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Abstract

Nowadays, most modern Internet services make large use of databases to store relevant data.
These services tend to have strong scalability, high availability and fault tolerance requirements that
create a strong urge for designing highly efficient database replication techniques. However, replication
introduces non-negligible costs in order to ensure that the state maintained by the various replicas is
properly synchronized. Database replication approaches, such as State Machine Replication (SMR),
have limitations when it comes to parallelism. The state of the art solutions that try to solve these
limitations rely either on automatic predictions or programmer input about the set of data items to
be accessed. The predicted item accesses by these solutions are either too coarse-grained or are too
optimistic, which increases the probability of aborts in case of misprediction. This impacts the solution
parallelism degree as well as the overall system throughput, respectively. This thesis addresses the
aforementioned limitations, by the use of Symbolic Execution to determine a fine-grained a priori
knowledge of the items accessed by transactions to improve the efficiency of the scheduling process.
Keywords: Database Replication, Full Replication, Symbolic Execution, Distributed Transactions,
Transaction Scheduling, State Machine Replication

1. Introduction

Nowadays, most services available over the Internet
make large use of databases to store relevant data.
These services tend to have strong scalability, high
availability and fault-tolerance requirements that
are typically solved using replication techniques.
This has created a strong urge for designing highly
efficient database replication techniques. Replica-
tion allows to tolerate crashes of individual repli-
cas while increasing the perceived availability of
systems by placing multiple copies of applications’
data across failure-independents machines. How-
ever, state of the art database replication introduces
non-negligible costs in order to ensure that the state
maintained by the various replicas is properly syn-
chronized.

A typical approach to ensure these requirements
in replicated systems is based on the State Machine
Replication technique (SMR) [3]. In a nutshell,
SMR is based on an order-then-execute approach
that operates in rounds. In each round, replicas first
reach an agreement using some consensus protocol,
on a totally ordered set of (deterministic) opera-
tions to be executed at all replicas. Next, the set
of operations are executed independently at each
replica in an order that is consistent with the total

order established during the agreement phase.

A key challenge of SMR approaches is how to en-
sure that transactions executing at different repli-
cas are serialized in the same order. This is im-
portant to take advantage of multicore systems,
where the order on which the transactions execute
must be deterministic. Because the order in which
transactions are executed could differ between repli-
cas resulting in inconsistency. In order to remove
the costs associated with the execution of the dis-
tributed agreement phase, state of the art solutions
batch in each round, a large number of transac-
tions. In these scenarios, the maximum throughput
achievable by the system is typically bound by the
speed at which replicas can process the set of trans-
actions agreed upon using consensus.

Conventional concurrency control schemes, long
studied in the literature on transactional systems
[2, 11], suffer from a main problem when employed
with SMR-based replication techniques: they are
not deterministic, i.e., they ensure equivalence to
some serial execution, but provide no guarantee
that the transaction serialization order at different
replicas will coincide. In order to mitigate this issue,
various techniques have been proposed in the liter-
ature, based on different approaches. Schemes such



as Nodo [8] assume a priori knowledge of the data
that is going to be accessed by transactions, desig-
nated as transactions’ conflict classes. An alterna-
tive is to estimate that data by doing a reconnais-
sance phase of the transaction before replicating it,
as proposed by Calvin [10]. Afterwards, at commit-
time, the conflict classes are compared to the pre-
vious recognized ones to infer if the transaction be-
haviour has deviated from the expected and if there
are deviations the transaction must abort. This ap-
proach incurs serious drawbacks in geo-replicated
scenarios where transaction submission and trans-
action execution are, on average, temporally sepa-
rated in the order of tens of milliseconds since the
vulnerability window of transactions to abort is de-
layed until commit-time.

1.1. Goals

The problem with the current state of the are so-
lutions is on the difficulty to precisely determine a
priori the data access patterns of transactions. We
propose Symbolic-SMR, (Symb-SMR) solution that
uses Symbolic Execution (SE) to solve this problem.
Symbolic Execution (SE) is a technique originally
developed for software testing which allows to de-
termine every possible execution branch of a code
block. As it will be shown later in this document,
Symb-SMR leverages the fact that SE provides cor-
rect and fine-grained transactions’ data access pat-
tern estimation to employ a highly concurrent, de-
terministic concurrency control that allows to max-
imize workloads’ concurrency level, while maintain-
ing consistency among replicas and reducing trans-
actions’ vulnerability window by depending solely
on data accessed at server-side.

1.2. Document Structure

The remainder of the document is structured as fol-
lows. Section 2 discusses the background and re-
lated work, where it covers the subjects of Database
Replication, Transaction Scheduling and Symbolic
Execution. The design of Symb-SRM is presented
in Section 3. Section 4 presents the evaluation of
the Symb-SMR discussing the benchmarks used and
comparing our system with state of the art ap-
proaches. Finally, Section 5 concludes the docu-
ment and discusses future work.

2. Background and Related Work

This section provides some background about the
state of the art of Database Replication techniques
and an overview on Symbolic Execution.

2.1. Database Replication

Data replication has been an increasing concern
over the years, in order to increase the availability
and performance of large-scale distributed database
systems. For a system to be available it must be
capable of withstanding multiple failures, i.e. be

fault-tolerant. Omne way to accomplish this is by
replicating the data on more than one site. How-
ever, state of the art database replication introduces
non-negligible costs in order to ensure that the state
maintained by the various replicas is properly syn-
chronized. A typical approach to ensure this is
based on the State Machine Replication (SMR).

2.1.1 State Machine Replication

SMR is a well-known technique for implementing
a fault-tolerant service, proposed by Schneider et.
al [9]. In the SMR protocol, replicas reach a con-
sensus on a total order of transactions to be ex-
ecuted. This eliminates the need of having dis-
tributed transactions since they are only executed
by one replica. First, SMR approaches were single
threaded and the execution order followed complied
with the total order agreed by all replicas. However,
with the introduction of multi-core processors it is
now possible to execute more than one transaction
concurrently. However, the order of transactions
executed must be the same through all replicas, so
their states do not diverge. To achieve this, con-
flicting transactions must be ordered equally by all
replicas whereas non-conflicting transactions can be
executed in parallel [7, 6]. This ensures that all
replicas start with the same state and keep an equal
state after each transaction execution, without the
need of replicas exchanging messages.

NODO [8] or NOn-Disjoint conflict classes and
Optimistic multicast uses a transaction reordering
technique to avoid aborts. NODO executes transac-
tions at only one site (no distributed transactions)
and allows transactions to access more than one
conflict class. A conflict class is the set of data
items accessed by a transaction. NODO assumes
that conflict classes are identified and determined
a priori by the developer. It uses the given con-
flict class to establish a queue, where each con-
flict class has a respective queue. Transactions are
then inserted in the corresponding queue to its con-
flict classes. For instance, consider conflict classes
Cx and Cy and transactions T1, T2 and T3 with
conflict classes, C11={Cx, Cy}, Cra={Cx} and
Cr3={Cy}. Knowing this, NODO will queue these
transactions, following the order of delivery, as fol-
lows: Cx={T1, T2} Cy={T1, T3}. Since T1 is
at the head in both queues can be executed while
T2 and T3 must wait. When T1 is finished, T2
and T3 can be executed concurrently because both
have different conflict classes. The problem with
NODO is that requires developers to provide the
conflict classes of transactions which is an impossi-
ble task with complex transactions. Another prob-
lem is that NODO’s conflict classes only consider



the table of the items accessed, which is too coarse-
grained of an information to efficiently control the
concurrency of transactions.

Calvin [10] is a transaction scheduling and data
replication layer that orders transactions’ execu-
tion deterministically. To do this, Calvin uses a
sequencer and a scheduler. The sequencer is re-
sponsible for collecting transaction requests every
10 milliseconds and then compiling all the collected
transactions into a batch. The batch is then sent
to the scheduler containing a unique replica 1D, a
batch number (that is incremented every 10ms) and
all transactions’ inputs. When the scheduler re-
ceives the batch from the sequencer, it goes through
each transaction (following the order set by the se-
quencer) requesting all locks that the transaction
will need. The lock requests are granted strictly
following the order in which the requests are made
by the transactions and are released only when the
transaction is executed to completion. To achieve
this scheduling procedure, it is required that all
transactions declare their full read/write sets in ad-
vance. This information needs to be explicitly pro-
vided by the client when issuing a request. This
puts the burden of analysing the transaction and
determining the conflict classes on the developer.
The client is also responsible for performing all re-
mote reads that could be needed to determine the
complete conflict classes of a transaction. In sce-
narios where the scheduling process requires remote
reads, Calvin may throw arbitrary aborts. This is
due to the fact that remote reads, executed before
submitting the transaction, may no longer be accu-
rate. This could originate conflicts during execution
that will result in aborts. Upon aborts, the client is
responsible for re-submitting the transactions to be
sequenced, scheduled and, finally executed again.
This retry process, in a high contention workload,
results in a non-negligible overhead.

2.2. Symbolic Execution

Symbolic Execution (SE) is a program analysis
technique first introduced by King in [4]. Tt is tra-
ditionally used for software testing and debugging,
as it allows to check whether a program has errors,
such as null pointers, memory leaks, or if some prop-
erty can be violated, e.g. unauthorized acquisition
of privileges.

SE uses symbolic variables, i.e. variables that
abstract their concrete value, to construct a path
condition, i.e. boolean expressions that unequivo-
cally identify the constraints associated with each
path. SE achieves this by constructing a tree that
represents the program execution. The root of the
tree is the initial state of the program. During the
analysis, if SE finds a path constraint, splits the

execution into two paths, one where the condition
verifies and other where it does not. Afterwards,
each of these two paths are explored and whenever
another conditional statement is found, the execu-
tion is splited again. This tree can also include the
state changes of symbolic variables, e.g. when is as-
signed a different symbolic value to a variable. With
this, is possible to get a very fine-grained informa-
tion about every execution path of the program.

3. Symbolic-SMR

The analysis of the state of the art conducted in
chapter 2 highlighted that replicated databases still
incur several limitations. The main limitation that
replicated databases have is related to their paral-
lelism capabilities. SMR approaches require deter-
minism to take advantage of multi-core machines,
i.e. to execute transactions in parallel. One way to
solve this limitation is to determine which transac-
tions can be executed concurrently without incur-
ring in conflicts. State of the art solutions achieve
this by classifying the conflict classes of transac-
tions, allowing to determine which transactions con-
flicts. However, state of the art solutions, such
as Nodo [8], determine the transactions’ conflict
classes with a large granularity, which limits the de-
gree of parallelism. Other solutions, such as Calvin
[10], require the developers to provide the transac-
tions’ conflict classes which is a notoriously hard
task with complex programs. However, Calvin has
an alternative method to determine the transac-
tions’ conflict classes, it does this by performing
a reconnaissance phase. With this, Calvin pre-
executes (without acquiring locks and without per-
forming write operations) the transaction to iden-
tify the items that the transaction accesses. How-
ever, this has a large cost in the system performance
and if the conflict classes are mispredicted the trans-
action is then aborted and this process needs to be
done again.

Based on this analysis, this dissertation proposes
the idea of using SE, presented in Section 2.2, to
analyse the transactions’ logic and extract informa-
tion about the items that are accessed. We do not
only extract the items accessed but also, the path
conditions to reach those accesses. This information
would then be used to build a solid and fine-grained
scheduler that allows to have concurrent executions
without any conflicts and therefore, no aborts.

Next, in Section 3.1, we introduce an overview of
the overall solution where each of the components
are presented. In Section 3.2, we discuss some ar-
guments related to the correctness and determinism
of the presented solution.

3.1. Overview
Symb-SMR has two main modules, depicted in Fig-
ure 1. One module is the client application and the
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Figure 1: Symb-SMR Overview

other is the system replicas.

The client application is responsible for generat-
ing transaction requests and send them to the repli-
cas where then, the replicas reach a consensus on
the order to execute the transactions. The Client
also attaches the conflict classes of each transac-
tion it generates. It does this based on the out-
put given by the SE after analysing the transaction
code. However, the code is analysed by SE offline.
Thus, the output produced by SE is not dependent
on the concrete values of the transaction’s inputs,
as the values are symbolically annotated during the
analysis performed by the SE engine. The gener-
ated output encompasses both: (1) boolean restric-
tions upon every path condition, which is typically
the functionality employed by state of the art SE
engines to give the set of restrictions associated to
each of the programs control flow; (2) symbolic vari-
ables manipulated by the transactions, which when
instantiated represent a fine-grained representation
of the transaction conflict classes. Thus, at run-
time, the Client only needs to replace the corre-
sponding input’s symbolic variable for its concrete
value to obtain the conflict classes of that transac-
tion.

The replicas process every batch of transactions
that is delivered. The replicas must process each
batch in a way that their state is maintained con-
sistent. In single-core system, where we would
only have one Worker thread, i.e. thread that exe-
cutes transactions, determinism would not be a con-
cern. However, in a multi-core system, with various
Workers, it must exist a control on which transac-
tions the Workers can execute. This control is im-
portant due to conflicts between transactions, but
also to avoid replicas having distinct commit or-
ders which results in different replicas’ states. To

do this, without exchanging any messages between
replicas, we need to schedule the transactions de-
terministically. So, the scheduling process is done
just by one thread, the Queuer Thread, it extracts
a batch of transactions and schedules each trans-
action of the batch by placing them in the Lock
Table according to the conflict classes, so that two
transactions belonging to the same conflict classes
are serialized. The Lock Table is the structure that
dictates the order that transactions will execute, to
avoid conflicting transactions being executed con-
currently. The Queuer, while scheduling of a trans-
action, might need to perform read operations in
the database. This occurs when a transaction has
accesses that depend on read accesses done during
its execution. Similarly to the existing literature,
we designate this type of transactions as Indirect
Transactions (IT). Transactions without any ac-
cesses dependencies are called Direct Transactions
(DT). We have also categorized another type of
transactions, the Read-Only Transactions (ROT),
that only have read accesses. DT and IT are al-
located in the Lock Table during scheduling, but
ROT are not. This is because the order by which
ROT are executed is not relevant. Because of this,
we decided to not place ROT in the Lock Table and
allow them to be executed concurrently with each
other when there are no update transactions being
executed. The Workers only execute the transac-
tions that have successfully acquired all the locks.
After executing a transaction, the Worker removes
the finished transaction from the Lock Table and
updates the list of transactions that are ready to
be executed. Before executing IT, the Worker must
verify if the values read during scheduling did not
change. It does this by performing the same reads
that were done during the transaction scheduling
and comparing them with the values read previ-
ously. If the values are equal, then the transaction
may execute as normal. But if the values differ,
then the transaction is removed from the Lock Table
and placed in a queue of failed transactions with-
out being executed. This is necessary because, if
the values read are different, this means that the
scheduling process is incorrect. This could result
in conflicting transactions being executed concur-
rently or breaking the execution order and thus
leading to replica divergence. Therefore, after all
transactions are executed, the failed transactions
are re-scheduled again by the Queuer Thread and
re-executed by the Worker Threads. This process
is repeated until all failed transactions are executed
successfully committed.

3.2. Correctness Argument

In this section, we sketch a correctness argument
for the proposed solution.



The common concern behind the design of ev-
ery algorithm of this solution is if the implementa-
tion is deterministic. The Queuer primary task is
to schedule the transactions deterministically across
all replicas because the batch of transactions is or-
dered by consensus and there is only one thread
processing the batch. This means that after pro-
cessing a batch, and before starting execution, the
Lock Table of all replicas is the same. The other big
concern was, winding up with the same state after
concurrently executing a batch. This is addressed
by the Lock Table concurrency control mechanism.
The Lock Table controls the order by which trans-
actions are executed and which transactions can be
concurrently executed. So, the final state of each
replica will be the same. Finally, the last big con-
cern is the IT. These transactions, when in large
number, are very likely to fail. The re-scheduling
of these transactions needs to be done following the
same order. However, the order that the transac-
tions fail is not always the same when being concur-
rently executed. So, this order cannot be used for
scheduling these transactions, due to the fact of not
being deterministic. To solve this problem, we order
the failed transactions by their ID. As transactions
reach a consensus on the order of transactions in a
batch, it will be given the same IDs to the transac-
tions. Also, for each batch, we know that the set
of failed transaction is the same, even if they don’t
fail in the same order. So, by re-ordering the failed
transactions by their ID, we guarantee that they are
re-schedule in the same order in all replicas.

4. Results

This section presents the experimental evaluation of
the Symb-SMR. The solution will be evaluated with
two different workloads, one generated from the No
Contention micro-benchmark, Section 4.1, and the
other with the TPC-C benchmark [1], Section 4.2.
With the No Contention micro-benchmark, we eval-
uate the scalability of the system and identify pos-
sible bottlenecks, in particular in the Queuer and
Workers threads. With TPC-C we compare Symb-
SMR with other state of the art solutions, Nodo
[8] and Calvin [10]. In particular, we will compare
Calvin’s handling mechanism for transactions that
fail against the algorithm of Symb-SMR.

Symb-SMR will be evaluated via the following
metrics: (1) throughput of the system and (2) num-
ber of times transactions fail. With the throughput,
we measure the number of transactions that are pro-
cessed per second. In the fail rate, we will measure
the number of times transactions fail until being
executed successfully. All the experiment results
presented were obtained on a machine with the fol-
lowing specs: an Intel(R) Xeon(R) CPU E5-2660 v4
@ 2.00GHz processor with 2 sockets, connected with

UMA, 14 physical cores per socket, where each core
can execute 2 hardware threads with hyperthread-
ing [5]. The operating system is Ubuntu 16.04.3 and
uses Java version 1.8.0_171. In the experiments, we
did various measures of the solutions with different
numbers of Workers, between 1 and 55.

4.1. No Contention Micro-Benchmark

This micro-benchmark generates workloads with no
conflicting transactions. FEach transaction gener-
ated by the micro-benchmark will access a different
line of a table resulting in transactions not conflict-
ing. With this we want to test the performance
of the solution in scenarios with no concurrency
constraints, i.e. without conflicts between trans-
actions, meaning that every transaction can be ex-
ecuted concurrently.

4.1.1 Experiment Results

In this experiment, we generate various No Con-
tention workloads with 100 000 transactions. We
generate 10 batches of 10 000 transactions, 100
batches of 1 000 transactions and 50 batches of
2 000 transactions. Theoretically, in scenarios with-
out conflicting transactions Symb-SMR’s through-
put should scale relative to the number of Workers
threads. Figure 2 (a) shows the results for the above
configurations with a varying number of Worker
threads. Symb-SMR scales well up to 13 Workers.
Then between 13 and 27 Workers the throughput is
roughly constant at approximately 340 000 trans-
actions per second. Afterwards the throughput de-
creases to approximately 175 000 transactions per
second. There are 2 possible causes for this scala-
bility limitation: (1) the Queuer throughput is not
high enough and (2) contention between Worker
threads. The first possibility is disproved by Figure
2 (b) which it shows the Queuer Thread throughput
and the max throughput achieved by Symb-SMR.
Although, the Queuer thread throughput is not con-
stant, it is much higher than the max throughput
of Symb-SMR. The second possibility is analysed
in Figure 3 that profiles the Worker threads execu-
tion by the percentage of time: processing trans-
actions, waiting for the Queuer thread to schedule
transactions and extracting a new transaction to
execute from a queue containing the transactions
that are ready to execute. Figure 3 (a) shows the
results for 10 batches of 10 000 transactions, Fig-
ure 3 (b) shows the results for 100 batches of 1 000
transactions and Figure 3 (c¢) shows the results for
50 batches of 2 000 transactions. As we can see,
the percentage of processing time decreases in all
scenarios when the number of Workers increases.
Whereas the processing percentage decreases the
percentage of time where transactions are extract-
ing a transaction to execute increases. This is be-



cause all Workers extract transactions to execute
from a single queue. This impacts the performance
because the queue controls concurrent accesses, re-
sulting in Workers having to wait to extract a trans-
action from this queue. Thus the performance of the
system is limited by the contention on this queue.
However, as we will see in the TPC-C benchmark,
which contains more complex transactional logic
this limit is not reached.

The Symb-SMR’s throughput achieved in these
experiments were very similar. However, we ob-
served a slightly higher throughput in the workload
with the lowest batch size, the workload with 100
batches of 1 000 transactions.
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Figure 2: No contention workload of 100 000 trans-
actions

4.2. TPC-C Benchmark

TPC-C [1] is a well-known benchmark, that is
widely used to evaluate transactional systems.
TPC-C is composed of five transactions, three up-
date transactions, New Order, Payment and Deliv-
ery, and two read-only transactions, Status Order
and Stock Level. Two of the updates transactions,
New Order and Delivery, are Indirect transactions
(IT) because they contain item accesses that de-
pend on other previous accesses. These two trans-
actions will allow to evaluate the performance of
the mechanism for handling failed transactions of
Symb-SMR, and Calvin. The TPC-C benchmark
accesses 9 tables. However, the more critical ta-
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Figure 3: Breakdown of Symb-SMR’s Workers
when processing batches with different sizes

ble is the Warehouse table, that is accessed by ev-
ery transaction. The TPC-C standard size of the
Warehouse table is 10, where each warehouse has
10 districts and each district has 3 000 customers.
Since every TPC-C transaction depends on a Ware-
house the amount of conflicting transaction will de-
pend on the size of the Warehouse table. Thus, we
did experiments with 55 warehouses, equal to the
max number of Worker threads used in these experi-
ments. With this, we will evaluate the scalability of
Symb-SMR when faced with real-world workloads
and the amount of failed transactions occurrences.

Before presenting the results we will describe
the key implementational differences of Nodo and
Calvin compared to Symb-SMR



4.2.1 Nodo

Nodo [8] is a concurrency control system, that was
described in Section 2.1.1. Symb-SMR implemen-
tation was largely based on the Nodo idea of con-
trolling the concurrency between transactions based
on their conflict classes. However, the big differ-
ence between both solutions is that: (1) Nodo re-
quires developers to provide the conflict classes of
the transactions, whereas we use Symbolic Execu-
tion to obtain that and (2) Nodo’s scheduling is
very coarse-grained because it only considers the
tables that are accessed in a transaction. This lim-
its the level of parallelism of the system, where only
transactions that access different tables are allowed
to be concurrently executed. Symb-SMR controls
the concurrency of transactions based on the tables
and keys that are accessed. This results in more
transactions being allowed to execute concurrently
increasing the system parallelism.

4.2.2 Calvin

Calvin [10] is a transaction scheduler, that was pre-
sented in Section 2.1.1. The way Calvin and Symb-
SMR work is very similar. However, the main dif-
ferences are: (1) the way conflict classes of trans-
actions are determined, (2) how failed transactions
are handled and (3) the scheduling of Read-Only
transactions (ROT). Calvin has two ways for de-
termining the transactions’ conflict classes. One
way, similar to Nodo, requires developers to pro-
vide the conflict classes of transactions. However,
this can be too complex because Calvin requires a
fine-grained description of the conflict classes (ta-
ble and key) which is unrealistic for large complex
applications. As a result, Calvin has an alterna-
tive way of determining the conflict classes. It does
a reconnaissance phase to obtain the transactions’
read and write set. The reconnaissance phase of
transactions is done by executing the transactions
without acquiring any locks and without executing
any write operations. The problem with this is that
the reconnaissance phase is done in the client re-
sulting in a considerable interval of time where the
read and write set can be changed due to concur-
rent updates in the database. As a result, if a trans-
action’s conflict classes change before the transac-
tion is committed, then the transaction is incor-
rectly scheduled and will end up aborting. This
occurs especially with I'T, where transactions’ read
and write set depend on other read and write set.
Symb-SMR mitigates this problem by solving the
Indirect transactions during scheduling and when
there are no write operations in the database. This
reduces the chance of the determined conflict classes
to be changed. When transactions abort, Calvin
sends these transactions back to the client. It is

then, the client responsibility to re-do the recon-
naissance phase and to re-send the transactions.
Symb-SMR does not abort any transactions that
fail, instead, we aggregate these failed transactions
and re-schedule them to be executed right away.
In the end, this will result in a lower number of
failed transactions. The last main implementation
difference is that Calvin does not differentiates ROT
from the other transactions and schedule them as
regular update transactions. We choose to separate
ROT because they can all be executed concurrently
due to these transactions only performing read op-
erations. However, ROT and update transactions
cannot be executed in parallel due to possible con-
flicts in concurrent read and write operations. To
avoid this, we do not allow to execute ROT concur-
rently with update transactions. The advantage of
not scheduling ROT is that this allows to execute
these transactions when the Workers are waiting for
update transactions to be scheduled. This way, we
avoid the costs of scheduling ROT and we reduce
the chance of the Workers threads going idle.

4.2.3 Experiment Results

For these experiments, we generated TPC-C work-
loads of 100 batches with 100 transactions. Figure
4 depicts the results of the solutions throughput for
processing these workloads. In these plots, we com-
pare Symb-SMR with three other solutions, Sequen-
tial, Nodo and Calvin. The Sequential implemen-
tation works as a baseline to measure the impact
of each solution. In Figure 4 (a) and Figure 4 (b)
are the solutions’ throughputs resulted from pro-
cessing a TPC-C workload when the size of Ware-
house table is 10. The difference between these two
plots is in the percentage of IT wherein Figure 4
(a) approximately 50% of the transactions are In-
direct transactions and in Figure 4 (b) 90% are IT.
We experimented with different percentages of IT
to measure the impact that these transactions have
in the system performance. Symb-SMR, with 50%
Indirect transactions scales until 16 Worker threads
and then deeps where with 90% of Indirect trans-
actions the solution does not scale, not surpassing
the 1500 transactions per second. As we can see,
the percentage of Indirect transactions have a big
impact in Symb-SMR’s performance, that was ex-
pected. Since Nodo does not suffer from Indirect
transactions, its throughput is not affected by the
change in percentages. Figure 4 (c) and Figure 4 (d)
have the same respective changes in the number of
Indirect transactions with the difference being the
size of the Warehouse table, that in these cases is
55. As we can, Symb-SMR scalability, in Figure 4
(¢), increased compared to Figure 4 (a). This is due
to TPC-C transactions conflicting less when the size
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Figure 4: Comparison of Symb-SMR vs Sequential
vs Nodo vs Calvin with a TPC-C workload with 10
and 55 warehouses with 50% and 90% of Indirect
Transactions

of the Warehouses table increases. Since Nodo only
considers the tables to control the concurrency, an
increase in the table size will not impact the per-
formance as we can observe in all plots. Also, the
number of Workers do not benefit Nodo, in fact,
increasing the number of Worker threads slightly
decreases the throughput of Nodo. Calvin’s perfor-
mance in all these scenarios is poor comparing to
the others. The main bottleneck of Calvin is the
reconnaissance phase and the vulnerability window
of the transactions’ conflict classes. Performing the
reconnaissance phase has already huge costs in the
system throughput but the costs increase even more
due to transactions aborting and requiring to do
the reconnaissance phase again. Especially in these
scenarios, where we have 50% and 90% of Indirect
transactions, the number of abort transactions will
be very high. This will be further analysed next.

4.2.4 Failed Transactions

In these experiments we compare Symb-SMR with
Calvin by measuring the number of times transac-
tions fail until they are successfully executed. Nodo
is not included in these experiments because is not
impacted by IT resulting in transactions not failing
due to changes in conflict classes. Figure 5 show
the number of times transactions failed during the
processing of a TPC-C workload. Each point repre-
sents the percentage of transactions that have failed
z times. The scenarios are the same than previ-
ously, Figure 5 (a) and Figure 5 (b) are with 10
Warehouses, 50% and 90% of Indirect transactions
respectively. Figure 5 (c) and Figure 5 (d) are with
55 Warehouses with the same changes in Indirect
transactions respectively. In Figure 5 (a) and Fig-
ure 5 (b), we can see the main advantage of Symb-
SMR compared to Calvin. Symb-SMR, achieves a
higher percentage of transactions that executed suc-
cessfully without failures and the overall number of
failures is lower compared to Calvin. Symb-SMR
by solving Indirect transactions during scheduling
and when there are no update operations being
made in the database, allows to lower the chance
of Indirect transactions to fail due to changes in
the database state. Calvin using the reconnaissance
phase in the client, with possible concurrent oper-
ations in the database, results on the determined
conflict classes being possible already incorrect in
the moment of scheduling. As expected, with a
higher number of warehouses both solutions will
have less failed transactions but Symb-SMR suc-
cessfully executes over 90% of all transactions with-
out failures whereas Calvin achieves 70% at best.

5. Conclusions
The main goal of this dissertation is to increase the
level of parallelism of a SMR-based system and to
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Figure 5: Percentage of failures per transaction for
a TPC-C workload with 10 and 55 Warehouses and
with 50% and 90% of Indirect transactions: Symb-
SMR vs Calvin

mitigate the limitations that impact these type of
systems. We do this by using Symbolic Execution

to determine a priori and in a fine-grained manner
the items that transactions access to control the
concurrency between them. This is all done au-
tonomously without requiring anything to the de-
velopers, unlike other state of the art solutions that
require developers to provide the items accessed by
the transactions. Symb-SMR uses the item accesses
determined by SE to build an efficient and deter-
ministic concurrency control system that provides a
higher level of parallelism comparing to other state
of the art solutions, like Nodo and Calvin. This is
proven in the experiments done where Symb-SMR
throughput results surpass the results of the other
state of the art solutions by 2 and 7 times.

5.1. Future Work

Symbolic Execution and JPF Symbolic Exe-
cution has an immense power which we only used
a portion. There is much room for improvement in
this part. First, we need to improve the way we han-
dle loops because transactions with big loops, that
have many iterations, are not yet supported. All
the experiments done were using benchmarks that
only used primitive variables, e.g. integer, long and
boolean, due to the current limitations with strings
support. Databases that do not use strings is not
realistic, so it important to include the support of
strings.

JPF Output Analysis The determination of
transactions conflict classes, based on the output
given by JPF, is not efficient. This is due to using
strings to identify and determine the transactions’
conflict. To improve this, we need to implement a
system that generates in real time objects that con-
tain the transactions conflict classes, this must be
done efficiently to have as much low impact in the
performance.

Optimizations to Symb-SMR The experi-
ments done showed that Symb-SMR’s performance
varies significantly when processing various batches
with different number of transactions. The solution
scalability also has some room for improvement, by
solving the contention problem when with a large
number of Worker threads.
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