS) (c.f. Sec-
tion 2.1), while reliable resources are all those upon which the user has full control, i.e., has access to
the resources until he shuts them down.

In stage 1, workers are located in every machine, but only reliable machines host servers. In this
way, in the event that transient machines are revoked, there are no information losses because all the
data is kept in the reliable machines. However, when the ratio of workers to servers becomes too
high, there is a network bottleneck, since the servers cannot deal with all the requests from the worker
machines. To prevent this, the system moves to stage 2.

In the second stage, some transient machines become active servers and reliable machines be-
come back-up servers. Now the workers interact with the active servers, that push all the information in
bulk to the back-up servers. Once again, recovery from revocations and node losses is made possible
because all the information is stored in the back-up servers.

In stage 3, all workers are removed from back-up servers. This stage is necessary because running
workers in the same machines as back-up servers was found to cause straggler effects.

BidBrain, Proteus’ other component, keeps information about current and historical market prices
and is responsible for deciding when new resources should be acquired. Its primary objective is to
minimize cost per unit work. To estimate this cost, BidBrain considers the probability of eviction, which
is translated into free computing time, since when a resource is revoked, the price paid in the beginning
of the billing hour is refunded. BidBrain also considers the amount of expected useful compute time,
that depends on overheads of evictions and additions. BidBrain makes resource allocation decisions
periodically (every two minutes) and a few minutes before the end of each billing hour. Each time a
decision is pending, a set of instances is analyzed and if an instance lowers the overall expected cost of
the set, it is acquired.

Although this work is a good effort towards aiding users in their choices, it also exhibits some
drawbacks. It strives to minimize costs of a specific framework (parameter server), also exploiting spot
instance market dynamics. However, it does not tackle the problem of identifying the most efficient
platform and application level configurations to be used. For instance, Proteus [34] does not optimize
the choice of the irrevocable reliable machines to be used as servers.

Ernest. Another class of user-oriented systems, but that are focused on irrevocable resources,
are systems like Ernest [66]. These systems take advantage of the fact that multiple jobs have similar
structures in terms of computation and communication, hence allowing performance models to be built
based on the behavior of those jobs on small samples of data. In order to instantiate the model, the OED
technique described in Section 2.2.1.2 was used to decide which experiments to run, so as to achieve
near optimal results, i.e. to build an accurate model, as fast as possible.

To determine how accurate the model is, and because there is not much data available, a cross-
validation technique is used. Thus, suppose the model has m training data points. To evaluate the
model, the m data points are divided into two subsets: a validation set, with 1 data point; and a training
set, with m−1 data points. After the division, the training set is used to train the model and the validation
set tests it. This process is repeated m times and the results are averaged to produce a final estimation.

The models used by Ernest to characterize applications’ performance are specific for analytic jobs
and capture only the size of the job (i.e., amount of data to be processed) and the number of machines
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used. This limits the applicability of Ernest’s approach both in terms of application domains and of
configuration parameters that it can optimize. Also, the optimality criterion used by Ernest assumes that
exploring any configuration has the same cost, which is clearly not the case in cloud settings.

CherryPick. CherryPick [2] leverages Bayesian Optimization (BO), described in Section 2.2.1.1, to
build performance prediction models that are used to predict high quality configurations, i.e., configura-
tions that minimize cloud usage costs and guarantee application performance. At first sight, this may
seem like an easy task, however, not only is it difficult to find the right balance between resource prices
and the running time of the machines (sometimes the time that is saved by acquiring one more machine
may offer more gains than what it costs to get that machine and vice-versa), but also there is a restricted
amount of information (each experiment has a cost, hence there are limited runs of cloud configurations
that are afforded to search for the model).

The objective function that is optimized by the system minimizes the deployment cost of a given
configuration, expressed as a function of the time the machines are up and of how much they cost per
hour, with a time constraint to guarantee application performance. GPs, c.f. Section 2.2.2.2, are used
as a prior function to model the data points and EIc is used as acquisition function.

The system begins by sampling three initial points using a quasi-random sequence, which will give
an estimate of the cost function that is to be minimized. Then, a confidence interval is computed with BO
and the next best points to experiment, according to their EIc, are selected. Finally, if the improvement
that can be achieved with further exploration is less than some defined threshold and if a sufficient
number of configurations have been explored, the best configuration is considered to have been found.
If not, this procedure is repeated until those conditions are met.

Although CherryPick [2] minimizes the deployment cost for users and doesn’t require a model for
each instance type, it has some issues. First, the cost of exploring all configurations until the best is
found is not taken into account directly by the model. Also, the search space considered in CherryPick’s
evaluation is relatively small, consisting of only 66 configurations. Even so, CherryPick requires explor-
ing 6-9 configurations, corresponding to approximately 10% of the whole search space. Considering
the data reported in Table 2.1, and the possibility of including in the optimization process additional ap-
plication level configuration parameters, it is reasonable to expect that systems like CherryPick would
require exploring a significantly larger number of configurations in order to discover the optimal configu-
ration in a significantly larger search space. Furthermore, the bootstrapping of the performance model
is error prone, since it is done by sampling random configurations. Should these configurations be bad
(expensive and/or with low quality), the initial model is either poor, already too expensive or both.

PARIS. A different approach to the same problem is PARIS [69], that also provides performance
estimates with minimal data collection but, instead of BO, uses the random forest technique described
in Section 2.2.2.1.

Initially, the user provides a representative task of the workload, the desired performance metric
and a set of candidate VM types. PARIS then outputs predictions for the costs and performances of the
instances provided by the user. To make these predictions, PARIS must have knowledge of the resource
requirements of the workload and how it is affected by the different VM types. However, deploying this
workload on all machines is too expensive. So PARIS divides the modelling task in two phases.

There is a first offline phase for extensive benchmarking of various workloads with each VM type
which only runs one time. The benchmarking collects detailed system performance metrics, fitting broad
categories such as CPU utilization, network utilization, disk utilization, memory utilization and system-
level features. Each time there are new instance types, the benchmark only has to be rerun on those

18



new instances. Once all this data has been collected, a series of decision trees are trained for each
workload and a forest is built.

The online phase runs the representative task provided by the user on 2 pre-defined reference VMs
and collects performance metrics and resource usage information. When the trees have been trained
according to the user specified performance metric, the information collected during the profiling phase
and a VM configuration are fed to the forest, which outputs the mean and 90th percentile performances.
This process is repeated with all candidate VM types. To obtain the cost of choosing those instances, it
is assumed that the cost is a function of the performance metric and of the cost per hour of that instance,
which is assumed to be known.

Thus, PARIS [69] produces a performance-cost trade-off map that aids users when choosing VM
instances. The main drawbacks of PARIS’ methodology is that its accuracy is strongly affected by the
correct choice of reference configurations and by the representativeness of the data in the training set.
Moreover, building an accurate performance model requires more data, which is difficult to collect in this
setting due to the expensiveness of the explorations. Once again, the only cost that is considered is the
deployment cost, while in terms of exploration nothing is taken into account directly in the model.

Scout. Wishing to tackle CherryPick’s [2] and PARIS’ [69] drawbacks, researchers proposed
Scout [35]. Scout was developed to find configurations that optimized a workload for either least cost
or shortest execution time. It gathers the strong features of both CherryPick and PARIS. While from
CherryPick it takes the search-based method to accommodate mispredictions and performance vari-
ance in the cloud, from PARIS it takes the gathering of historical data (offline benchmarking phase) to
understand the preferences of a workload. This way, Scout is not affected by the model bootstrapping
problem and the collection of historical data allows it to better infer about workload preferences.

Since building an accurate model requires collecting expensive data, Scout builds a relaxed model to
reduce this overhead. Instead of predicting the performance and cost of a given workload in a particular
configuration, this model predicts the relative performance of two configurations. Afterwards, to update
and improve the model, a search-based method rummages the space of unexplored configurations for
promising configurations and better regions. Promising configurations are the ones that have the highest
probability of having a lower execution time or deployment cost than the configurations explored so far,
whereas searching in a better region speeds up the discovery of a (near-)optimal configuration.

The search process learns from the observations collected along the search path and from perfor-
mance data of other workloads. This previous data comes from previous runs and is embedded in the
historical data. Leveraging this knowledge allows Scout to reduce the number of explorations that are
made. To determine different choices for the next step, the search process only requires knowing “how
likely is one choice better than some other(s)” (relaxed model). Configurations are classified resorting to
a technique called pair-wise prediction modelling and placed in discrete classes (“better”, “fair”, “worse”)
according to their probability of being better than the best so far (Probability of Improvement (PI)). The
search process stops either when it can no longer find a better configuration, i.e, when the probability
of improvement over the current best is below a user-defined threshold, or when, due to inaccuracies in
the model, it can not find a better configuration.

Scout therefore only optimizes either for least cost or shortest time and tries to minimize the number
of explorations. However, exploring less does not imply that the cost of those explorations is lower than
if more (and better) explorations were made.
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Technique Pros. Cons.

Optimization
Techniques

Bayesian
Optimization

• Allows balancing exploration
and exploitation
• Transforms complex problems
into a series of simpler ones

• Experiments are run sequentially
• Getting the function model wrong
can be catastrophic

Optimal
Experimental

Design

• Reduces the costs of
experimentation
• Works well in constrained
design spaces

• Not easy to use for general
or non-linear models

Modelling
Techniques

Decision Trees • Fast and easy to train • No information on uncertainty

Gaussian
Processes • Output is Gaussian by nature

• Not trivial to select the right
covariance function, which is crucial
for good performance
• Hyperparameters are hard to tune

Recommender
Systems

• Shown to work with very
sparse information

• Require availability of offline data
• Designed to operate over
normalized data

Table 2.3: Summary of the pros. and cons. of the reviewed optimization and modelling techniques

2.4 Discussion

This section discusses the main conclusions drawn from the analysis of the related work, both in
terms of relevant state-of-the-art systems and in terms of optimization and modelling techniques. With
respect to the former, we discuss their missing features and summarize (Table 2.4) their optimization
goals so far and the techniques employed. In terms of the latter, we analyze the advantages and
shortcomings of each technique, summarized in Table 2.3, to further motivate our choices.

For the purpose of promoting and justifying our selection of optimization and modelling techniques,
we present in Table 2.3 a summary of all reviewed techniques together with their advantages and draw-
backs. Despite no technique being exempt from drawbacks/limitations, there are some which present
more complex challenges and which were less suitable to attain our proposed goals. For instance, re-
garding the optimization techniques, OED was not suitable since our models were non-linear. On the
contrary, BO’s disadvantages did not pose such a problem as obtaining an inaccurate model is always
a possibility with any technique and running experiments sequentially was not an issue. In terms of
modelling techniques, the disadvantage of Decision Trees are easily suppressed through the use of en-
sembles, unlike the disadvantages of the other two techniques which require not only more testing to
tune parameters (for GPs) but also finding a way to normalize data which is unkown a priori (in the case
of RSs).

The following paragraphs summarize the main features of the reviewed state-of-the-art systems,
namely discussing their shortcomings and missing features. To this end, Table 2.4 classifies the systems
that were analyzed according to the following dimensions:

• whether they are user-centric or provider-centric;

• their optimization goal;

• the techniques they use to reach the optimization goal;

• whether they take advantage of spot markets;

• whether their model takes into consideration the deployment cost of the configuration;

• whether their model takes into consideration the cost of exploring the configurations.
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Orientation Optimization
Goal

Optimization/
Modelling

Technique(s)

Spot
Market

(Historical
Data)

Considers
Deployment

Cost

Considers
Exploration

Cost

Proteus User
Minimize

cost x job done
at steady state

Time-series
based

prediction
X X —

Scout User
Minimize
execution

cost or time

Classification
techniques
(pair-wise
prediction)

X X —

CherryPick User

Minimize
execution cost

subject to a
performance

constraint (time)

Bayesian
Optimization — X —

Paris User

Minimize generic
function of

performance metric
and VM cost

Random
Forest
Models

— X —

Ernest User Minimize
estimation error

Optimal
Experimental

Design
— — —

Quasar Provider
Maximize resource
utilization subject

to QoS constraints

Classification
Techniques

(Collaborative
Filtering)

— — —

HCloud Provider

Determine which
jobs should be

mapped to reserved
versus on-demand

resources

Uses Quasar’s
results

(classification
techniques are

implicit)

— — —

Table 2.4: Comparison between the state-of-the-art system implementations

Overall, although in the literature a number of useful ideas and powerful modelling techniques have
been proposed, none of the existing systems attempt to identify the optimal balance between the cost
of exploration and the gains achievable during the exploitation phase.

Most of these systems build prediction models to guide the exploration of the search space. The
guided exploration aims to find the optimal configuration faster, i.e., to reduce the number of configura-
tions that are evaluated. However, to explore relevant configurations, the model needs to be precise and
accurate and, to build such a model, real data is necessary. Nevertheless, in the cloud setting, gath-
ering data to build accurate performance models is quite expensive, since each time an application is
deployed in a configuration, the user incurs a cost. This implies there is a trade-off between exploration
and model accuracy.

Furthermore, and although some systems [35] do try to reduce the number of explorations, given
the high heterogeneity of the configurations’ costs, exploring a smaller number of configurations does
not necessarily translate into a cost reduction. For instance, consider a scenario with two different
exploration options:

• Option 1) explore 10 configurations with cost 1 and 5 configurations with cost 10. This yields a
total of 15 explorations with a cost of 60;

• Option 2) explore 5 configurations with cost 15 and 5 configurations with cost 1. This yields a total
of 10 explorations with a cost of 80.

Option 1, which explores 5 configurations more than option 2, is definitely preferable cost-wise.

Additionally, and although these systems find a near-optimal configuration for deployment of user
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specific workloads, and some of them, such as CherryPick [2] and Scout [35], even consider the deploy-
ment cost of the configurations in the model, none is concerned with the exploration cost (Table 2.4),
which can be quite expensive.

Besides this, existing BO approaches have two limitations. First, they do not take into account the
cost of the sampling phase. The acquisition function may suggest to sample very expensive configura-
tions, resulting in a highly expensive initial training phase. Second, they implement a “myopic” search
strategy. At each iteration, BO selects the point that maximizes the acquisition function. Thus, this ap-
proach falls prey to the same shortcomings of greedy search approaches [41, 50, 19, 4], i.e., getting
stuck in local maxima.

Summary

The increasing use of cloud services and the competition between providers led to an increment
in the number of machines available for deployment of jobs and applications by the users. The search
space of current machines available was shown in Section 2.1, namely in Table 2.1. The availability
of such a broad choice of VM configurations, whose selection may have an impact also on the tuning
of internal parameters of the application (e.g., the choice of the training policy for a distributed ML
platform is typically affected by the scale of the underlying cluster [52]) faces cloud users with a complex
optimization problem, motivating the need for automatic solutions.

Furthermore, since the performance of an application on a given configuration is not known a priori,
finding the optimal configuration requires testing and experimenting several configurations, which is both
time consuming and expensive.

Hereupon, researchers developed the current self-tuning systems for optimizing the configuration of
complex (cloud) systems that were analyzed in Section 2.3. Although these systems find a near-optimal
configuration for deployment of user specific workloads, and some of them, such as CherryPick [2], even
consider the deployment cost of the configurations in the model, none is concerned with the exploration
cost, which can be quite expensive.
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3Lynceus
To tackle the limitations identified in Chapter 2 and to fill the gaps left by previous self-tuning sys-

tems, this chapter introduces Lynceus, a system for self-tuning of cloud configurations for deployment
of user-specific applications. The name Lynceus comes from the homonimous Argonaut who served as
lookout on the Argo and who was said to have excellent eye-sight, enabling him to see through walls,
trees, skin and the ground.

Previous systems were focused only on maximizing the quality of the final/steady state configura-
tion, without keeping into account the cost dynamics associated with the exploration of applications’ and
platforms’ configurations in the cloud. Lynceus, instead, is a long-sighted, budget-aware approach that
aims to strike an optimal balance between the cost associated with the exploration phase and the qual-
ity/cost of the final configuration identified by the self-tuning process. This is achieved by selecting as the
next configuration to explore the one that maximizes the efficacy and efficiency of the overall sampling
phase, without overspending the available budget B. To this end, at each iteration, Lynceus speculates
not only on the outcome of sampling a single configuration, but on the outcome of sampling several
configurations according to different sequences of future explorations (which we call exploration paths).
The efficacy of this approach stems from the fact that instead of simply pursuing the identification of the
best configuration at each iteration (like greedy strategies do), it finds the configuration x that exhibits
the best (tunable) trade-off between cost at runtime and exploration cost.

The remainder of this chapter is devoted to describing:

• the design challenges we had to overcome during the process of implementing Lynceus;

• the several components of Lynceus’ architecture, specifying their implementation details;

• the missing features and future system improvements and optimizations.

3.1 Challenges

Similarly to state-of-the-art systems [2, 35, 24], Lynceus builds a performance model to guide the
exploration of the search space. This model is iteratively updated and improved through the exploration
of new and unexplored configurations. Previous systems (e.g. CherryPick [2] and Ernest [66]) strive to
minimize the number of explored configurations, neglecting the heterogeneity of their costs. Conversely,
by keeping exploration budget and exploration cost explicitly into account, Lynceus plans the exploration
phase with the ultimate goal of maximizing the quality of the identified solution given the budget actu-
ally available for exploration. Below, the main challenges encountered while building this system are
reported:

• Deciding how to select the configurations to explore in a way that would not only allow for the most



explorations but also that assured that each exploration was the most beneficial for the model at
that moment;

• Creating datasets for training, testing and evaluating the system. There are no well known and
standard benchmarks publicly available and not only does building these datasets cost money, but
also poses quite a challenge when it comes to selecting the most relevant application specific pa-
rameters to optimize. The goal when building these datasets was selecting the most representative
and influential parameters for the application’s performance;

• Creating realistic heuristics for an early timeout policy, so as to stop the exploration as soon as the
configurations are deemed unworthy, either for being too expensive or for not complying with the
user imposed constraints.

Throughout the following sections, we discuss in detail the approaches undertaken while developing
the Lynceus system. We start by providing an overview of Lynecus in Section 3.2. Section 3.3 describes
the core optimization algorithm of Lynceus. Finally, Section 3.4, concludes this chapter with a set of
relevant optimizations to improve Lynceus’ performance.

3.2 System Overview

Lynceus is a system for optimizing the choice of configurations to execute cloud applications.
Lynceus explores the space of configurations in search for the optimal one, which is defined as the
one with least global cost (exploration cost + exploitation cost) and that complies with the user-defined
QoS constraints, under two additional type of constraints: (i) a constraint defining the available budget
to be used for the exploration phase; (ii) user-specified constraints on the QoS levels that should be sat-
isfied by the chosen configuration (e.g., the maximum training time of a machine learning model should
be below 10 minutes and ensure at least 85% accuracy).

Lynceus resorts to an iterative process to build, update and improve a performance model so that
in the end an optimal configuration is selected and outputted to the user. Abstractly, it can be thought
of as a sequence of blocks that interact with each other and with the external provider, as illustrated by
Figure 3.1. At each moment/iteration, Lynceus is characterized by a state. This state is composed by
the available budget for experiments, two sets of configurations (the explored and the unexplored sets)
and the last configuration explored. Each time there is a new experiment, the state is updated.

Each block in Figure 3.1 represents a phase of the self-tuning/optimization process:

• Sampler: executes upon start-up. Selects k random configurations which are then sampled and
executed to collect initial performance and cost measurements. These measurements constitute
the initial training set and act as baselines upon which the performance model is built. The se-
lection method of these configurations, in the current prototype, is a uniform random strategy, for
simplicity, although it would be relatively straightforward to incorporate alternative initial sampling
policies, e.g., Latin Hyper-Cube Sampling (LHS) [62, 47], that guarantees a more uniform initial
selection of configurations among the search space;

• Modeler: consists of the performance model which is built on the basis of the initial samples
gathered by the Sampler. The model is then updated and improved iteratively, based on the
information received regarding the new explorations’ performance and cost data. This continuous
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Figure 3.1: Lynceus system overview

process ensures the accuracy of the model and, therefore, more precise predictions concerning
the next most beneficial explorations. This guided exploration permits a cheaper exploration phase
which takes the most advantage of the available budget;

• Picker: incorporates the acquisition function (Section 2.2.1.1) that, by analyzing the performance
model, selects the next configurations to explore. The Picker then informs the Executor of the
configuration that is to be tested;

• Executor: connects to the selected cloud provider and runs the scripts to execute the user spec-
ified application on the configuration that the Picker selected for exploration. Upon completion,
all the information concerning the experiment is forwarded to the Updater. However, deciding for
how long to run the experiment and when to stop it is quite a challenge, since running the job until
completion might take too long, and since there is no way to know how long it will take to achieve
a given performance threshold;

• Updater: after receiving the information regarding the new experiment, it updates: the available
budget, subtracting from the current budget the cost of the experiment; the current configuration,
which becomes the one that was just explored; the set of explored configurations, adding the
current one; the set of unexplored configurations, removing the current one. Then, it informs the
Modeler of the performance and cost of running the application on the current configuration.

The following section describes each of Lynceus’ components in more detail, fully explaining the
algorithm and how the several challenges that arose during its development were dealt with.
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Algorithm 1 Lynceus

1: function LYNCEUS
. Sample init configs and update state variables

2: S ← initS()
3: while B > 0 ∧ U 6= ∅ do
4: (c, Uc)← NextConfig(S, h)
5: if (c == null ∨ Uc ≤ ε) then . Stop exploration
6: return argmincost(c){S}
7: else . Update model and state
8: cost(c)← sample(c)
9: E ← E ∪ {c, cost(c)}

10: B ← B − cost(c)
11: Uunex ← Uunex \ {c}
12: return argmincost(c){S}

3.3 The Algorithm

This section fully describes Lynceus. Firstly, in Section 3.3.1, we present an explanation of a sim-
plified version, which is not feasible in a real setting due to the magnitude of the search space. Later on,
in Section 3.3.2, we report the full algorithm and the heuristics utilized to render the algorithm useful in
practice.

3.3.1 General Description

The overall idea of Lynceus consists of finding the next best configuration to sample based on the
current state of the system. Algorithm 1 shows the overall flow of the system. The Sampler is repre-
sented by line 2, which corresponds to the initial bootstrapping of the model. Each next best configuration
is deployed and the state of the system is updated. Lines 9-11 of Algorithm 1 can be interpreted as the
Updater. There are several possible ways for the exploratory process to come to an end: there are no
more configurations to explore, which can happen either because all configurations have been explored
(this corresponds to a brute force search that in practice never happens) or because none of the unex-
plored configurations is considered feasible; the improvement attained by further explorations is lower
than a tunable threshold; there is no more budget available for further explorations. Whenever neither of
these conditions is verified, the iterative search and improvement goes on and the Picker (represented
by line 4 in Algorithm 1) comes into action to select the next configuration to explore. Otherwise, the
exploration stops and the optimal configuration xopt is considered to have been found.

Assumptions. In order to fulfill the goal of finding the optimal configuration, Lynceus builds a cost
model of an application when executed in the cloud in different configurations. This application may be,
for instance, a graph analysis process or the training of a model based on machine learning techniques.
It is assumed that the job takes an unknown finite time to finish and that this time depends on the
chosen configuration, not only in terms of VMs (number, types and sizes), but also of internal application
parameters, such as the batch size and the learning rate in the case of machine learning applications.
Furthermore, in this work we assume that the cost of executing the job in a given configuration is directly
proportional to the time during which the resources (VMs) are allocated and that the costs per unit of
time (usually seconds) are known a priori. Therefore, by having the model predict the expected cost of
a given job in a particular configuration, we can automatically derive an estimate of the time it will take
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to run that job until completion or until achieving a good enough accuracy, for example in the case of a
neural network training job.

Bootstrapping the Algorithm. The search process is bootstrapped by the Sampler through the
exploration of k initial samples, selected randomly from the set of unexplored configurations Uunex (a.k.a.
training set). These samples are used to build the Modeler, that is, to construct the base cost model for
future predictions of the configurations to explore. Building on this ground model, the Picker, along with
the Executor and the Updater, execute the refinement process (Algorithm 1, line 3) of the Modeler.

State of the System. The state at each iteration i is defined by the quartet Si = 〈Bi, ci, Ei, U iunex〉,
where Bi is the available budget at that moment to spend on further explorations, ci is the current
configuration, Ei is the set of explored configurations (a.k.a. test set) and U iunex is the set of unexplored
configurations (training set).

Budget Considerations. As previously mentioned, the algorithm is aware of the budget B avail-
able at each iteration for further exploration and refinement of the model. Thus, Lynceus knows the
exploration process must come to an end when it runs out of budget. At each iteration i, the cost of
exploring ci is deduced from the available budget, Bi = Bi−1 − cost(ci).

Model, Test and Training Sets. In each iteration, the Executor deploys a configuration in the cloud
and collects performance and cost measurements. The Updater then proceeds to update the state of
the system, namely adding the configuration to the set of explored configurations Ei (test set), taking it
from the training set and subtracting the cost of the exploration from the budget. Each sample consists
of a tuple 〈cx, cost(cx)〉, where cx denotes a given configuration and cost(cx) is the cost of sampling the
job on that configuration. This information is sent to the Modeler to update and refine the model.

In practice, consider U i−1unex the set of unexplored configurations (training set) at the end of itera-
tion i − 1. At iteration i, the algorithm ought to select a configuration ci ∈ U i−1unex that, along with the
corresponding exploration cost, will be added to the test set, i.e., Ei = Ei−1 ∪ 〈ci, cost(ci)〉.

Choice of the Next Configuration. One of the biggest challenges is the selection of the next
configuration ci ∈ U i−1unex to be explored in each iteration i. Unlike previous work, which leverages
greedy search strategies like Bayesian Optimization (BO) [2] and that does not consider the exploration
cost, Lynceus is a long-sighted, budget-aware approach for optimizing the selection of configurations for
execution of user-specific applications. Therefore, and to look-ahead, the Picker resorts to ideas from
recent work on the field of BO with limited budget [43, 42] which are based on simulating the future and
creating a path of configurations to explore.

The rationale behind these algorithms is that perhaps it may be better in the long run to explore, at
a given moment, a configuration c2 which is worse than the best configuration c1. The reason for this
is that, since the model changes in accordance with the exploration results, i.e., is updated differently
depending on the explored configuration, the worse configuration c2 can lead to configurations c2.1 and
c2.2 which are better than the configurations c1.1 and c1.2 that would be explored after c1. Thus, select-
ing ci should contemplate not only the cost of trying that configuration but also the expected contribution
brought by the experiment to improve the quality of the model. When calculating this contribution, the
algorithm considers not only the contribution brought by the tuple 〈ci, cost(ci)〉, but also the contribution
brought by the following d simulated iterations i + 1, i + 2, . . . , i + d. In other words, an in-depth esti-
mation of the expected contribution is performed, gauging the effect of the choice up to d configurations
in the future. Thus, we denote the expected contribution of a certain exploration path of depth d as
path contrib(ci, ci+1, . . . , ci+d).
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Algorithm 2 Choice of the Next Config

1: function NEXT CONFIG(S,depth)
2: M ← ERT(S) . Train a new Ensemble of Random Trees
3: V ← {c ∈ Uunex : P (cost(c) ≤ Bi) ≥ β} . Configs that comply with the budget
4: if V = ∅ then return (null, 0) . Stop exploration
5: else
6: ∀c ∈ V, (Uc, Cc) = UTILITY(S, c,depth)
7: return (c, Uc) : argmaxc∈V {Uc/Cc}

Ideally, in each iteration, the algorithm would compute and explore all the exploration paths of
depth d, considering all the unexplored configurations. Following this approach, the number of paths
to analyze would be of the order of |Uunex|d. For each path, the algorithm would compute the expected
contribution of that path to the model. Later on, it would apply to each path a function F that weights
the path’s contribution with its cost path cost(ci, ci+1, . . . , ci+d). Finally, the configuration that is chosen
is the one that maximizes F and state attributes are updated. However, and taking into consideration
the numbers displayed in Table 2.1, the training set U is too wide for an exhaustive exploration of all
possible paths of depth d, which would be too expensive, both in terms of time and cost, and would have
an infeasible computational complexity. In reality, this approach is not possible, especially considering
the computational capacity of most common computers and laptops.

Stopping Conditions. Various stopping criteria can be plugged into Lynceus. Clearly, the ex-
ploration concludes whenever the optimization process runs out of budget or explores all the available
configurations. In addition, one may use some of the heuristics typically employed in the literature, e.g.,
stopping the exploration should the model predict that there are no other configurations satisfying the
QoS constraints (i.e., the set of feasible solutions, according to the model’s predictions, is empty) or if it
predicts that none of the unexplored configurations improves over the current best (i.e., reduces cost in
our case) by more than a fixed threshold [24, 2].

Selecting the Optimal Configuration. The configuration selected once the search process con-
cludes, i.e., when there is no more budget, is the best configuration (as in cheapest and that complies
with the QoS constraints) that belongs to the set of explored configurations E.

3.3.2 Detailed Description

The following paragraphs describe the system in detail, specifying the heuristics, approximations
and policies developed and utilized in order to make the algorithm usable in a real world setting. As
previously stated, unlike systems [2, 25, 24] based on greedy SMBO, we intended to analyze not only
the next configuration but the next d configurations, so as to improve the exploration strategy. The
technique proposed to fulfill this goal will be described hereafter.

Selecting the Next Configuration. Following the bootstrapping phase and whenever the Picker is
required to select the next configuration to explore, the first task consists of building the prediction model
M (Algorithm 2, line 2). Due to the magnitude of the search space, assessing the quality of all unexplored
configurations would be extremely inefficient. Therefore, the first heuristic used by the algorithm to avoid
this overhead consists of the creation of the feasible set V (Algorithm 2, line 3). This is the set of all the
configurations that are analyzed and includes only the feasible ones. A feasible configuration is defined
as a configuration that is predicted to comply with the budget, i.e., V = {c ∈ Uunex : P (cost(c) ≤ B) ≥ β}.
Then, for each feasible configuration, Lynceus will simulate the future (Algorithm 2, line 6) and try to
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Algorithm 3 Computation of Utility with rollout

1: function UTILITY(S, c, depth)
2: M ← ERT(S) . Train a new Ensemble of Random Trees (ERT)
3: U ← EIc(c) . Compute constrained EI
4: C ← cost(c)
5: if depth = 0 then return (U,C)
6: else
7: (aj , wj)← GH(fx), j = 1, . . . , N . Coefficients of the G-H quadrature
8: for j = 1, . . . , N do
9: S′ ← 〈c ; E′ ← E ∪ (c, wj) ; O′ ← O − wj ; U ′unex ← Uunex \{c}〉

10: POLICY(S′)
11: if c′ = null then continue . There’s no suitable x’
12: (u, c)← UTILITY(S′, c′,depth− 1)
13: U ← U + γaju; C ← C + γajc

14: return (U,C)

predict which would be the next configurations to be explored. The amount of simulations that are made
depends on how deep in the future we want to look-ahead.

Reducing the Search Complexity. Ideally, Lynceus would explore all look-ahead paths. How-
ever, as this is not viable in reality, there are some approximations to reduce the search complexity.
Assuming one wanted to perform a search of depth d, the total amount of paths to explore would be
|V |(|V | − 1) . . . (|V | − d). For realistic dimensions of the feasible set V , that is, from 50 configurations
upwards, the complexity of exploring all paths would be unacceptable. Recent works [43, 29] exam-
ine different approaches that aim to reduce this problem’s complexity. In this work, we use a heuristic
conceptually similar to those proposed. It consists of a first, exhaustive, exploration in breadth of all v
feasible configurations in V , followed by in-depth explorations for the remaining d−1 steps, so as to avoid
an exponential growth of the search process. That is, for the first exploration, all feasible configurations
are considered. However, for the remaining depth explorations, only one path per configuration is built.
Hence, the algorithm builds merely v paths. The breadth search (Algorithm 2, line 6), associated with
the first exploration step, requires these paths’ utility to be evaluated.

Depth Search. The depth search, described by Algorithm 3, works recursively. Initially, model M
is built and the utility and cost of the current configuration c are calculated. After, the current state S is
cloned so as to guarantee that the algorithm is able to return from the recursive calls without corrupting
state S due to the in-depth simulations. This way, it is assured that both the test and training sets are
always correctly up to date. Posteriorly, the algorithm selects the configuration that is predicted to offer
the most improvement when compared with the current optimum (Algorithm 3, line 10) so that its utility
is estimated. This estimation requires this process to be repeated until the desired depth d is attained.
At this point, the algorithm returns to the initial depth with the path’s contribution estimated.

When Lynceus is used with look-ahead 0, there are no simulations and the acquisition function of
SMBO coincides with the EIc per dollar [36], that is by how much we expect to reduce the cost of the
final configuration, after exploring the current configuration.

Contribution of a Path. A path’s contribution corresponds to the sum of all the utilities of the con-
figurations that make it up. The utility of a configuration is its EIc, computed according to Equation 2.4.
In this way, we get path contrib(ci, ci+1, . . . , ci+d) = U .

To advance in depth, starting from a configuration of depth i ≥ 1, it is necessary to estimate the
utilities of configurations of depth i′, having i < i′ ≤ d. This involves computing nested expectations,
for which there is no known closed form expression. As a consequence, these values are approximated
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Algorithm 4 Policy function

1: function POLICY(S)
2: M ← ERT(S) . Train a new Ensemble of Random Trees (ERT)
3: V ← {c ∈ Uunex : P (cost(c) ≤ O) ≥ β} . Configs that comply with the budget
4: return c : argmaxc∈Uunex{EIc(c)}

resorting to Gauss-Hermite (G-H) quadrature [46], which is a type of Gaussian quadrature used to
approximate integrals where N points are sampled, each with a distinct weight. Currently, our algorithm
uses 3 points for the approximation. By applying the quadrature to the Gaussian distribution associated
with the model’s prediction for the current configuration c at a given depth i, N pairs (aj , wj) are obtained.
wj corresponds to a possible cost for c and aj is the weight associated with that cost. In fact, weight
aj is indeed related to the likelihood of the cost being wj and it is used to determine the contribution
of wj to the estimation of the total utility of the path. Parameter γ (Algorithm 3, line 13) is a discount
factor [64] which allows for the calibration of the weight of the predicted utility of a configuration based on
the depth level (distance in the future) in which the prediction is estimated. A value of γ = 0 nullifies the
contribution of configurations in a path of depth higher than zero. In contrast, a value of γ = 1 assigns
the same weight to all predicted utilities for all configurations of a path, independently of their depth.

For each estimated cost wj of the current configuration c, that is, for each of the N points, the
algorithm is required to select which would be the next configuration in the path predicted by the model
after it had been updated with the “simulated” sample (c, wj). This process is performed by a policy
function described by Algorithm 4. The policy works by first updating the model, then defining the set
of feasible configurations (i.e., the ones that have probability β of having a cost lower than the available
budget) and, lastly, picking the configuration from this set that maximizes the EIc.

3.4 Early Timeout Policy

This section introduces an optimization aimed at enhancing the effectiveness of Lynceus, namely
an early time out policy that stops the exploration of suboptimal configurations.

In a real world setting, a user experimenting configurations is able to automatically classify one
configuration as worse or better than the current optimum by observing the application running on each
configuration for some limited time interval. To improve our system and make a better use of the available
budget, we decided to implement a policy that would mimic this behaviour.

The base algorithm presented so far assumes that whenever a configuration is deployed to run
a target cloud application (e.g., the training of a complex ML model), it is executed until completion
in order to obtain an accurate estimation of its cost. In this section, we introduce early timeout poli-
cies that interrupt the exploration of configurations as soon as these are detected to be suboptimal,
i.e., when they exceed the cost of the current best configuration, or unfeasible, when they are detected
to violate some user-specified QoS constraint. By timing out as early as possible the exploration of
suboptimal/unfeasible configurations, the exploration cost for that configuration gets proportionally re-
duced, thus enhancing the cost effectiveness of the exploration process. Although apparently quite
straightforward, this optimization introduces a non-trivial challenge: by interrupting the exploration of a
configuration at an arbitrary point of the execution of a job, one is left with the problem of determining
which value to feed to the cost model used by Lynceus to drive the optimization process. We tackle
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Figure 3.2: Early timeout policy

this problem by integrating a mechanism that, upon the early time out of a configuration, estimates the
expected cost of fully sampling the target job based on the progress it achieved upon its time out.

The intuition behind this policy, which is represented in Figure 3.2, is that the first sampled config-
uration that complies with the user defined constraints regarding the maximum running time T MAX for
the job becomes the current optimum C∗. Henceforth, the exploration of a configuration is interrupted
either as soon as the maximum allowed running time is reached (configuration C2, second quadrant,
Figure 3.2) or as soon as the current configuration achieves a cost as high as the current optimum’s
cost (configuration C3, third quadrant, Figure 3.2). The job runs until completion only when there is
no current optimum yet, or when the configuration under exploration is feasible and cheaper than the
current optimum (configuration C1, first quadrant, Figure 3.2).

Whenever the exploration of a configuration is timed out, as already mentioned, in order to update
Lynceus’ cost model, it is necessary to predict the expected cost of running the target cloud optimization
until completion. To tackle this problem, we monitor the application’s progress periodically and detect,
at monitoring point, its progress rate (e.g., the percentage of data analyzed in an analytics job or the
accuracy reached by a ML model) and whether it violated the specified QoS constraints (e.g., the job
execution exceeded some predefined threshold).

If the monitoring system detects an early time out condition, we use the progress data gathered
during the sampling of that configuration to estimate its expected completion time and, consequently, its
cost (given the time-based charging policy of cloud providers). This can be formulated as a regression
problem, which could be addressed with a plethora of alternative black-box models. These, as well
as arbitrary learners, can be integrated in the Lynceus prototype. For simplicity, though, the current
implementation has been tested with linear models, which, as we will see in Section 4.5, despite their
simplicity, result quite effectively in practice.

It should also be noted that, in the current prototype, the monitoring process takes place periodically,
with a user-defined frequency. The higher the monitoring rate, the earlier suboptimal configurations can
be detected, but also the higher the overhead introduced for monitoring. The latter is strongly application
dependent and may vary strongly, e.g.: monitoring the throughput of a database system is way less
expensive than evaluating the accuracy of complex ML models using cross-validation of large test sets.
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Summary

This chapter presented Lynceus, a novel long-sighted, budget aware system for selecting the op-
timal configuration for deployment of user specific applications, describing its most prominent features
and the challenges that arose during its implementation. Lynceus leverages novel techniques [43, 42]
that build on and extend the base Bayesian Optimization (BO) technique in order to be less greedy and
to optimize the end reward. Furthermore, and unlike state-of-the-art systems, Lynceus incorporates the
notion of budget and aims to reduce not only the cost of the final steady-state exploitation phase, but
also of the exploration phase. The next chapter presents an extensive experimental evaluation of the
current prototype.
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4Evaluation
This chapter details the experiments performed to test and validate the proposed system. Sec-

tion 4.1 starts by describing the baselines for comparing Lynceus and detailing the evaluation metrics.
Then, Section 4.2 presents and characterizes the datasets used for testing Lynceus on the quality of its
final prediction and on its ability to explore the space of configurations. Section 4.3 details the implemen-
tation of the system as well as the settings for running the experiments. This section also details some
implications of the initial model, which are relevant for understanding the dimensionality of the process
of finding the optimal configuration. In Section 4.4 we evaluate Lynceus’ ability to find the optimal con-
figuration for the execution of cloud applications according to the specified metrics and we assess the
computational complexity of all tested approaches. Finally, Section 4.5 describes the improvements on
the quality of the final configuration attained through the use of the timeout policy, comparing both the
ideal and the real policies.

4.1 Evaluation Setup

This section describes the selected state-of-the-art approaches with which Lynceus is compared,
justifying the reasons for these choices. Furthermore, it presents the metrics used for evaluating all
systems in a fair, thorough and systematic way.

Baselines for Comparison. Lynceus is compared with CherryPick [2] not only because CherryPick
represents the state-of-the-art when it comes to using BO in the cloud setting, but also because it aims
at minimizing the final cost for the user and because it is subject to QoS restrictions imposed by the user.
In its original version, CherryPick [2] does not possess the notion of budget. This implies that should
the budget be surpassed, the exploration does not stop. Therefore, and for a fairer comparison, we
equipped CherryPick with this notion. Lynceus is also compared with a Random approach which selects
the next configuration to explore randomly from the set of unexplored configurations. Lynceus is not
compared, however, with Scout [35] as there was no implementation available online. We relegate the
comparison of both systems to future work, provided that an implementation of Scout is made available
by its authors.

Evaluation metrics. To evaluate Lynceus, we employ two metrics: the Distance From Optimum
(DFO) and the Number of Explorations (NEX) performed. The former allows us to characterize the
quality of the solutions found: a better solution is closer to the optimum, with the best solution C∗ having
DFO(C∗) = 0. The latter enables us to draw conclusions concerning the relationship between amount
of search space explored and quality of the solution.

The DFO is obtained by calculating the difference between the cost of the optimal configuration and
the cost of the chosen configuration, normalized by the cost of the optimal configuration, i.e., DFO =
cost(cchosen)−cost(copt)

cost(copt)
. This way, the smaller the DFO, the better the final configuration selected.
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Figure 4.1: Convolutional Neural Network (CNN) used for the TF CNN and TF CNN pruned datasets

As for the NEX, if we equip all systems with the same budget and compare the amount of explo-
rations each one performed, it allows for the evaluation of each one’s ability to maximize the search
space that is explored when given a predetermined and fixed budget. This is usually correlated with the
likelihood of finding a better, as in closer to the optimum, final deployment configuration. We consider
one configuration sampled and executed in the cloud as one exploration.

Furthermore, the only stopping criterion considered corresponds to stopping when the exploration
budget is over. This allows to focus on evaluating, in a simpler way, the actual key contributions of
this work, i.e., the budget-aware, long-sighted planning of the exploration and the early timeout policies,
using a fixed horizon for exploring. Hence, it is not pertinent to reason about possible “interferences” due
to standard stopping criteria (which are orthogonal to this work) that may decide to stop the exploration
phase prematurely, making the dynamics of the various optimizers harder to analyze.

4.2 Datasets

In order to evaluate Lynceus, we used a total of three datasets representative of the training time of
Neural Network (NN) models, which were explicitly gathered during this dissertation in order to evaluate
the proposed solution.

In Section 4.2.1 we present a detailed description of the datasets gathered in the context of this
work, which we call TF datasets. Next, in Section 4.2.2 we introduce a study aimed at shedding light on
the characteristics of the datasets used in this work.

4.2.1 Tensorflow Datasets

The TF datasets consider the training of three different Neural Network (NN) models implemented
via the TensorFlow [1] framework (a popular ML library) and targeting the MNIST dataset [23] (a stan-
dard benchmark for evaluating NNs). This dataset consists of a large database of 28× 28 pixels images
of handwritten digits. It is composed of 70, 000 images, 60, 000 for training and 10, 000 for testing. All net-
works utilized are trained through supervised methods, i.e., the networks learn to classify objects based
on input-output pairs. Each dataset was obtained through the training of a different NN architecture:
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Figure 4.2: Multilayer Perceptron used for the TF MULTILAYER dataset

• TF CNN dataset: obtained through the training of a Convolutional Neural Network (CNN). This
network is a feed-forward network, which starts by automatically extracting features through a
series of convolutions and pooling (sub-sampling) operations. Then, these features are given as
input to a number of fully connected layers, which ultimately assign a probability for classifying the
input. Figure 4.1 depicts the CNN architecture we have used. This architecture was inspired by
the general LeNet architecture [44];

• TF MULTILAYER dataset: trains a multilayer perceptron [16]. These networks have at least three
layers: an input layer (responsible for reading the input signal), a hidden layer and an output layer
(which makes the final prediction). The network is fully-connected, which means that all nodes
in a certain layer are connected to all nodes of the following layer with a given weight. These
weights are adjusted during the training phase so as to minimize classification error. All nodes
in the hidden and output layers are neurons. These neurons use a non-linear activation function,
which defines the response of a neuron given an input or a set of inputs. The architecture of the
multilayer perceptron employed in the creation of this dataset is represented in Figure 4.2.

• TF RNN dataset: corresponds to the training of a Long Short-Term Memory (LSTM) network [13],
a special type of Recurrent Neural Network (RNN) composed of LSTM cells. RNNs include feed-
back loops in their architecture, enabling them to memorize dependencies about current and pre-
vious inputs over an arbitrary time interval. LSTMs introduce the concept of cell states, controlled
by additive and multiplicative gates, which enable the network to selectively retain long-term de-
pendencies about a given input, and to adjust the flow of information into and out of a given cell.
LSTM cells are also composed by a number of hidden units (or neurons) representing the learn-
ing capacity of the neural network. The network utilized to create this dataset is represented in
Figure 4.3.

Each dataset is composed of 384 configurations. The configurations considered were composed of
combinations of both the parameters of Virtual Machines (VMs) in the Amazon EC2 cloud, as well as
parameters affecting the training of NNs (see Table 4.1). Specifically, for the VM parameters we consider
the use of four different VM types and eight different values for the total number of cores for the whole
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Virtual Machines’ Parameters Neural Networks’ Parameters
VM Flavor Number of Cores Learning Rate Batch Size Synchronism

small, medium, xlarge,
2xlarge of the t2 family 8, 16, 32, 48, 64, 80, 96, 112 1e-3, 1e-4, 1e-5 16, 256 synchronous or

asynchronous

Table 4.1: Parameters varied to create the space of the configurations

cluster of VMs. Whenever the total number of cores for the cluster exceeds the total number of cores of
a single VM of a given type, that means that we consider the deployment of multiple VMs of that type.
For what concerns the application dependent parameters, we consider three that affect the behavior of
the algorithm (Stochastic Gradient Descent [58, 39, 9]) used to train the models, namely: three values
of the learning rate, two values for the batch size and whether the training takes place synchronously or
not [16]. These parameters hold for all datasets except for the TF CNN dataset which considers only
six different values for the number of cores({32, 48, 64, 80, 96, 112}), and therefore is composed of 288

configurations.

To build our datasets we gathered data by simulating the behaviour of the Executor upon being
ordered to run a certain job in a given configuration. We resorted to Python and to boto3 (the Amazon
Web Services (AWS) SDK for Python) for implementing the Executor’s logic and to run the selected
configurations on AWS. The Executor is emulated by a machine which acts as job coordinator and
which is able to deploy a given job in a selected configuration. For each exploration there is a total of
N + 2 VMs that are deployed on AWS. The N VMs correspond to the number of machines specified by
the configuration that is being tested. The remaining 2 VMs are helpers. One embodies the parameter
server for the NN model. In the parameter-server framework, a parameter server keeps records of the
NN parameters that have been continually improved by the workers. The other acts as bookkeeper,
measuring the model’s accuracy at predefined time intervals (each 30 seconds, for all datasets). The
necessity for the bookkeeper VM stemmed from the fact that querying the model to obtain an accuracy
measurement translates into a non-negligible amount of execution time which would impact the speed
of model training should these measurements be collected from a dedicated worker machine.

36



0 50 100 150 200 250 300 350 400
Configurations

100

101

102

103

No
rm

al
ize

d 
Co

st
 (l

og
10

 sc
al

e)
TF_CNN
TF_multilayer
TF_RNN

Figure 4.4: Datasets’ complexity

4.2.2 Analyzing the Datasets

In this section we aim at shedding light on the complexity of the considered datasets. A first aspect to
consider, to this end, is the cardinality and dimensionality of the search spaces considered by the various
data sets, which vary from 288 configurations (CNN) to 384 (RNN and MULTILAYER) configurations
distributed over 6 dimensions.

In order to quantitatively assess the complexity of each dataset, in Figure 4.4 we report a plot that
illustrates the distribution of the Distance From Optimum (DFO) for all the configurations (ordered from
best to worst) for each dataset. The DFO is defined as the cost of a configuration normalized to the cost
of the cheapest one for that dataset.

The plot shows that the TF datasets have very few near-optimal configurations. In fact, for the TF -
MULTILAYER dataset, the second best configuration is already 20% away from optimum (note that the
y-axis is expressed in log scale). A steeper slope translates higher difficulty and the TF MULTILAYER
dataset shows quite a steep slope close to the optimum solution. Therefore it is expected that the tested
systems, when evaluated with these datasets, are more likely to output final configurations further away
from the optimum.

4.3 System Implementation and Experimental Setup

The following paragraphs describe the choices taken with respect to the system implementation and
to the chosen settings for running the experiments.

System Implementation. Lynceus was developed using Java, namely leveraging existing libraries
for the implementation of the performance model that predicts the next configurations to explore. Our
system uses the random tree algorithm available in the Weka software package [33]. This algorithm
builds a decision tree considering K randomly chosen attributes at each node and performs no pruning.
We build 10 of these trees to generate an ensemble, similarly to a typical random forest implementation,
since the attributes of each tree are random. The ensemble serves as a performance model to predict
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(a) Average of the DFO

(b) Average of the NEX

Figure 4.5: Average of the NEX and DFO using the dataset TF CNN

the costs of the configurations. For the implementation of the in-depth simulation, we ensure the long-
sightedness of our approach by implementing the Gauss-Hermite quadrature.

Experimental Setup. For the experiments without the timeout policy, the initial models of all sys-
tems are bootstrapped with 5 initial configurations, randomly selected, which corresponds to roughly
2% of the search space. For the experiments with the timeout policy, the models are bootstrapped with
1 initial sample. The scarcity of initial points augments the difficulty of finding the optimal configura-
tion, since the existent knowledge to guide the search is fairly reduced. The parameters β and γ of
Lynceus were attributed values 0.99 and 0.9, respectively, as proposed by Remi et.al [43]. Regarding
the look-ahead factor, the values d = {0, 1, 2} were considered. A look-ahead of 0 cancels out Lynceus’
ability of predicting/simulating the future, allowing for the establishment of a baseline for comparison with
CherryPick. Since Lynceus is budget-aware, and since we wanted to test its ability to find the optimal
configuration for deploying a user specific application in different scenarios, another of the parameters
that was varied across all experiments was the budget. We considered budgets of {2, 4, 6, 8, 10, 15, 20}
times the average budget of a configuration for the experiments, although budgets {2, 4, 6} were only
considered for the experiments with 1 initial sample. We considered one situation of user-defined QoS
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Figure 4.6: Average time corresponding to 1 exploration with the TF CNN dataset

constraints that corresponds to T MAX = running time(fastest config) × (1 + max time perc) min-
utes. The max time perc variable was set to 10. For lack of time, we didn’t perform a sensitivity analysis
on this variable. Lastly, we perform 500 executions of all experiments with the TF datasets without the
timeout policy. For all other experiments 50 runs are executed. In both cases, the results of the runs are
averaged to compare the three approaches. The standard deviation shown in the TF plots in Section 4.4
is computed resorting to 5 batches of 100 points each. The values of the DFOs and of the NEXs of each
batch are averaged, resulting in 5 averages for each parameter, one for each batch. These averages
are the ones with which the standard deviation is then computed. All experiments were executed in
machines running Linux Ubuntu 16.04 LTS, which were equipped with an Intel Xeon E5-2648L CPU and
with 32GB RAM.

4.4 Quality of the Final Configuration

All approaches output a final prediction regarding the selected configuration to run a user-specific
application in the cloud setting. The quality of the final recommended configuration can be measured
by its distance to the optimal one. Furthermore, the number of explored configurations is expected
to be correlated with better final predictions. To validate this assumption and to evaluate Lynceus’
predictions, this section presents the results obtained for all datasets regarding both evaluation metrics
and considering the two systems and the Random approach. All results presented in this section do not
feature the timeout policy optimizations, which are evaluated in Section 4.5.

4.4.1 TF CNN Dataset

Figure 4.5 displays the average of the 500 executions performed with the TF CNN dataset. Observ-
ing the NEX (Figure 4.5b), it is visible that, as expected, higher budgets allow for more explorations.
For instance, Lynceus with look-ahead 2 and budget 8 performs 20 explorations and doubles this value,
approximately, with budget 15, performing 39 explorations. Furthermore, we can conclude that having a
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Figure 4.7: Average of the NEX and DFO for the three approaches using the dataset TF MULTILAYER

predictive model to guide the search is rather helpful in getting an increased knowledge of the search
space, since both CherryPick and Lynceus explore more than the Random approach with any budget.
For budgets 8 and 10, Lynceus with look-ahead 0 and CherryPick are very similar in terms of NEX how-
ever, for budgets 15 and 20, Lynceus is able to give a better use to the budget and therefore explore
more.

Nevertheless, one would expect that more knowledge of the search space, provided by a higher
number of performed explorations, would be translated into better, closer to the optimum solutions. In
fact, a good model fed by a larger number of explorations is more likely to find the optimal or near-optimal
configuration. However, and as we can observe in Figure 4.5a, that is not always the case. For instance,
for budget 10, Lynceus explores approximately the same number of configurations for all look-aheads.
Despite that, the final results for look-ahead 2 are equally as good as those with look-ahead 1. This fact
may be due to an inaccurate initial model because of the random initial samples. Nonetheless, Lynceus
is able to find configurations closer to the optimum than the other approaches, for all budgets. As the
budget increases, the quality of the final configurations selected by all approaches improves.
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One other relevant conclusion that can be drawn from Figure 4.5a concerns the difference be-
tween the DFOs exhibited by CherryPick and Lynceus with look-ahead 0. This is due to the function
that estimates the quality and the expected contribution to the performance model of exploring a given
configuration. While Lynceus considers the ratio between the expected contribution to the performance
model and the cost of the configuration, CherryPick only considers the expected contribution of an explo-
ration. For example, consider two configurations with the same expected contribution to the model and
different costs: C1 with cost(C1) = 10, C2 with cost(C2) = 5 and EIc(C1) = EIc(C2). For CherryPick,
these two configurations would be equally good candidates for the next exploration, since they offer the
same EIc. However, Lynceus would choose configuration C2 as it offers a better quality/cost ratio.

For measuring the computational complexity of the tested approaches, we computed, for each exe-
cution, how long they took to make the prediction of the next configuration to explore and then averaged
those times. Figure 4.6 displays the average execution time of one exploration for each approach and
for each budget. As expected, Lynceus, which adopts a more complex optimization procedure, incurs
larger computational costs than the other counterparts. Yet, the average latency to predict which config-
uration to explore next is on the order of 0.5 seconds, thus making Lynceus a viable solution in practice,
considering that many typical cloud jobs last several hours or days [67].

4.4.2 TF MULTILAYER Dataset

Figure 4.7 shows the average of all executions of the TF MULTILAYER dataset. With this dataset,
just like with the TF CNN dataset, more knowledge or more explorations is also not always directly cor-
related with better final solutions. Additionally, and as can be observed in Figure 4.7a, there are also
discrepancies in the quality of the solutions of CherryPick and of Lynceus with look-ahead 0. This is
due to the different functions employed by each system to select the next configuration to explore. Fur-
thermore, we also notice that, for all budgets, although there are always more explorations for Lynceus
with look-ahead 1, Lynceus with look-ahead 0 finds configurations closer to the optimum. All budgets
show that a higher look-ahead helps finding better final configurations. Random’s results are consistent
with the NEX results in the sense that less explorations are translated into a higher distance from the
optimum. CherryPick, that explores less than Lynceus, always finds configurations further away from
the optimum.

In Figure 4.7b the Number of Explorations (NEX) supports the previous conclusion that having a
predictive model to guide the search boosts the knowledge of the search space, since both CherryPick
and Lynceus explore at least two times more than Random. As expected and as observed in the results
of the previous dataset, for higher budgets, all approaches are able to attain more explorations. In
comparison with CherryPick, Lynceus achieves always at least more 50% explorations. There seems to
be a trend with this dataset, since Lynceus with longer look-aheads, always performs the same or more
explorations than Lynceus with a smaller or with no look-ahead.

The computational complexity of each approach for making a prediction of the next configuration
to explore when running the TF MULTILAYER dataset is displayed in Figure 4.8. Although Lynceus
remains the slowest, as with the previous dataset, the overhead it introduces is negligible. This is
especially true in a situation where the time it takes to make a prediction is not paramount for the user,
particularly when the improvements achieved by Lynceus are considered. For instance for budget 15

and look-ahead 2, the solution found by Lynceus is more than two times closer to the optimum than the
one found by CherryPick and three times better than the one found by the Random approach.
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Figure 4.8: Average time corresponding to 1 exploration the TF MULTILAYER dataset

4.4.3 TF RNN Dataset

Figure 4.9 shows the average of the executions of the algorithm with the TF RNN dataset. The DFO
results (Figure 4.9a) further confirm that Lynceus finds better configurations than CherryPick and than
the Random approach with the TF datasets. For budget 20 and look-ahead 2, Lynceus finds solutions
38% away from the optimum, on average.

The NEX results (Figure 4.9b) are consistent with the results from the previous two datasets. The
Random approach has the lowest NEX, followed by CherryPick and then Lynceus, having the most
explorations. With this dataset as well, Lynceus and CherryPick always perform at least the double
of the Random approach’s explorations. With smaller budgets, Lynceus’ model is fed with few points,
thus rendering it rather inaccurate which harms the simulations when Lynceus is used with look-aheads.
With look-ahead, in fact, Lynceus plans the next exploration step based on simulating future explorations
using the model’s output. It is unsurprising that the more accurate the model is (as it is the case with
larger budgets that allow to explore a larger number of configurations), the larger the benefits stemming
from the use of non-myopic policies.

Computational complexity results for this dataset (Figure 4.10) are in line with the results of the
previous one. Not only are the differences between CherryPick and Lynceus with look-ahead 0 much
less meaningful than with the TF CNN dataset, but also for budget 15 and look-ahead 2 the solution
found by Lynceus is more than 2 times better than the one found by CherryPick. The Random approach,
although the fastest, remains worse than Lynceus and, in most cases, worse than CherryPick as well.

4.4.4 Discussion

Comparing and observing the DFO plots of all datasets we notice a tendency for the best config-
urations to be found resorting to Lynceus with look-ahead 2. This shows that having a long-sighted,
budget-aware strategy, instead of a greedy strategy, to select the next configuration to explore allows to
find better configurations. Furthermore, the discrepancies in the quality of the solutions of CherryPick
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(a) Average of the DFO

(b) Average of the NEX

Figure 4.9: Average of the NEX and DFO for the three approaches using the dataset TF RNN

and of Lynceus with look-ahead 0 emphasize the importance of the function that selects the configura-
tions to be explored. The use of EIc as acquisition function in Cherrypick leads, on average, to identifying
configurations 50% further away from the optimum than using Lynceus with look-ahead 0, which uses,
as acquisition function, the ratio of the EIc over the expected exploration cost.

All results show that Lynceus, with the same budget as the other approaches, although consistently
slower, is able to explore more of the search space and find solutions that are closer to the optimum.
Furthermore, by analyzing all computational complexity plots and, simultaneously, comparing DFOs,
the plots suggest that the quality of the final configurations selected by Lynceus makes up for the time
overhead it induces. Running Lynceus on an common off-the-shelf hardware allows for better results
than with any of the other approaches, although not instantaneously. Nonetheless, an overhead in the
order of a few seconds is perfectly affordable given that many cloud jobs last hours/days/weeks.
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Figure 4.10: Average time corresponding to 1 execution the TF RNN dataset

4.5 Improvements Attained due to the Timeout Policy

This section details the results and improvements obtained through the application of the timeout
policy introduced in Section 3.4. This policy considers time intervals of 30 seconds to measure the
accuracy of the jobs. These experiments were run with 1 initial sample for bootstrapping the model
and with budgets {2, 4, 6, 8}. In fact, as a consequence of the introduction of this optimization, the
exploration process becomes much more cost-effective. Therefore, when using larger budget values
(e.g., the ones used in the previous section), in most scenarios the considered optimizers would be
able to explore the whole search space, and, trivially, always identify the optimal configuration. Due to
time constraints we were unable to evaluate the TF MULTILAYER dataset with this policy. Also due to
time constraints, we were unable to evaluate the TF datasets without the timeout policy for these budget
values and initial number of sampled points. Therefore, we do not show the DFO and NEX results
without timeout in these plots. However, considering the previous results obtained with budget 8 and 5

initial samples (Section 4.4), it is reasonable to assume that using budget values lower or equal to 8 and
a single initial sample, all approaches would find configurations more than 150% away from the optimum.

The ideal timeout policy assumes that the progress of the application is known at each instant,
which does not correspond to a real world setting, since each accuracy measurement, for instance in
the case of a NN training job, takes a non-negligible time interval. With this policy, the linear model that
estimates the costs upon completion is considered to be perfect and, therefore, the performance model
is updated with the exact cost. Thus, no estimation errors are introduced in the performance model.
This policy is used as a baseline to assess the viability of using a simple linear based estimation of the
cost of executing the job until completion.

4.5.1 TF CNN Dataset

Figure 4.11 depicts the improvements achieved due to both the ideal and the discrete timeout
policies with the TF CNN dataset. Results shows that all approaches benefit from both timeouts, which
allows them to increase significantly the total number of explored configurations and yield higher quality
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(a) NEX and DFO for CherryPick
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(b) NEX and DFO for the Random approach
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(c) NEX and DFO for Lynceus with look-ahead 0
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(d) NEX and DFO for Lynceus with look-ahead 1
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(e) NEX and DFO for Lynceus with look-ahead 2
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Figure 4.11: Comparison of the NEX and DFO without timeout and with both the ideal and the discrete
timeouts for all approaches and for the TF CNN dataset

configurations at the end of the search process, when compared to the case in which no timeout is used.
With respect to the NEX, we observe that it increases with the budget, for all approaches and for both
timeouts. Moreover, with the ideal timeout and with budget 8, both CherryPick and Lynceus with look-
ahead 2 explore approximately 2/3 of the search space, whereas with the discrete timeout they explore
around 40% of the space of configurations. In terms of the DFO, although the ideal timeout is extremely
close to the optimum for higher budgets (only 1% and 2% away from the optimum), it also fails in some
scenarios and especially for smaller budgets. With the discrete timeout, the results also display higher
benefits for CherryPick than for Lynceus with either look-ahead 1 or 2. For instance for budget 4, the
configuration found by CherryPick is 72% away from the optimum while Lynceus with look-ahead 2 is 96%

away. We argue that this may be due to the fact that the liner model that estimates the cost of running
the job until completion is rather inaccurate which leads to the performance models of both CherryPick
and Lynceus to be polluted with erroneous data. The average of the mean absolute percentage error
of this model is depicted in Figure 4.11f. The error remains approximately constant, around 40%, for
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(b) NEX and DFO for the Random approach
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(c) NEX and DFO for Lynceus with look-ahead 0
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(d) NEX and DFO for Lynceus with look-ahead 1
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(e) NEX and DFO for Lynceus with look-ahead 2
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Figure 4.12: Comparison of the NEX and DFO without timeout and with both the ideal and the discrete
timeouts for all approaches and for the TF RNN dataset

CherryPick and for all look-aheads of Lynceus equipped with the same budget. We argue that, when
using non-zero look-ahead values, Lynceus is inherently more sensitive to the fallacies of the underlying
cost model, given that it relies on the model to simulate the effects of multiple future explorations. This
effect is particularly exacerbated when the available budget is quite limited: in this case, in fact, the cost
model used by Lynceus can rely only on a quite limited number of training data, and is, as such, more
prone to be polluted by errors introduced by the employment of the discrete early timeout policy. Indeed,
at larger budget values (6 and 8), the accuracy gap between Lynceus, with look-aheads 1 or 2, and
CherryPick reduces significantly, as the two solutions, when equipped with the early timeout policy, tend
to identify configurations with similar quality. The Random approach is not affected by the estimation
errors of the linear model since it does not have a performance model to select the next configuration to
explore.
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4.5.2 TF RNN Dataset

Figure 4.12 shows the results for the ideal and discrete early timeout policies, when considering the
TF RNN dataset. The trends exhibited by this dataset are similar to the ones observed with the TF CNN
dataset. As expected, the ideal timeout policy leads to larger gains with respect to the discrete timeout
policy also with dataset. This has two main implication. First, it suggests that that the errors introduced
by a simple linear model to estimate the cost of early timed out configurations do introduce a perceivable
degradation of the DFO. For instance, Lynceus with look-ahead 0 and budget 4 finds solutions 21% away
from optimum and explores 154 configurations with the ideal timeout, while with the discrete timeout the
final configurations are, on average, 107% away from optimum and 58 explorations are performed. This
consideration motivates future work aimed at investigating the use of alternative/more sophisticated
estimators. Second, these results confirm that, even when coupled with simple linear estimators, the
proposed early timeout policy still provides remarkable gains when compared with the no-timeout sce-
nario. For instance for budget 8, CherryPick with no-timeout finds configurations 254% away from the
optimum while with the early timeout policy this is reduced to 16%. An interesting conclusion that can
be drawn by analyzing the results obtained with this dataset is that, since the average error of the linear
model (Figure 4.12f) is slightly lower for this dataset than for the previous one (around 20%), Lynceus
with the discrete timeout and with look-aheads 1 and 2 is better than CherryPick. Results show that, for
instance for budget 4, CherryPick finds solutions 127% away from optimum with 47 explorations while
Lynceus with look-aheads 1 and 2 is 77% and 82% away from optimum, with 61 and 57 configurations
explored, respectively.

Finally, the results obtained when coupling the early timeout policy with a simple random optimizer
(see Figure 4.12b) confirm that the proposed time out policy is particularly effective even when cou-
pled with model-less optimizers. In this case, given the model-free nature of the optimization process,
though, the difference in the performance of the ideal versus discrete timeout policies is not imputable to
potential inaccuracies in the estimation of the exploration cost of timed out configurations. Conversely,
the relatively higher performance of the ideal early timeout policy is due to the fact that it assumes the
possibility of evaluating continuously whether the exploration of a configuration should be prematurely
interrupted (either because it is found to have a higher cost than the current optimum or because it has
violated the user defined QoS constraints). As discussed in Section 3.4, though, in real settings, the
predicate for deciding whether to time out an exploration can only be evaluated periodically (each 30
seconds in this experiment).

Summary

This chapter detailed the characteristics of the datasets built for evaluating Lynceus and reported
the results of an experimental study aimed at assessing Lynceus’s ability to optimize complex, realistic
cloud applications by comparing it with two baseline solutions: a state-of-the-art technique, CherryP-
ick [2], based on a myopic/not budget-aware SMBO approach, as well as a simple random optimizer.
Overall, the experimental results have shown that the long-sighted, budget aware SMBO methodology
used by Lynceus enables significant gains in terms of reduced DFO and increased number of explored
configurations, at parity of budget, when compared with CherryPick. In fact, Lynceus finds configura-
tions almost 5 times closer to the optimum (Figure 4.9a) and explores more than two times more than
CherryPick (Figure 4.9b), in the best case.

In order to evaluate the effectiveness of the proposed early time out policies, we tested whether
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its usage could be beneficial not only when coupled with Lynceus’ optimization policy, but also when
used in combination with the two considered baselines. To this end, we considered also an idealized
implementation of the timeout policy, which assumes that the progress of the application is known at
each instant and that the model for estimating the cost of executing the job until completion is able
to make accurate predictions, not incurring errors, and therefore not polluting the performance model
with inaccurate predictions. The discrete timeout policy was shown to provide solid gains except for
the lowest budgets. For instance CherryPick with budget 8 and for the TF CNN dataset has the DFO
reduced from 187% to 65% due to the discrete timeout. With the lowest budgets, the errors introduced
by estimating the actual cost of fully running an application in a timed out configuration polluted the
performance model, leading to inaccurate predictions and therefore to worse final configurations. For
the TF RNN dataset, Lynceus with look-ahead 2 and budget 2 finds configurations 639% away from the
optimum. As for the ideal timeout policy, the Random approach’s results (Figures 4.11b and 4.12b)
allow us to quantify the speed-ups brought by timing out the explorations as soon as they become
unfeasible. Besides quantifying these speed-ups, CherryPick’s and Lynceus’ plots quantify as well the
benefits attained due to updating the performance model with the exact cost of running the job until
completion. Hence, for CherryPick’s and Lynceus’ plots, the gaps between the DFOs are bigger than for
the Random approach’s plots. In fact, for the dataset TF RNN and with budget 2, the gap between the
ideal and discrete timeouts for Random is approximately 30% while for CherryPick is more than 100%.

When compared with the ideal timeout policy, the discrete timeout policy clearly achieves lower
gains, motivating the need for future research aimed at striving to fill this gap, e.g., by using more accu-
rate predictive models and/or adapting dynamically the monitoring frequency, and increasing/decreasing
it when there are larger/smaller risks for a configuration to be subject to an early timeout.

The next chapter concludes this document by summarizing the main findings of this thesis and
introducing some directions for future work.
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5Conclusions and Future

Work

In this dissertation, we introduced Lynceus, a system for optimizing the selection of configurations
for the execution of cloud applications, under the pragmatical assumption of having available a fixed
budget for the whole self-tuning process. Lynceus incorporates explicitly, and for the first time in the
context of self-tuning of cloud applications, the notions of finite budget for exploration and of planning
of future explorations. To achieve this, Lynceus leverages innovative techniques in the field of Bayesian
Optimization (BO) with finite budget [42] and with look-ahead [43]. The main challenge that had to be
overcome was deciding how the exploration of the configurations should proceed so as to ensure that
each exploration improved the model the most.

Through an extensive experimental evaluation based on realistic datasets, we demonstrated how
the proposed solution is able to consistently identify better solutions than Cherrypick, a recent state-of-
the-art optimizer for cloud applications, across heterogeneous datasets encompassing a popular cloud
based application, i.e., training of machine learning jobs. We also show how our long-sighted approach
enables improvements over greedy search strategies, namely Lynceus with look-ahead 2 and budget
20, in the best case, finds configurations almost 5 times closer to the optimum than CherryPick equipped
with the same budget.

The timeout policy results show that by reducing an experiment’s duration it is possible to find better
final configurations with lower budgets. Moreover, this policy introduced significant gains, allowing the
DFO to decrease to approximately 50% from the optimum for Lynceus with look-aheads 1 and 2, for
budget 6 and with the TF RNN dataset. We also showed how the linear model utilized with the discrete
policy is far from optimum, having errors of 50%.

As for future research directions, we believe that a multitude of possible optimizations to further
upgrade Lynceus can be implemented. These optimizations are concerned with the initial bootstrapping
of the model, with the use of local search heuristics to improve Lynceus’ computational complexity and
with the development of more complex models for the early timeout.

Our algorithm uses a model-driven approach to select which configurations to explore, but, before
the model can be instantiated, one needs to gather an initial set of samples to boostrap the knowledge
of the model. In our current implementation, for simplicity, we use a randomized approach that selects
configurations uniformly at random within the configuration space. Clearly, this approach can be subject
to various shortcomings. In particular, it may lead to sampling overly expensive configurations, reducing
significantly the budget available for the model-based exploration phase (which is arguably more effec-
tive). Further, since it is desirable to use a very limited number of initial samples, a purely randomized
approach can lead to miss sampling relevant regions of the configuration space — hindering the quality
of the resulting model. The latter issue can be obviated by recurring techniques such as Latin Hyper-
cube Sampling (LHS) [62], which strives to uniformize the density with which the various sub-regions of
a multi-dimensional space are sampled.

The use of local search heuristics, such as Hill-Climbing, Simulated Annealing or Genetic Algorithms
may be of assistance to further reduce Lynceus’ computational complexity. These heuristics would



be applied whenever in Algorithms 2 and 4 we need to compute the EIc or the Utility/Cost for every
unexplored configuration. By employing one of the above search heuristics, the computation of the EIc
would be restricted to smaller subsets of the set of unexplored configurations, with direct gains in terms
of computational efficiency.

The comparison with the ideal timeout policy showed that there are still margins for improving the
early timeout policy. One possible future direction could be the development of more complex models
to estimate the cost of running a job until completion. Another possibility is to develop additional, and
not so ideal, policies to assess whether the gap between the ideal and the discrete policies is due to the
non-immediate timeout or to the errors introduced when predicting the expected cost of fully running the
job in that configuration. A possible additional policy could be timing out immediately but not being able
to update the performance model with the exact cost of running the job until completion.
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