
Fine Grained Transaction Scheduling In Replicated
Databases Via Symbolic Execution

Miguel Cândido Viegas

Thesis to obtain the Master of Science Degree in

Information Systems and Software Engineering

Supervisor(s): Prof. Paolo Romano
Prof. Miguel Matos

Examination Committee

Chairperson: Prof. Full Name
Supervisor: Prof. Full Name 1 (or 2)

Member of the Committee: Prof. Full Name 3

October 2018

ii

For my parents and grandfather,

iii

iv

Acknowledgments

First, I would like to thank my two advisors, Professor Paolo Romano and Professor Miguel

Matos, for their guidance during this long and stressful year. Thanks for every meeting, all the

email exchanged and, most important, for their patience with me, it was no easy task. I would

also like to thank Pedro Raminhas and Nuno Machado, for making a part of our team and for

the huge support they given me during the implementation and also with the process of writing

this thesis.

Secondly, I would like to thank all my family, in particular my parents. Eduarda, my mother

for always supporting me no matter what and for helping me in every obstacle I faced. João, my

father for always encouraging me to learn new things and for supporting my decision on which

field I wanted to study. I have also to thank my grandfather, José, for being the best person

I know and for working hard all his life to give my family what we have today. Lastly, in the

family department, I need to thank my two older brothers: Margarida for being available during

all life to help me, advise or just to talk; Vasco for all the advises on what is best for me and

for trying to make me a better person... although sometimes giving me a headache.

Lastly, I would like to thank all my friends that made a big part of my life over the years

and during the time doing this thesis. Special thanks to Raquel, João, David, Dharita, Eduardo

and Paulo.

v

vi

Resumo

Nos dias de hoje, a maioria dos serviços dispońıveis na Internet dependem de base de dados

para armazenar a sua informação. Estes serviços tendem a ter fortes requisitos de escalabilidade,

disponibilidade e tolerância a faltas, o que requer com que sejam desenvolvidas técnicas eficientes

de replicação de base de dados. No entanto, nestes sistemas a replicação introduz custos não

negligenciáveis para garantir que o estado das replicas é mantido devidamente sincronizado.

Uma abordagem clássica, é a State Machine Replication (SMR), que é uma técnica usada

para implementar soluções tolerantes a faltas. SMR tem algumas limitações no que conta ao

paralelismo, pois requer que a execução seja determińıstica. Para resolver estas limitações, as

soluções do estado da arte dependem que os acessos a ser feitos sejam determinados automati-

camente ou pelos programadores. O último caso, não é perfeito pois identificar os acessos de

transações complexas não é trivial e no primeiro caso ou os acessos determinados não são pre-

cisos ou é feito uma suposição otimista que aumenta a probabilidade de ocorrerem abortes. Isto

tem um impacto no grau de paralelismo e no desempenho geral do sistema.

Esta tese resolve as limitações destas soluções usando a Execução Simbólica para determinar

a priori e com precisão os acessos que as transações realizam. Com isto tornaremos o processo

de escalonamento mais eficiente.

A nossa abordagem Symbolic-SMR, foi avaliada usando uma micro-benchmark e usando a

benchmark TPC-C . Nestas experiências, a Symbolic -SMR superou o desempenho das soluções

do estado da arte em 2 a 5 vezes.

Palavras-chave: Replicação de Base de Dados, Replicação Total, Execução Simbólica,

Transações Distribúıdas, Escalonamento de Transações, State Machine Replication

vii

viii

Abstract

Nowadays, most modern Internet services make large use of databases to store relevant data.

These services tend to have strong scalability, high availability and fault tolerance requirements

that create a strong urge for designing highly efficient database replication techniques. However,

in environments, such as database systems, that offer strong consistency guarantees, replication

introduces non-negligible costs in order to ensure that the state maintained by the various

replicas is properly synchronized.

A typical approach is State Machine Replication (SMR), which is a technique to implement

fault-tolerant solutions. SMR has limitations when it comes to parallelism because it requires

deterministic execution. However, to solve these limitations, state of the art solutions rely either

on automatic prediction or programmer input about the set of data items to be accessed. The

latter is not optimal since complex workloads exhibit non-trivial storage accesses which are hard

to predict while the former either relies on coarse-grained prediction or on an optimistic guess

that increases the probability of aborts in case of misprediction. This impacts the solution

parallelism degree as well as the overall system throughput, respectively.

This thesis addresses the aforementioned limitations, by the use of Symbolic Execution to

determine a fine-grained a priori knowledge of the transactions’ conflict classes to improve the

efficiency of the scheduling process.

To evaluate Symb-SMR, we used a micro-benchmark and the TPC-C benchmark. In these

experiments, our solution achieved a throughput 2 to 5 times higher than current state of the

art solutions.

Keywords: Database Replication, Full Replication, Symbolic Execution, Distributed

Transactions, Transaction Scheduling, State Machine Replication

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Figures . xiii

Nomenclature . 1

Glossary . 1

1 Introduction 1

1.1 Goals . 3

1.2 Thesis Outline . 3

2 Background and Related Work 5

2.1 Database Replication . 5

2.1.1 Single Master . 6

2.1.2 Multi Master . 7

2.1.3 Two-Phase Commit . 8

2.1.4 Atomic Broadcast . 9

2.1.5 State Machine Replication . 9

2.1.6 Certification . 11

2.1.7 Summary . 14

2.2 Transaction Scheduling . 16

2.2.1 Replicated Databases . 16

2.2.2 Transactional Memory . 18

2.2.3 Summary . 20

2.3 Symbolic Execution . 20

2.3.1 Limitations and Challenges . 22

2.3.2 Improvements and Solutions . 22

2.3.3 Concrete and Concolic Execution . 26

xi

2.3.4 Use Cases . 27

2.3.5 Summary . 28

3 Symbolic-SMR 29

3.1 Overview . 30

3.2 Detailed Description . 32

3.2.1 Symbolic Execution . 32

3.2.2 Symbolic-SMR . 35

3.2.3 Overview . 35

3.3 Correctness Argument . 44

4 Results 47

4.1 Platform and Evaluation Metrics . 47

4.2 No Contention Micro-Benchmark . 49

4.2.1 Experiment Results . 49

4.3 TPC-C Benchmark . 51

4.3.1 Nodo . 51

4.3.2 Calvin . 51

4.3.3 Experiment Results . 52

4.4 Summary . 54

5 Conclusions 57

5.1 Future Work . 57

Bibliography 59

xii

List of Figures

2.1 Taxonomy for full replication of databases, based on Couceiro et. al [16] 6

2.2 Two-Phase Commit Protocol, based on Couceiro et. al [16] 8

2.3 Two Parallel Transactions in State Machine Replication (SMR), presented in

Couceiro et. al [16] . 10

2.4 Voting Protocol, based on the algorithm described by Rodrigues et al. [35] 12

2.5 Non-Voting Protocol, based on the algorithm described by Rodrigues et al. [35] . 13

2.6 Comparison between the approaches presented 14

2.7 Symbolic execution tree based on the method given in Listing 2.1 21

3.1 Symb-SMR Overview . 30

3.2 Scheme of Java PathFinder (JPF) listener based on [3] 32

3.3 Example of the Lock Table organization . 36

4.1 No contention workload of 100 000 transactions 50

4.2 Breakdown of Symb-SMR’s Workers when processing batches with different sizes 50

4.3 Comparison of Symb-SMR vs Sequential vs Nodo vs Calvin with a TPC-C work-

load with 10 and 55 warehouses with 50% and 90% of Indirect Transactions . . . 53

4.4 Percentage of failures per transaction for a TPC-C workload with 10 and 55

Warehouses and with 50% and 90% of Indirect transactions: Symb-SMR vs Calvin 55

xiii

xiv

Chapter 1

Introduction

Nowadays, most services available over the Internet make large use of databases to store rele-

vant data, like an inventory of an online store. These services tend to have strong scalability,

high availability and fault-tolerance requirements that are typically solved using replication

techniques. This has created a strong urge for designing highly efficient database replication

techniques. Replication allows to tolerate crashes of individual replicas while increasing the

perceived availability of systems by placing multiple copies of applications’ data across failure-

independents machines. However, state of the art database replication introduces non-negligible

costs in order to ensure that the state maintained by the various replicas is properly synchro-

nized.

A typical approach to ensure these requirements in replicated systems is based on the State

Machine Replication technique (SMR) [12]. In a nutshell, SMR is based on an order-then-execute

approach that operates in rounds. In each round, replicas first reach an agreement using some

consensus protocol, on a totally ordered set of (deterministic) operations to be executed at all

replicas. Next, the set of operations are executed independently at each replica in an order that

is consistent with the total order established during the agreement phase.

A key challenge of SMR approaches is how to ensure that transactions executing at different

replicas are serialized in the same order. This is important to take advantage of multicore

systems, where the order on which the transactions execute must be deterministic. Because the

order in which transactions are executed could differ between replicas resulting in inconsistency.

In order to remove the costs associated with the execution of the distributed agreement phase,

state of the art solutions batch in each round, a large number of transactions. In these scenarios,

the maximum throughput achievable by the system is typically bound by the speed at which

replicas can process the set of transactions agreed upon using consensus.

Conventional concurrency control schemes, long studied in the literature on transactional

1

systems [11, 40], suffer from a main problem when employed with SMR-based replication tech-

niques: they are not deterministic, i.e., they ensure equivalence to some serial execution, but

provide no guarantee that the transaction serialization order at different replicas will coincide.

In order to mitigate this issue, various techniques have been proposed in the literature, based on

different approaches. Schemes such as NODO [32] assume a priori knowledge of the data that is

going to be accessed by transactions, designated as transactions’ conflict classes. An alternative

is to estimate that data by doing a reconnaissance phase of the transaction before replicating

it, as proposed by Calvin [39]. Afterwards, at commit-time, the conflict classes are compared to

the previous recognized ones to infer if the transaction behaviour has deviated from the expected

and if there are deviations the transaction must abort. This approach incurs serious drawbacks

in geo-replicated scenarios where transaction submission and transaction execution are, on av-

erage, temporally separated in the order of tens of milliseconds since the vulnerability window

of transactions to abort is delayed until commit-time.

Certification-based solutions [35, 25], take a different approach and execute transactions op-

timistically in non-deterministic orders at the different replicas. These solutions rely on Atomic

Broadcast (AB) to establish the order in which transactions should be executed, by just one

replica), and then validated by all replicas: a transaction is only committed if it is found not to

have conflicted with any other transaction ordered before it according to the order specified in

the AB. Unfortunately, in high conflict workloads, the performance of Certification-based solu-

tions is highly affected by a large number of aborts. This is because a transaction is executed

regardless of what transactions are also being executed (locally or in other replicas). It is only

in the validation process that conflicts are detected after computing power and time has been

wasted in the transaction execution.

SMR-based solutions are not affected by the limitations of Certifications, because execution

is done after scheduling. The transactions are scheduled based on the a priori knowledge their

conflict classes. However, approaches [32] that assume this a priori knowledge rely on coarse grain

data access patterns to schedule the transactions, which can severely and unnecessarily restrict

concurrency. Other solutions [39], that estimate transactions’ accesses via a reconnaissance

phase, are subject to large overheads. This is especially true, in high conflict workloads, as they

require executing each transaction at least twice (for reconnaissance and for actual execution),

and possibly more in case the reconnaissance phase is inaccurate.

2

1.1 Goals

The problem with the current state of the are solutions is on the difficulty to precisely deter-

mine a priori the data access patterns of transactions. We propose Symbolic-SMR (Symb-SMR)

solution that uses Symbolic Execution (SE) to solve this problem. Symbolic Execution (SE)

is a technique originally developed for software testing which allows to determine every possi-

ble execution branch of a code block. As it will be shown later in this document, Symb-SMR

leverages the fact that SE provides correct and fine-grained transactions’ data access pattern

estimation to employ a highly concurrent, deterministic concurrency control that allows to max-

imize workloads’ concurrency level, while maintaining consistency among replicas and reducing

transactions’ vulnerability window by depending solely on data accessed at server-side.

1.2 Thesis Outline

The remainder of the document is structured as follows. Section 2 discusses the background and

related work, where it covers the subjects of Database Replication, Transaction Scheduling and

Symbolic Execution. The design of Symb-SRM is presented in Section 3. Section 4 presents the

evaluation of the Symb-SMR discussing the benchmarks used and comparing our system with

state of the art approaches. Finally, Section 5 concludes the document and discusses future

work.

3

4

Chapter 2

Background and Related Work

This chapter surveys the state of the art on the different topics covered in our work. The

remainder of this chapter is organized as follows: Section 2.1, reviews the state of the art of

Database Replication techniques. Section 2.2 focuses on Transaction Scheduling in Replicated

Databases and in Transactional Memory. Finally, Section 2.3, provides some background on

Symbolic Execution.

2.1 Database Replication

Data replication has been an increasing concern over the years, in order to increase the availabil-

ity and performance of large-scale distributed database systems. For a system to be available it

must be capable of withstanding multiple failures, i.e. be fault-tolerant. One way to accomplish

this is by replicating the data on more than one site. State of the art Replicated Databases can

be coarsely divided by: (1) whether replicas maintain a full state of data, named Full Repli-

cation, and typically employed in small clusters, or (2) whether they maintain only a subset

of data, which is designated as Partial Replication, and typically employed in larger clusters.

Since Database Replication has been a hot research topic for quite some time, the number of

contributions to this area has been very large. Thus, since this thesis focus on Full Replication,

this section will only overview the state of the art related to this area.

Figure 2.1 shows our taxonomy of database replication techniques, with the root on full

replication. This taxonomy is inspired by another taxonomy proposed by Couceiro et al. [16].

Full replication can be achieved using one of two approaches: Single Master or Multi Master,

depending on whether update transactions are executed only at a single node (called Master) or

at any of the available nodes. In Section 2.1.1 and Section 2.1.2, we will briefly address Single

Master and Multi Master, respectively.

5

Full Replication

Two-Phase
Commit

Atomic Broadcast

Multi MasterSingle Master

State Machine
Replication

Non-Voting Voting

Certification

Figure 2.1: Taxonomy for full replication of databases, based on Couceiro et. al [16]

2.1.1 Single Master

A Single Master (SM) approach is constituted by an arbitrary number of nodes, where one

of those nodes is appointed as primary, also known as master, and the rest are considered

backups. Clients submit update transactions solely to the primary node, which first processes

the transaction and then propagates the corresponding state changes to the backup nodes. Read-

only transactions can be processed by any node. This allows to have high throughput in read

intensive workloads compared to update workloads, because all update transactions need to be

processed by a master which lowers the throughput on update workloads. Having a master also

means that we have a single point of failure. When the master fails, the backup nodes need to:

• detect the failure;

• rollback transactions that have been processed by the master but not yet propagated to

all replicas;

• nominate a new master between all replicas via consensus.

This process has been designated as fail-over, by Schneider et al. [12]. Faults that affect the

master, thus have a big impact on the overall system performance. In case of failure of a backup

node, the system maintains its normal behaviour and ignores the faulty node.

Many solutions have been proposed that implement a SM approach, such as MySQL Replica-

tion [4] and PostgreSQL (Single Master) [5]. These are mainly used to provide high availability,

improve fault tolerance and scale out read workloads.

PILEUS

Pileus [38] is a recent solution that relies on SM approach. Pileus is a storage system that aims to

relieve application developers from the burden of explicitly choosing a single ideal consistency. It

6

achieves this by providing a service level agreement (SLA) that allows developers to define quotas

of the application’s desirable consistency and latency. Depending on the SLA, Pileus chooses

to which server (or set of servers) each read is directed. It also allows different applications to

obtain different consistency guarantees while sharing the same data.

All update operations received by Pileus are performed and strictly ordered at a primary

node. Secondary nodes eventually receive all updated objects via an asynchronous replication

protocol. However, depending on the SLA, when guaranteeing strong consistency, the system

will contain a mixture of strongly and eventually consistent nodes. The strongly consistent nodes

are synchronously updated, whereas the others are asynchronously updated. This allows to have

nodes that execute strongly consistent read operations, whereas others act solely as backups.

Terry et al. [38] identify two advantages of implementing Pileus with a SM approach. The

first is that, the primary node act as an authoritative copy for answering strongly consistent

reads. The second is that the system avoids conflicts caused by different clients concurrently

updating (thanks to having a master node), which is beneficial in workloads with very high

contention.

2.1.2 Multi Master

In a Multi Master (MM) approach, unlike SM, updates can be issued to any node. The failure

handling mechanism of MM differs from the one of SM. In MM, when is detected that a node is

faulty, the system can continue working without that node. Although, faults in the nodes do not

impact MM system’s performance, those nodes need to be later replaced. However, compared to

SM, MM requires more expensive synchronization protocols between nodes, in order to guarantee

consistency amongst all nodes. The order in which the corresponding transactions are serialized

must be identical at every node, to avoid any deviation in the state between them. This has an

impact in the throughput and the overall performance of the system.

Both approaches have complementary advantages and disadvantages. The key advantage

of SM is simplicity: by executing transactions at a single site, in fact, SM approaches avoid a

priori the problem of synchronizing the execution of multiple update transactions running at

different replicas. However, SM has limited scalability in update-intensive workloads, due to

having just one master. Although MM overcomes most of SM limitations, it does not have a

good performance in high contention workloads. This is due to none of the state of the art

solutions efficiently schedule the transactions to take advantages of the parallelism capabilities

of current machines. This is precisely the motivation of this thesis and a workshop published

based in this work by Raminhas et al. [34]

7

Multi Master approaches can be coarsely classified depending on whether they use Two-

Phase Commit or Atomic Broadcast. These two subclasses will be reviewed, respectively, in

Section 2.1.3 and Section 2.1.4.

2.1.3 Two-Phase Commit

Two-Phase Commit (2PC) is a well-known protocol to guarantee the atomicity of distributed

transactions [11], whose execution is illustrated in Figure 2.2.

P1

P2

P3

Prepare Phase Commit Phase
Prepare

Lock Acquisition

Decision

Confirmation

Commit?

Commit? Yes / No

Yes / No Commit /
Rollback

Commit /
Rollback ACK

ACK

Figure 2.2: Two-Phase Commit Protocol, based on Couceiro et. al [16]

The protocol can be split into two phases, Prepare and Commit. In the Prepare phase,

the coordinator (P1) sends a prepare message, requesting the participant nodes (P2 and P3)

to acquire locks on the data items accessed during transaction execution. Then all participants

send back a reply (Yes or No) depending on whether they succeeded in acquiring the requested

locks. Next, in the Commit phase, the coordinator sends a final decision (i.e., commit or abort)

to all participants: in case even a single participant voted negatively, the transaction is aborted;

otherwise, it is committed. Finally, the participants confirm to the coordinator the transaction

successful commit.

2PC can be straightforwardly used to deal with fully replicated data. In this case, the

concurrent execution of two conflicting transactions issued at different replicas is detected during

the prepare phase. However, in some scenarios, 2PC can cause distributed deadlocks, which are

very hard to debug. Another down-side of 2PC is that, in conflict intensive workloads, the

likelihood of incurring in transaction aborts grows cubically with the number of replicas [23].

Despite these limitations, recent systems use variants of 2PC. One example is Sinfonia [9], a

system that exploits a priori knowledge of the data items to be accessed by transactions (called

mini-transactions) that enables efficient and consistent access to data in distributed systems.

8

2.1.4 Atomic Broadcast

Atomic Broadcas (AB) is a protocol to perform broadcasts between a group of processes where

the correct processes deliver the same set of messages in the same order. It is termed as atomic,

because either all processes eventually deliver the message correctly, or none of them deliver the

message. AB must satisfy the following properties, originally defined by Chandra and Toueg

[14]:

• Validity - if a correct process broadcasts a message, then all correct processes eventually

delivery that message.

• Uniform Integrity - one message is delivered at most once.

• Uniform Agreement - if a message is delivered by a correct process, then all correct pro-

cesses will eventually deliver that message.

• Uniform Total Order - messages are totally ordered; i.e., if a correct process delivers m1

first and m2 afterwards, then every correct process must deliver m1 before m2.

Next, we will address two categories of replicated systems that make use of the AB primitive,

namely State Machine Replication, in Section 2.1.5, and Certification, in Section 2.1.6.

2.1.5 State Machine Replication

SMR is a well-known technique for implementing a fault-tolerant service, proposed by Schneider

et. al [36]. In the SMR protocol, replicas reach a consensus on a total order of transactions

to be executed. This eliminates the need of having distributed transactions since they are only

executed by one replica. First SMR approaches were single threaded and the execution order

followed complied with the total order agreed by all replicas. However, with the introduction

of multi-core processors it is now possible to execute more than one transaction concurrently.

However, the order of transactions executed must be the same through all replicas, so their

states do not diverge. To achieve this, conflicting transactions must be ordered equally by all

replicas whereas non-conflicting transactions can be executed in parallel [28, 29].

This ensures that all replicas start with the same state and keep an equal state after each

transaction execution, without the need of replicas exchanging messages.

Figure 2.3 shows an example of parallel execution of two transactions in SMR with two

replicas. In Parallel SMR approaches, transactions are first disseminated using AB. Upon

delivery, any locks protecting the data items to be accessed by the transactions are acquired

before executing the transaction. In order to ensure that locks are acquired in an order compliant

9

P1

P2

T1:Commit

T1:Locks T1:Executes T1:Commit
T2:Blocked T2:Executes T2:Commit

T1:Locks T1:Executes
T2:Blocked T2:Executes T2:Commit

Figure 2.3: Two Parallel Transactions in SMR, presented in Couceiro et. al [16]

with the one established by the AB, the lock acquisition phase is executed by a single thread at

each replica. As soon as all the necessary locks are acquired, the transaction can be executed

locally in parallel and committed without the need for any remote synchronization. Also, Figure

2.3 shows the interactions between parallel transactions, i.e. a transaction that happens in the

same time frame of other transaction. Transaction T1 is delivered to both replicas, and both

acquire the necessary locks to execute T1. Afterwards, transaction T2 is delivered but it cannot

acquire the locks because of T1, therefore it blocks until the locks are free again. The locks are

free when T1 is committed (or aborted), only then T2 can acquire the locks and start execution.

The reliance on AB to establish the transaction serialization order makes this solution way more

effective than approaches based on 2PC in contended workloads.

NODO

NODO [32] or NOn-Disjoint conflict classes and Optimistic multicast uses a transaction reorder-

ing technique to avoid aborts. NODO executes transactions at only one site (no distributed

transactions) and allows transactions to access more than one conflict class. A conflict class

is the set of data items accessed by a transaction. NODO assumes that conflict classes are

identified and determined a priori by the developer. It uses the given conflict class to establish

a queue, where each conflict class has a respective queue. Transactions are then inserted in the

corresponding queue to its conflict classes. For instance, consider conflict classes Cx and Cy and

transactions T1, T2 and T3 with conflict classes, CT1={Cx, Cy}, CT2={Cx} and CT3={Cy}.

Knowing this, NODO will queue these transactions, following the order of delivery, as follows:

Cx={T1, T2} Cy={T1, T3}. Since T1 is at the head in both queues can be executed while T2

and T3 must wait. When T1 is finished, T2 and T3 can be executed concurrently because both

have different conflict classes. The problem with NODO is that requires developers to provide

the conflict classes of transactions. This requirement expects that the conflict classes provided

by the developers are correct which is a very optimistic expectation. Other problem is that

the conflict classes that NODO uses only consider the table of the storage access, which is too

coarse-grained of an information to efficiently control the concurrency of transactions.

10

Calvin

Calvin [39] is a transaction scheduling and data replication layer that orders transactions’ exe-

cution deterministically to reduce the contention costs associated with distributed transactions.

Calvin is designed to run in a SMR like system, where replicas do not have to share information

between them. One goal of Calvin is to avoid the problem that holding locks bring, where some

lock agreement protocols, like two-phase commit, require multiple message exchanges between

replicas to work. These agreement protocols have an impact on the time required to execute

a transaction. Calvin’s approach to achieve inexpensive agreement is to do this outside of the

transactional boundaries. Once the agreement on how to handle a transaction is defined, the

rest of the execution must be done accordingly to the plan. This plan needs to be established

deterministically so no replicas’ state diverges.

To perform the concurrency control of transaction execution, Calvin uses a sequencer and a

scheduler. The sequencer is responsible for collecting transaction requests every 10 milliseconds

and then compiling all the collected transactions into a batch. The batch is then sent to the

scheduler containing a unique replica ID, a batch number (that is incremented every 10ms)

and all transactions’ inputs. When the scheduler receives the batch from the sequencer, it goes

through each transaction (following the order set by the sequencer) requesting all locks that the

transaction will need. The lock requests are granted strictly following the order in which the

requests are made by the transactions and are released only when the transaction is executed to

completion. To achieve this scheduling procedure, it is required that all transactions declare their

full read/write sets in advance. This information needs to be explicitly provided by the client

when issuing a request. This puts the burden of analysing the transaction and determining the

conflict classes on the developer. The client is also responsible for performing all remote reads

that could be needed to determine the complete conflict classes of a transaction. In scenarios

where the scheduling process requires remote reads, Calvin may throw arbitrary aborts. This is

due to the fact that remote reads, executed before submitting the transaction, may no longer

be accurate. This could originate conflicts during execution that will result in aborts. Upon

aborts, the client is responsible for re-submitting the transactions to be sequenced, scheduled

and, finally executed again. This retry process, in a high contention workload, results in a

non-negligible overhead.

2.1.6 Certification

In Certification-based approaches, replicas execute one transaction each and then propagate

the changes through all replicas. This allows, in low contention scenarios, to achieve better

11

throughput. However, the decrease in execution time is negligible in high contention workloads

due to the high number of aborts. An abort occurs when conflicting transactions are concurrently

executed in different replicas. This is the main limitation of these approaches.

Next, we describe two Certification-based approaches: Voting and Non-Voting.

Voting

The Voting protocol consists of two phases, a broadcast phase, where the transaction write set

are delivered to all replicas, and a voting phase, where is decided if a transaction is committed

or aborted.

P1

P2

Tx:Execution Tx:Obtain Locks

P3

Broadcast
Write Sets

Tx:Obtain Locks

Tx:Obtain Locks

Locks
Confimation

Tx:Commit

Tx:Commit

Tx:Commit

Commit
Messages

Tx:Validate

Figure 2.4: Voting Protocol, based on the algorithm described by Rodrigues et al. [35]

Figure 2.4 shows an execution example of the Voting protocol. This figure is based on the

general outlines of the algorithm described in Rodrigues et al. [35].

As mentioned before, a transaction, in a Certification approach, is executed in just one

replica, designated as the delegate node. When executing a transaction, the read locks on the

read objects are acquired (because in order to perform a write operation, the object must be

previously read). When the transaction is ready to be committed, the write set of the transaction

is sent to all replicas though AB. When a replica receives the transaction’s write set, it tries to

obtain the write locks needed. On one hand, if there is a transaction holding a write lock on

any object, the transaction is placed on hold until the locks are released. On the other hand,

if a transaction holds a read lock on an object belonging to the write set, the transaction is

aborted. When the delegate receives the write locks from all replicas, it sends a commit message

through AB. Then every replica applies the transaction’s writes and releases the write locks. If

the delegate receives an abort message, the transaction is aborted in all replicas and every lock

acquired is released.

The Certification protocol suffers from the limitation of incurring in a considerable number of

aborts due to read locks conflicts. Rodrigues et al. [35] suggests some optimization to minimize

this problem. Instead of aborting the transaction immediately when a read lock is encountered,

the authors suggest, that the transaction could be placed in an alternative state, called executing

12

abort. Consider a transaction T’ in the executing abort state blocked due to transaction T. If T

ends up being aborted, transaction T’ could resume execution. On the other hand, if transaction

T ends up executing normally and commits, then transaction T’ will still be aborted as before.

This optimization slightly reduces the number of aborts, but the issue still stands.

Non-Voting

The Non-Voting protocol is very similar to the Voting protocol. After transaction execution in

the delegate node, the profile of the transaction is sent to every replica. This profile includes

the set of objects accessed (read or written) and their version number. The difference between

Non-Voting and Voting protocols is that, in Non-Voting, as the name suggests, there is no

voting phase. Each replica validates and takes the decision to commit or abort by themselves.

At commit time, the transaction profile is broadcasted to all replicas. If a replica has read

an object and meanwhile receives the validation of other replicas, it only aborts if the version

number of the arriving transaction is smaller than the version number of the local transaction.

P1

P2

T1:Execution T1:Validation

P3

T1:Validation

T1:Validation

T1:Commit

T1:Commit

T1:Commit

T2:Execution T2:Validation T2:Abort

T2:Validation T2:Abort

T2:Validation T2:Abort

Figure 2.5: Non-Voting Protocol, based on the algorithm described by Rodrigues et al. [35]

Figure 2.5 illustrates a possible scenario of Non-Voting protocol that is described in Rodrigues

et al. [35]. This is similar to a scenario presented in Couceiro et al. [16].

As Figure 2.5 shows, transactions T1 and T2 are firstly executed in their respective delegate

node. When the execution finishes and the transactions are ready to be committed, both

delegate nodes send the transaction profiles to all replicas. In this scenario, transaction T1

is first delivered to the replicas via AB. Each replica, having in consideration the transaction

profile, validates and commits (or aborts) transaction T1. A transaction can be committed,

only if there are no conflicts with any other local transactions. There is no conflict if the version

of the objects read by the transaction being validated are greater or equal to the versions of

the objects stored locally. If this condition is true the transaction is committed, otherwise is

aborted. Seeing that transaction T1 and T2 have the same version number, T1 will commit

and T2 will abort because when T2 is validated, the version number will be lower than the

one that the replicas have. Since this process is deterministic and all replicas, including the

delegate nodes, receive transaction by the same order, all (non-faulty) replicas will achieve the

13

same decision about the outcome of both transactions.

This protocol suffers from the same weakness of Voting. To reduce the impact of this,

Rodrigues et al. [35] suggested an improvement: when validating a transaction, if it ends up

being validated and committed, local running transactions that conflicted with it, are aborted.

This way, it is spared AB messages and computational power.

2.1.7 Summary

In the previous section, we discussed some of the main approaches for fully replicating a database.

Table 2.6 summarizes and compares each approach with the following criteria:

• Example implementations - example of implementations of the approaches presented.

• Weak points - conditions (e.g. workloads) where the limitations of each approach have the

biggest impact.

• Strong points - points where the solutions excels comparing to the rest of the state of the

art.

• A priori knowledge of transactions’ read and write sets - if the approach needs a priori

knowledge of the transactions conflict classes to execute properly.

Single Master

TwoPhase Commit

M
ul
ti
M
as
te
r

A
to
m
ic
 B
ro
ad
ca
st
 State Machine

Replication

C
er
tif
. Voting

NonVoting

Example
Implementations Weak Points

[5], [6], [39]

[10]

[33], [40]

[38]

[36]

Limited scalability in update intensive
workloads (with low transactions' conflicts)

Subject to deadlocks in high contention

Poor parallelism with coarsegrained
conflict classes

Subject to high abort rate in high contention,
higher commit latency vs nonvoting

Subject to high abort rate in high contention

Strong Points

Simple and effective in low % update
transactions or very high conflict

Simple

Scalable even with high conflict
workloads

Scalable with low conflict workloads

Scalable with low conflict workloads,
lower commit latency vs nonvoting

A Priori Knowledge
of Conflict Classes

No

No

Yes

No

No

Figure 2.6: Comparison between the approaches presented

Single Master

The simplicity of Single Master approaches is one of its strong points. However, its simplic-

ity is the reason why SM approaches have limited scalability. This is especially noticeable in

update-intensive workloads because the master is the solely responsible for processing update

transactions. SM shines in workloads with a low percentage of updates, i.e. in read-intensive

workloads, where any replica can answer. It is also suitable to handle very high contention work-

loads, due to the fact of just having one master. This eases the conflict handling and also the

14

scheduling of transactions. SM does not require any a priori knowledge of transaction’s conflict

classes. This approach is simple and effective in read-intensive and high contention workloads;

however, has a low throughput in update-intensive workloads.

Two-Phase Commit

One of Two-Phase Commit main weaknesses is scalability, due to the fact the number of mes-

sages exchanged becoming excessive as the number of nodes increases. It also causes distributed

deadlocks in high contention workloads. This happens when mutual blocking between trans-

actions occur, and execution of those transactions is interrupted, and no completion can be

reached. This problem may be solved using the knowledge of conflict classes, e.g. for imple-

menting a scheduling system. However, that would add more messages exchange in a protocol

that already has a high rate of messages.

State Machine Replication

State Machine Replication has some scalability limitations, like most solutions presented, due to

the fact that any replica added to the system must execute all transactions, and so throughput

does not increase with the number of replicas. Also, SMR parallelism can be affected when

transactions have coarse-grained conflict classes that complicate the decision to execute trans-

actions concurrently. So, in scenarios with high conflict workloads, SMR needs a fine-grained

conflict class of transactions to be able to schedule them efficiently. This means that SMR

requires a priori knowledge of conflict classes to work well. However, most solutions available

require the developer to specify the transactions’ conflict classes [32] or require a reconnaissance

phase to determine the storage accesses [39]. This could result in faulty predictions, affecting

the performance and even correctness of the system. We will address this issue in the current

work, thus enabling significant improvements.

Voting and Non-Voting

The main problem of Certification solutions, including Voting and Non-Voting, is when trans-

actions are later found to conflict and are required to abort. That is why both approaches are

weak when subject to high conflict workloads. On the other hand, Voting and Non-Voting, scale

very well when subject to low conflict workloads where the abort rate has a small impact on the

execution. Both solutions behave similarly, however, the difference in implementations results in

Voting solutions having a higher commit latency compared to Non-Voting. This is because the

number of messages exchanged is higher in Voting approaches. Finally, Certification approaches

15

do not require a priori knowledge of transaction’s conflict classes.

2.2 Transaction Scheduling

The goal of a Transaction Scheduler (TS), is to schedule transactions in a way that minimizes

the occurrence of transaction aborts. The scheduling process can be done by taking into con-

sideration the transactions’ conflict classes, due to the fact that all transaction aborts, except

induced by the application, occur when transactions have the same conflict classes. By judi-

ciously scheduling transactions, the number of aborts will decrease, resulting in an increase of

the processing rate.

The way transactions are scheduled can vary per solution. In the following sections, we will

present implementations of TS included in Replicated Databases solutions and in Transactional

Memory solutions, in Section 2.2.1 and Section 2.2.2, respectively.

2.2.1 Replicated Databases

Very little work has been done on TS on Replicated Databases. One weak point of all database

replication approaches mentioned previously is that in some scenarios occurs a large number

of aborts that highly impacts the system’s throughput. Using TS techniques can drastically

mitigate this issue. Next, we describe two approaches of TS in replicated databases, AKARA

and AJITTS.

AKARA

AKARA [15] is a database replication protocol based on group communication. The goal is to

maximize resource usage by scheduling sufficient concurrent executions. AKARA is constituted

by 4 queues (Q0, Q2a, Q2b, Q2c). Transactions that arrive in queue Q0, are first classified

in terms of its type (active or passive) and its conflict classes before being sent to Q2a. The

type determined establishes if a transaction is actively or passively executed, i.e. execute with

high priority or not. In the next queue Q2a, transactions wait to be scheduled. The scheduler

analyses the queued transactions starting at the head and compares each transaction’s conflict

classes to the conflict classes of previous transactions. If a conflicting transaction is found,

it waits for its turn. This allows to schedulle transactions to execute concurrently without

occurring conflicts. Transactions that are ready to be executed first move from Q2a to Q2b,

before starting execution. In queue Q2b, transactions may be aborted due to conflicts with a

transaction in Q2b or Q2c. However, due to interleaving inside the database, a transaction t’

ordered before a transaction t may be blocked by t. To overcome this, AKARA allows t to

16

overtake t’ in the total order established by consensus, when both have the same conflict classes

and belong to the same replica. Otherwise, it aborts t. After being executed, transactions are

moved to Q2c, where they wait to be committed (or aborted). When ready to be committed, the

transaction’s modifications are sent to all other replicas and they are committed. If an abort

occurs, the transaction is re-executed conservatively by imposing its priority on any locally

running transaction.

Adding this scheduling process to a replicated database, drastically decrease the number of

conflict occurrences while providing a satisfactory throughput.

AJITTS

AJITTS [31] is an adaptive just-in-time transaction scheduler. AJITTS is similar to AKARA but

employs a different scheduling technique by having just one queue. AJITTS’s goal is to decrease

the number of aborts while increasing transaction throughput by computing the appropriate start

time for each transaction. The idea behind AJITTS is that transactions are vulnerable to being

aborted from the time execution starts until certification. So, in order to minimize the number

of aborts, execution should start as late as possible. However, this can result in certification

going idle due to the transaction in the head of the queue still being executed. Certification

goes idle in these cases because the certification must occur in the order previously established

by consensus. To mitigate this issue, AJITTS introduces a mark in the queue that determines

which transactions should start execution - all transactions before this line are not eligible to

start executing, while all transactions between the line and the head of the queue that are not

yet being executed, are sent to be executed. The marker is changed every time a transaction

leaves the queue, i.e. it is committed or aborted. The mark is determined by correlating the

estimated execution time and the input size of transactions. This results in, transactions with

a higher value of input being executed earlier than transactions with lower values. The number

of transactions executed and not yet executed is also taken into consideration when determining

the position of the mark. In other words, AJITTS algorithm determines the mark position,

depending on the workload of the system. AJITTS keeps a record of all estimated and real

values of transactions executed and certified to adapt the calculation of the mark position.

AJJITS, in the beginning, could have a poor performance related to having low throughput.

This low throughput is due to the occurrence of aborts or due to having too much idle time

between executions. But has the system estimation becomes more accurate, it starts reducing the

number of aborts and improving the peak throughput, even if it throttles transaction execution.

AJJITS could be improved by providing some specifications of the expected workload, to avoid

17

the poor performance in the beginning.

2.2.2 Transactional Memory

TS techniques have been widely used in Transaction Memory [19, 20, 18], with many proposed

implementations over the years. Next, we present three solutions implemented in Transactional

Memory, CAR-STM [19], Shrink [20] and Seer [18]. Due to the fact that the scope of this thesis

is Replicated Databases, Transactional Memory falls outside of this thesis scope. Because of

this, we will not go through the specifications of each solution implementation, we will only

consider the TS techniques that each solution uses.

CAR-STM

CAR-STM [19] is a scheduling-based mechanism for software transactional memory (STM) which

avoids transactional conflicts. CAR-STM is implemented in a centralized configuration, as this

goes outside the scope of this work, we will analyse only the idea behind the scheduler. CAR-

STM utilizes its scheduling capability in two different ways, with a contention manager called

serializing contention management and a technique designated proactive collision avoidance.

The first, serializing contention management, detects conflicts between transactions, originat-

ing from different queues, and aborts one transaction and moves it to the queue of the other

transaction. This way, the scheduler avoids repeated collision of transactions. The second,

proactive collision avoidance, allows CAR-STM to pre-assign transactions that are more likely

to collide. Applications can provide information about transaction’s collision-probability and

CAR-STM can use this information to decide on which queue to put the new transaction. When

a transaction arrives, it extracts the corresponding information, including the collision proba-

bility. Afterwards, a dispatcher, using the proactive collision avoidance with the transaction

information, chooses which queue to send the transaction to. During execution, if a conflict oc-

curs in one of the queues, the serializing contention management extracts one of the conflicting

transaction and designates to a new queue with no conflicting transactions.

Incorporating CAR-STM into a transactional system greatly reduces the probability that a

pair of colliding transactions would collide again. It also improves execution time and increases

throughput while, at the same time, providing a more stable performance.

SHRINK

Shrink [20] is a scheduler that bases its prediction on the access patterns of past transactions from

the same thread. It uses a novel heuristic, called serialization affinity, to schedule transactions

18

with a probability proportional to the current amount of contention. Shrink is based on two

ideas: locality of reference and serialization affinity. In the first one is used a notion of temporal

locality to predict transactional read sets. Temporal locality provides the frequently accesses of

past transactions. Shrink uses this information to predict whether the same read accesses will

occur in future transactions. To predict transactional write sets, Shrink uses a similar technique

as to predict the read sets. However, instead of considering the past transactions, for the write

sets, Shrink considers the transaction repetition. Shrink uses the predicted access sets (read and

write), in conjunction with the information of the currently executing transactions, to prevent

conflicts. The second idea, serialization affinity, allows to serialize threads only if contention is

high. This means that Shrink only activates the prediction and serialization techniques when the

success rate falls below a certain threshold. It does this by maintaining a success rate parameter

for every execution queue. When a transaction begins, Shrink predicts its read and write sets

and, if the success rate is high, executes transaction normally. When the success rate is low,

the transaction is first sent to a scheduler where it waits until the locks corresponding to the

predicted read and write sets are free. Afterwards, the transaction waiting can be executed,

without incurring any conflicts.

Conflicts can still happen, however Shrink obtains roughly 70% accurate read and write

accesses predictions, the rest is tolarated by the system.

SEER

Seer [18] is a scheduler that addresses Hardware Transaction Memory (HTM) restrictions by

leveraging an inference technique that identifies the most likely conflict relations. With this,

Seer establishes a dynamic locking scheme to serialize transactions in a fine-grained manner.

This means that the scheduler works with imprecise information about the conflict causes due

to limitations of HTM, whereas STM can give precise information about aborts, pinpointing

which transaction caused the abort. With this in mind, the key idea of Seer is to: gather

statistics to detect the set of concurrently active transactions upon abort and commit events. The

statistics gathered are then used as input for an on-line inference technique that uses probabilistic

arguments to identify conflict patterns between different atomic blocks of the program in a

reliable way. The final step exploits the probabilistic knowledge of conflict relations to synthesize

a fine-grained dynamic locking scheme that serializes transactions to avoid the occurrence of

conflicts. Seer keeps a lock table with every transaction locks. With this table, Seer identifies

which transactions can be executed concurrently. Every time a transaction finishes executioning,

either because it committed or aborted, the list of active transactions is analysed and stored in

19

two matrices one for commits and one for aborts. The commit matrix tracks the frequency of

commit events for a transaction and list which transactions were active. The abort matrix is

equal but instead tracks information about abort events. These matrices are merged and are

used to calculate and update the locking scheme to reduce aborts of transactions. The challenge

is identifying, among all captured conflicts, which ones occur frequently enough to benefit from

throttling down concurrency.

2.2.3 Summary

Transaction Scheduling can have a positive impact on a transactional system, by allowing better

concurrency and reducing the chance of aborts. However, as seen in the section 2.1, the imple-

mentation of a TS can have a negative impacts on the system’s scalability and throughput.

All the schedulers analysed in this document require or would benefit from having knowledge

of the transactions’ conflict classes. This description needs to be done a priori by the developer

or at runtime by predicting the transaction’s conflict classes. In the former, the description

given could suffer from errors by the developer. In the latter, the description obtained ends up

being too coarse-grained to schedule transactions efficiently. This thesis adresses this problem by

determining a priori and in a fine-grained manner the transactions’ conflict classes via Symbolic

Execution. This greatly improves the efficiency of transaction schedulers.

2.3 Symbolic Execution

Symbolic Execution (SE) is a program analysis technique first introduced by King in [26]. It is

traditionally used for software testing and debugging, as it allows to check whether a program has

errors, such as null pointers, memory leaks, or if some property can be violated, e.g. unauthorized

acquisition of privileges.

SE uses symbolic variables, i.e. variables that abstract their concrete value, to construct a

path condition, i.e. boolean expressions that unequivocally identify the constraints associated

with each path. SE achieves this by constructing a tree that represents the program execution.

Figure 2.7 represents a SE tree based in the foobar method shown in Listing 2.1. The tree’s

root is the first condition of the method. Then the root splits into two paths, one where the

condition verifies and other where it does not. Afterwards, each of these two paths are explored

and whenever another conditional statement is found, the execution is splited again.

20

void f oobar (int a , int b) {

i f (a != 0)

return 1 ;

else i f (b == 0)

return 0 ;

else

return −1;

}

Listing 2.1: Simple Java method

σ = { a = αa ,b = αb } π = αa ≠ 0
C

return 1;

σ = { a = αa ,b = αb } π = αa = 0 ∧ αb = 0
E

return 0;

σ = { a = αa ,b = αb } π = αa = 0 ∧ αb ≠ 0
D

else

σ = { a = αa ,b = αb } π = αa = 0 ∧ αb≠ 0
F

return -1;

σ = { a = αa ,b = αb } π = true
A

if (a != 0)

σ = { a = αa ,b = αb } π = αa = 0
B

if (b == 0)

Figure 2.7: Symbolic execution tree based on the method given in Listing 2.1

These conditional statements are represented as (smt, σ, π), as shown in Baldoni et al. [10],

where:

• stmt - is the statement to evaluate, e.g. if (a != 0) the root’s statement in Figure 2.7.

• σ - represents the current state of the program variables. This can include expressions

over concrete values or symbolic values, represented as αi where i symbolizes the variable.

• π - denotes the path constraints. Path constraint is an expression of a set of symbolic

variables states to reach stmt, e.g. to satisfy a condition.

The execution tree can include, in addition to the execution paths and the corresponding

conditional statements, the state changes of symbolic variables, e.g. when is assigned a different

symbolic value to a variable. With this, is possible to get a very fine-grained information about

every execution path of the program.

21

Section 2.3.1 identify some known limitations and challenges of SE. Section 2.3.2 presents

some solutions to these limitations. Section 2.3.3 briefly describes Concrete and Concolic exe-

cution and their advantages. Finally, Section 2.3.4, goes through some use cases of SE.

2.3.1 Limitations and Challenges

SE was designed following a number of performance-related design principles, the most notable

were depicted by Baldoni et al. [10]:

• Progress - the executor must be able to make forward progress for an arbitrarily long time

without exceeding the given resources.

• Work repetition - no execution work should be repeated.

• Analysis reuse - analysis results from previous runs should be reused as much as possible.

The progress principle is related to hardware limitations, that could affect the program’s analysis

time. Work repetition and analysis reuse principles are simple optimizations to spare resources

(time and hardware). The survey of Baldoni et al. [10] listed some challenges inherent from the

SE state of the art:

• Memory - The amount of memory required to analyse a program is a challenge by itself.

Another big challenge is to handle and simulate memory behaviour, such as pointers,

arrays, or other complex objects present in the programs being analysed.

• Loops - The existence of loops in the program makes the symbolic engine fork in multiple

branches to accommodate the number of paths in the loop. This leads to an explosion

of paths that the SE engine has to explore, incurring in performance penalties, as well

as increasing the amount of memory needed. This could result in an incomplete program

analysis.

• Constraint Solver - Constraint solvers suffer from many limitations. The more prevalent

is execution time, that increases exponentially as the number of constraints increases, or

when complex constraints are added to be solved.

The following section will address some solutions to these challenges.

2.3.2 Improvements and Solutions

This section describes some solutions to the challenges previously described, related to memory,

loops, path explosion and constraint solvers. Afterwards, will be presented two SE tools, KLEE

[13] and JPF [2, 33, 7], that brought many of the improvements listed next.

22

Memory

One of the main challenges of memory is related to the way pointers are handled by the symbolic

engine. One possibility is to consider the memory addresses as fully symbolic memory, where a

symbolic address could reference any position in memory. This approach in complex programs

can end up being intractable because of the sizable number of positions available. For this reason,

fully symbolic memory is best suited for the cases where the set of possible memory addresses

to be referenced is small. Another option is to use address concretization, that consists of a

symbolic address referencing a single specific address. This reduces the number of states, but

in exchange, some execution information could be missed, such as execution paths. Partial

memory modeling mitigates the scalability problems of fully symbolic memory and the loss of

soundness of address concretization. The main idea of this technique is to use the best parts

of both previously described techniques, where write addresses are always concrete and read

addresses are modelled symbolically.

Handling complex objects is another critical challenge related to memory. Because these

objects must be allocated in such a way that is possible to take advantage of the object prop-

erties. A possible approach is to only initialize them when the objects are accessed. An object

can be initialized with various values: (1) null, (2) a reference to a new object with all sym-

bolic attributes, and (3) a previously introduced concrete object of the desired type. This

approach, does not require an a priori bound on the number of input objects. They are bound

when accessed, avoiding acquiring resources for useless objects. This can be extended using

method preconditions, where input objects states are characterized externally by their intended

behaviour. This is especially useful in custom objects not supported by the SE engine.

Loops

The common solution to counteract the loops challenges is to only compute part of the loop,

by limiting the number of iterations. This increases speed in exchange for soundness, as a lot

of information can be lost. Other approaches infer loop invariants through static analysis and

use them to merge equivalent states. This technique allows to have a more complete analyse in

exchange of speed, as this would take more time but spare some hardware resources.

Path Explosion

A program that contains loops increases exponentially the number of execution states. This

typically results in a Path Explosion. Path Explosion can also occur in complex programs,

regardless of loops. To mitigate this problem, for both cases, the only solution is to restrict the

23

SE engine to explore just a fraction of all possible execution paths. There are several approaches

that perform this, where they try to identify and explore all the important execution paths. Two

implementations that do this are: depth-first search (DFS) and breadth-first search (BFS). DFS

continuously expands a path as much as possible, before backtracking to the deepest unexplored

branch. BFS explores all unexplored paths in parallel, repeatedly expanding each of them by a

fixed slice. DFS is more suited to programs that do not have loops, due to the fact that, paths

containing loops and recursive calls can easily stall the execution. BFS is best for programs

containing loops, where we end up with a larger path coverage and overcomes the staleness

problem.

An alternative technique is to use a method called preconditioned symbolic execution that

drives a symbolic execution towards a subset of inputs space. The subset is determined by

some predefined conditions. Preconditioned symbolic execution allows to narrow the exploration

space, resulting in a more efficient exploration of the execution paths. These preconditions need

to be carefully selected because if it is too specific, the subset could be too small or even empty.

On the other hand, if the preconditions are too general, almost the entire paths will need to be

explored.

There are many other techniques to mitigate the Path Explosion problem. All the ones

mentioned previously have a common goal, of only exploring a fraction of all execution paths.

What varies between techniques is the exploration length. Some try to explore more paths,

but the information gathered from each path might not be enough. Others analyse thoroughly

some paths, gathering a more complete information of the path, however, the number of paths

explored is lower.

Constraint Solver

Constraint solvers are one of the main obstacles to the scalability of SE engines. There are

many approaches that try to minimize this problem such as Z3 [17] and Choco [24]. The more

prominent solutions are the constraint reduction and the reuse of constraint solutions. The first

one consists of reducing the size and complexity of the constraints to evaluate. This is achieved

by dividing a complex constraint into simpler ones, and running these simpler constraints con-

currently. In some cases, it is possible to rewrite a new constraint in an already existing one.

Regarding reuse of constraint solutions, the idea is speeding up the computation of results by

reusing previously computed results. The results are stored in a cache to avoid calling the solver

unnecessarily.

24

The best results would be achieved by combining both approaches, e.g. when dividing a

complex constraint into simpler constraints, or rewriting it to a similar simpler constraint, these

simpler constraints could be cached. With this combination the solver will end up being called

fewer times, resulting in a lower execution time.

KLEE

KLEE [13] is a symbolic execution tool proposed by Cadar et al., that is capable of automatically

generating tests that achieve high coverage on a diverse set of complex programs. KLEE was

designed with C/C++ programs in mind and it has been highly tested. KLEE introduced

many of the innovations and improvements mentioned previously. KLEE is considered an online

executor because it executes multiple paths simultaneously in a single run. This requires a careful

attention to memory consumption because the number of active states could be too high. KLEE

uses caching techniques that allow to never re-execute instructions, this information improves the

time of analyse of the following states. To mitigate the memory consumption problem, KLEE

uses the fully symbolic memory approach, mentioned previously, where symbolic addresses are

referenced in any position of memory.

KLEE brought many improvements to the path explosion problem. The main one is an

implementation of breadth-first search, where it assignes a probability to each path based on

the length and on the branch variety. With this information, it is possible to decide which

paths to prioritize the exploration first. Regarding the constraint solver improvements, KLEE

implemented some techniques that were mentioned previously. One is an implementation of reuse

of constraint solutions where the constraint processing is reduced by simplifying the expressions

using previously obtained results. For example, an equality constraint form x := 5 could be

simplified by other constraints that use x, such as x<0.

KLEE improved and optimized many of SE challenges by introducing new techniques and

approaches.

Java PathFinder

JPF [2] is an open-source runtime environment for verifying Java bytecode that was developed

by NASA. JPF is composed by a core, designated as jpf-core, that can be easily extended.

Jpf-core is a program which receives Java programs to find possible errors in them. One of

JPF extensions, and the one that we will use, is Symbolic JPF [33, 7], also designated as jpf-

symbc. Jpf-symbc is a framework that integrates SE with the existing model checking of jpf-core.

Jpf-symbc generates test cases that obtain a high code coverage. Programs are executed using

25

symbolic inputs that represent all possible concrete inputs. Values of variables are represented

as numeric constraints, generated from analysis of the code structure. These constraints are then

solved to generate inputs that are guaranteed to reach that part of the code. JPF supports a big

number of constraints solvers, including Z3 [17] and Choco [24] that were mentioned previously.

This makes JPF, in specific jpf-symbc, a very complete SE tool to analyse Java programs.

2.3.3 Concrete and Concolic Execution

To avoid some of SE’s limitations, there are alternative approaches such as Concrete and Concolic

executions. These work similarly as SE, with the main difference being in the way that variables

are handled. Concrete Execution uses only concrete values in the variables’ states. SE uses

symbolic values that represent the state of the variable, this state can be just the variable itself,

an expression, such as α+2, or a path constraint to satisfy a given condition, like α>0. Finally,

Concolic Execution can use both concrete and symbolic variables.

Next, we will briefly discuss these two execution techniques, Concrete and Concolic Execution

[10], and then we will present CUTE [37], a unit testing tool that introduced many Concolic

techniques now present in many other tools.

Concrete Execution

Concrete Execution uses concrete values to explore the execution flow of a program, concrete

values are switched and tested until it is found a value that generates a new execution flow.

These values are then stored in the path constraint (π) of the corresponding statement (stmt).

In complex programs, this type of execution technique can result in a large number of executions

due to the huge amount of possible input values. This means that Concrete Execution has space

(hardware) and time limitations, resulting in execution paths not being explored. Because of

this, Concrete Execution allows to set properties, in order to prioritize the exploration of a

specific path flow. This kind of execution is best suited for test cases, where the amount of

inputs possible are known and limited.

Concolic Execution

Concolic Execution, stands for cooperative Concrete and Symbolic execution. It was first intro-

duced by Godefroid and Sen with DART [22] and was extended afterwards by Sen and Marinov

with CUTE [37]. Concolic Execution combines the advantages of Concrete and Symbolic exe-

cution. These advantages are: (1) the benefit of using concrete values to specify a variable state

and (2) the extensibility of symbolic values that allow a better and more complete exploration

26

of a program. Concolic Execution is also affected by some of SE’s limitations. However, it is not

affected by the weaknesses of Concrete Execution because they are complemented by the SE.

CUTE

CUTE [37] is a unit testing engine that use Concolic Execution techniques. CUTE is available in

C and in Java with jCUTE [1]. The combination of Symbolic and Concrete execution generates

test inputs that allow to explore all feasible execution paths. Before, such an extensive explo-

ration would require a long time and powerful hardware. CUTE also introduced a technique to

avoid redundant input testing, i.e. input that would give a previously seen result. With this

technique, it is more likely to test critical inputs that could cause incorrect behaviour of the

program.

CUTE provides a method for representing and solving approximate pointer constraints to

generate test inputs. By using a logical input map, with all inputs, it is possible to build

constraints on these inputs, by symbolically executing the code being tested. CUTE also makes

the expressions on pointers simpler, by having only one value, instead of one field for each value,

allowing to execute a larger number of unit tests.

With CUTE, nearly every unit test will cover every branch of a program in an efficient way.

However, it cannot test concurrent programs and programs using algebraic functions, such as

cryptographic protocols, due to the large number of possible solutions.

2.3.4 Use Cases

As seen in previous sections SE is mostly used for testing and debugging software. Below we

present some interesting use cases of symbolic execution.

SAFELI

SAFELI [21] is a tool for detecting SQL Injection vulnerabilities in Web applications. SAFELI

instruments the bytecode of Java Web applications and utilizes symbolic execution to statically

inspect security vulnerabilities. SAFELI detects SQL injection attacks by symbolic executing

the code to find for critical spots which submit SQL query. When one of these critical spots

are found, SAFELI constructs a hybrid string equation to explore values that might be used

to apply a SQL injection attack. Once the equation is successfully solved, the solution of the

equation is used to construct a test case. An attack pattern library is used to apply attacks in

these tests. This library is the weak point of SAFELI because it needs to be manually updated.

The authors want, in the future, to not have an attack pattern library at all, making SAFELI

27

completely autonomous. This can be made possible by tackling the string constraints issues

discussed in the paper.

Other implementations

Marcozzi et. al [30] proposes an algorithm that use SE, to generate tests for simple Java

methods. These tests execute reads and writes via SQL transactions to a relational database,

subject to integrity constraints. In this approach, the authors use a Relational SE technique that

allows the algorithm to generate a set of relational constraints for any finite path to test. The

solutions to these constraints constitute a test case, that exercise the selected path. To achieve

this, the algorithm receives as input a SQL dynamic-link library (or DLL) file that describes

the database scheme and receives a Java method to test. The algorithm outputs the relational

constraints generated, which are then sent to an analyser that solves the constraints in order to

find structures that satisfy them. The algorithm transforms the given relational constraints into

a set of boolean constraints. The advantages of this approach compared to other approaches, is

that there is no need to transform the original program code.

2.3.5 Summary

Despite some limitations, SE is a very powerful testing tool. Although SE is used for testing

purposes, there are other interesting use cases in the security and conflict handling domains,

such as SAFELY [21] and Marcozzi et. al [30], respectively. Similarly to these approaches, which

used SE in domains other than testing, we will do the same in this dissertation. We use SE to

obtain a priori knowledge of the transactions reads and writes sets and consequently optimize

the way that concurrent transactions are handled in a fully replicated database systems.

28

Chapter 3

Symbolic-SMR

The analysis of the state of the art conducted in chapter 2 highlighted that replicated databases

still incur several limitations. The main limitation that replicated databases have is related

to their parallelism capabilities. SMR approaches require determinism to take advantage of

multi-core machines, i.e. to execute transactions in parallel. One way to solve this limitation

is to determine which transactions can be executed concurrently without incurring in conflicts.

State of the art solutions achieve this by classifying the conflict classes of transactions, allowing

to determine which transactions conflicts. However, state of the art solutions, such as Nodo

[32], determine the transactions’ conflict classes with a large granularity, which limits the de-

gree of parallelism. Other solutions, such as Calvin [39], require the developers to provide the

transactions’ conflict classes which is a notoriously hard task with complex programs. However,

Calvin has an alternative method to determine the transactions’ conflict classes, it does this by

performing a reconnaissance phase. With this, Calvin pre-executes (without acquiring locks and

without performing write operations) the transaction to identify the items that the transaction

accesses. However, this has a large cost in the system performance and if the conflict classes are

mispredicted the transaction is then aborted and this process needs to be done again.

Based on this analysis, this dissertation proposes the idea of using SE, presented in Section

2.3, to analyse the transactions’ logic and extract information about the items that are accessed.

We do not only extract the items accessed but also, the path conditions to reach those accesses.

This information would then be used to build a solid and fine-grained scheduler that allows to

have concurrent executions without any conflicts and therefore, no aborts.

Next, in Section 3.1, we introduce an overview of the overall solution where each of the

components are presented. Afterwards, in Section 3.2, we describe in great detail the two main

components of the solution, the SE engine and the Symbolic-SMR. Finally, in Section 3.3, we

discuss some arguments related to the correctness and determinism of the presented solution.

29

Lock Table

Queuer
Thread

Worker
Thread 1

Worker
Thread N

...

Replica A

Client Application

Batch of
Transactions

Symbolic
Execution

Consensus

Offline

Determine
Conflict Classes

Replica B

Batch of
Transactions

Symb-SMR

Figure 3.1: Symb-SMR Overview

3.1 Overview

Symb-SMR has two main modules, depicted in Figure 3.1. One of the modules is the client

application and the other is the system replicas.

The client application is responsible for generating transaction requests and send them to

the replicas where then, the replicas reach a consensus on the order to execute the transactions.

The Client also attaches the conflict classes of each transaction it generates. It does this based

on the output given by the SE after analysing the transaction code. However, the code is

analysed by SE offline. Thus, the output produced by SE is not dependent on the concrete

values of the transaction’s inputs, as the values are symbolically annotated during the analysis

performed by the SE engine. The generated output encompasses both: (1) boolean restrictions

upon every path condition, which is typically the functionality employed by state of the art

SE engines to give the set of restrictions associated to each of the programs control flow; (2)

symbolic variables manipulated by the transactions, which when instantiated represent a fine-

grained representation of the transaction conflict classes. Thus, at run-time, the Client only

needs to replace the corresponding input’s symbolic variable for its concrete value to obtain the

conflict classes of that transaction.

The replicas process every batch of transactions that is delivered. The replicas must process

each batch in a way that their state is maintained consistent. In single-core system, where we

30

would only have one Worker thread, i.e. thread that executes transactions, determinism would

not be a concern. However, in a multi-core system, with various Workers, it must exist a control

on which transactions the Workers can execute. This control is important due to conflicts

between transactions, but also to avoid replicas having distinct commit orders which results in

different replicas’ states. To do this, without exchanging any messages between replicas, we need

to schedule the transactions deterministically. So, the scheduling process is done just by one

thread, the Queuer Thread, it extracts a batch of transactions and schedules each transaction

of the batch by placing them in the Lock Table according to the conflict classes, so that two

transactions belonging to the same conflict classes are serialized. The Lock Table is the structure

that dictates the order that transactions will execute, to avoid conflicting transactions being

executed concurrently. The Queuer, while scheduling of a transaction, might need to perform

read operations in the database. This occurs when a transaction has accesses that depend on read

accesses done during its execution. Similarly to the existing literature, we designate this type

of transactions as Indirect Transactions (IT). Transactions without any accesses dependencies

are called Direct Transactions (DT). We have also categorized another type of transactions, the

Read-Only Transactions (ROT), that only have read accesses. DT and IT are allocated in the

Lock Table during scheduling, but ROT are not. This is because the order by which ROT are

executed is not relevant. Because of this, we decided to not place ROT in the Lock Table and

allow them to be executed concurrently with each other when there are no update transactions

being executed. The Workers only execute the transactions that have successfully acquired all

the locks. After executing a transaction, the Worker removes the finished transaction from

the Lock Table and updates the list of transactions that are ready to be executed. Before

executing IT, the Worker must verify if the values read during scheduling did not change. It

does this by performing the same reads that were done during the transaction scheduling and

comparing them with the values read previously. If the values are equal, then the transaction

may execute as normal. But if the values differ, then the transaction is removed from the Lock

Table and placed in a queue of failed transactions without being executed. This is necessary

because, if the values read are different, this means that the scheduling process is incorrect. This

could result in conflicting transactions being executed concurrently or breaking the execution

order and thus leading to replica divergence. Therefore, after all transactions are executed,

the failed transactions are re-scheduled again by the Queuer Thread and re-executed by the

Worker Threads. This process is repeated until all failed transactions are executed successfully

committed.

31

3.2 Detailed Description

In this section, we provide a detailed description of the solution, explaining, in detail how each

component works. First, in Section 3.2.1, we will detail how we obtain the conflict classes of

transactions using Symbolic Execution. Then, in Section 3.2.2, we will describe the Symbolic-

SMR that include the previously mentioned Lock Table, Queuer Thread and Worker Threads.

3.2.1 Symbolic Execution

Symbolic Execution is a program analysis tool, as described in Section 2.3. The number of SE

engines available is quite large and each offers different capabilities. The one we choose to use

was JPF [33] with the Symbolic JPF extension [7] that was previously presented. The reasons

behind this choice were: (1) it is a SE engine for Java, (2) it is open-source, has constant updates

and has a large number of users and (3) offers developers a complete API to use and modify the

SE engine internals to accommodate their needs. The latter is a very important reason because

we needed to customize the SE analysis to give the information about the items accessed by

transactions. To achieve this, we used one of the API objects of JPF, the Listeners.

Program being
analysed

executed by JPF

executed by the JVM

VM

Search

Listeners

execution
events

search
events

JPF

Figure 3.2: Scheme of JPF listener based on [3]

Listeners allow to execute code when specific events occur during program analysis. Figure

3.2 shows an overview of how Listeners work and is based on a scheme presented in [3]. During

a program analysis, JPF notifies the Listeners of Java execution events, such as instruction

executed, object created and method invoked, and also notifies of JPF search events, such as

new execution path and assignments to symbolic variables. This allows to identify specific points

32

of a transaction execution to gather crucial information. More specifically, we gather information

about the items accessed by a transaction and the path that leads to each access. To achieve

this we implemented a custom Listener, the SymbolicDBListener, which will be described next.

SymbolicDBListener Logic

The main role of SymbolicDBListener is to identify and collect the storage accesses in a transac-

tion. To do this, we implemented a method that every time it receives an instruction executed

event, checks if the instruction was a method invocation, more specifically a put or get method

invocation. If it is, we extract from the method arguments, the table and key accessed. As the

inside analysis of the put and get methods’ are not relevant, we decided to skip the execution of

these methods, avoid iterating with the database. This is done by jumping directly to the return

call of the method. Then we add the arguments extracted from the method to the corresponding

execution path, which describes the conditional statement to reach this path. The key value,

and possibly, the table value gathered from each access could include symbolic variables that

make up the table or key value, for example:

table x = 1 ; key y = input 1 + input 2 (3.1)

This means that an item in table 1 with the key input 1 + input 2, where input 1 and input 2

are symbolic variables, was accessed. At the end of the analysis, we end up with an output like

the one represented in Listing 3.1. This output is later analysed by the Client to determine the

conflict classes of a transaction, by exchanging the inputs’ symbolic variable for the concrete

values.

Transact ion : <transact ion name>

Path : <path cond i t ion>

Read Set : [< t ab l e va lue> <key value >, . . .]

Write Set : [< t ab l e va lue> <key value >, . . .]

. . .

Listing 3.1: Example of the output given by JPF

As described previously, Indirect transactions have item accesses that depend on read op-

erations done before. These types of accesses are also identified by the SymbolicDBListener,

by generating a new symbolic variable, called read variable, every time a read operation (get

method) is analysed. The read variable is then stored together with the access values (table and

33

key) of the corresponding read operation. Afterwards, every time the access values of a item

access are identified, we verify if any of the symbolic variables included in the access values are

read variables. If yes, then the table and key values of the read variable are included in the

values of the access being analysed, for example:

table x = 1 ; key y = input 1 + read variable (read variable table, read variable key). (3.2)

This means that this item is in table 1 and its key depends on the sum of the symbolic

variable input 1 and a previous read operation done in table read variable table with the key

read variable key. This kind of item accesses, designated as indirect accesses, must be handled

differently by the client. When the client determines the conflict classes of a transaction, it can-

not determine the conflict classes corresponding to indirect accesses. In other approaches, such

as Calvin [39], the client resolves these problems by performing remote reads to solve the indirect

accesses. However, in high-latency scenarios, i.e. scenarios where transaction submission and

transaction execution are sufficiently spaced, this greatly augments the probability that such

reads are stale by the time the transaction executes, hence increasing the abort rate. To avoid

this, we store the indirect reads separately and execute them during the scheduling process at

each replica. This way, in our approach, the vulnerability window is only from the scheduling

phase to the execution phase, wheres in other approaches it is from client submission until the

execution phase. As the latter includes the round-trip between the client and the server, together

with the latency induced by consensus, the vulnerability window in our approach is significantly

smaller.

During the implementation we encounter some problems. One of the problems was related to

transactions with loops. We were getting two results when analysing these transactions: (1) the

analysis running indefinitely and (2) obtaining repeated read and write sets values resulted from

different execution paths. The latter was not incorrect, but it difficulted the output analysis.

To mitigate this issue we changed the state exploration of JPF to breadth-first instead of depth-

first, so when analysing a given if-statement, if we identify that no symbolic variable is accessed

in that path then we add this if-statement to an irrelevantBranch set. This set is then used

in the next iteration of the loop to identify the branches that were determined as irrelevant in

previous iterations of the loop. If a branch is identified as irrelevant then, we would say to JPF

to only take one of the branches of the if-statement without adding a new path constraint to

the analysis. With this, we end up with a more quick and efficient analysis of the transactions.

However with big loops the analysis still runs indefinitely.

34

3.2.2 Symbolic-SMR

After the client has generated the transactions and determined the transactions’ conflict classes,

the transactions and the respective conflict classes, are compiled in a batch. This batch is

then ordered by consensus and then deterministically processed by the replicas following the

consensus order. Determinism is only a concern in parallel systems because single-threaded

systems return always the same result for the same workloads. Replicas with parallel systems

need to be deterministic to maintain an equal state between them.

3.2.3 Overview

Executing transactions deterministically requires scheduling the transactions in a way that the

resulting state after executing the transactions is equal throughout all replicas. To achieve

this, it is necessary to take special attention to conflicting transactions, because if replicas

execute these transactions in different orders, the end result for each replica will be different.

To prevent this from happening, we implemented a Lock Table to perform the concurrency

control of transaction execution. The transactions are inserted in the Lock Table by the Queuer

Thread, during scheduling. The Lock Table controls the concurrency between transactions by

each transaction’s conflict classes. Figure 3.3 shows an example of how the Lock Table controls

the concurrency of transactions Tx1, Tx2 and Tx3. The transactions are ordered in the batch

as Tx1, Tx2 and Tx3 and their conflict classes are the following:

• Tx1 is table X - key 1, and table Y - key 1;

• Tx2 is table X - keys 1 and 6, and table Y - key 3

• Tx3 is table Y - key 1, and table Y - key 3;

The Queue thread will process the batch and populate the Lock Table as depicted in Figure 3.3.

For a transaction to start execution, it needs to be in the head of all queues where it was inserted.

As an example, following Figure 3.3, Tx1 can be executed, because is the first in both queue

[T=X,K=1] and queue [T=Y,K=1]. This means that none of Tx1’s conflicting transactions, Tx2

and Tx3, can be executed until Tx1 has finished. This concurrency control mechanism is very

similar to the one of NODO [32], presented previously in Section 2.1. After Tx1 finishes, the

transaction is removed from the Lock Table and Tx2 can start executing, while Tx3 still has to

wait. At any given instant there are several instances of the Lock Table, identified by a unique

ID. This allows the scheduling of future batches and the execution of the current batch to be

made in different Lock Table instances. Using only one Lock Table would result in contention

between the Queuer and Worker threads thus reducing performance. So, the Workers are only

35

Tables

1

Keys

Tx 1

6
X

Y

:

: Tx 2

Tx 2

1 Tx 1

3

:

: Tx 2

Tx 3
...

...

Tx 3

Queues

Figure 3.3: Example of the Lock Table organization

allowed to start execution in a Lock Table when the Queuer as finished scheduling in that Lock

Table. Lastly, the Lock Table also includes some data structures that allow:

• to store the batch to be scheduled by the Queuer Thread;

• to store the transactions that are ready to be executed by the Worker Threads;

• and to control what transactions are being executed.

Next, we will present and describe the pseudocodes of the Queuer and the Worker Threads. Al-

gorithm 1 depicts the data structure that both the Queuer and the Worker use. BatchedToQueue

is a queue containing the batches delivered from consensus. LockTable is a data structure that

controls the concurrency of transactions. TransactionsToExecute and ROTransactionsToExe-

cute are queues that contain update and read-only transactions, respectively, that are ready to

be executed. TransactionsExecuting is a list that contains the transactions that are currently

being executed by the Workers Threads. FailedTransactions is a queue of transactions that

failed to execute. Lastly, KVStore is the underlying key-value store.

1 initially :

2 BatchesToQueue = ... // Queue of batches to schedule

3 LockTable = ... // Lock Table data structure

4 TransactionsToExecute = ... // Queue of update transactions to execute

5 ROTransactionsToExecute = ... // Queue of read-only transactions to execute

6 TransactionsExecuting = ... // List of transactions executing

7 FailedTransactions = ... // Queue of transactions that failed

8 KVStore = ... // Key-Value store

Algorithm 1: Initialization of Lock Table and other data structures used by the Queuer

and the Workers threads.

36

Queuer Thread

The Queuer Thread role is to schedule the transactions by inserting them in the Lock Table.

Then, the Queuer determines if the transaction scheduled is ready for execution. Algorithm

2 describes the main logic behind the Queuer. The Queuer is always working while there are

transactions to schedule. In every cycle, a new batch is polled to be scheduled. When there are

no transactions to schedule (batch or failed transactions), the Queuer goes idle while it waits

for work. When there is, the Queuer first checks if there are any failed transactions to schedule.

This verification is done throughout the Queuer implementation to prioritize the scheduling of

failed transactions. This is because the Workers cannot start executing a new batch before

completing the current one. So, we want to schedule the failed transactions with the highest

priority to quickly complete executing the current batch. The schedule of transactions is done by

the function QueueTransactions, described in Algorithm 4 that will be described below. After

checking and, possibly, scheduling the failed transactions it is time to schedule the batches. The

Queuer polls a batch stored in the Lock Table to be scheduled. If there is no batch to schedule,

it returns the value null. If the batch polled is not null, the batch is scheduled in the method

QueueBatch, that receives a batch. This is described in Algorithm 3 which we analyse next.

1 upon Queuer start :

2 while not stop do

3 if no batches or failed transactions to schedule then

4 Wait()

5 if exist failed transactions to schedule then

6 failed lock table id = FailedTransactions.getLockTableID()

7 QueueTransactions(FailedTransactions, failed lock table id)

8 batch to queue = BatchesToQueue.poll()

9 if batch to queue not null then

10 QueueBatch(batch to queue)

11 end

Algorithm 2: Queuer’s logic

37

1 Funtion QueueBatch(batch to queue) :

2 lock table id = batch to queue.getLockTableID()

3 while has batch to queue do

4 if batch to queue has Read-Only transactions then

5 transactions queue = batch to queue.pollReadOnlyTransactions()

6 else if batch to queue has Direct transactions then

7 transactions queue = batch to queue.pollDirectTransactions()

8 else if batch to queue has Indirect transactions then

9 WaitForWorkers()

10 transactions queue = batch to queue.pollIndirectTransactions()

11 else

12 has batch to queue = false // exit loop

13 end

14 if exist failed transactions to schedule then

15 failed lock table id = FailedTransactions.getLockTableID()

16 QueueTransactions(FailedTransactions, failed lock table id)

17 QueueTransactions(transactions queue, lock table id)

18 if transactions queue are Read-Only transactions then

19 SignalWorkersToExecuteReadOnlyTransactions()

20 end

21 SignalWorkersToExecuteUpdateTransactions()

Algorithm 3: Function that schedules a batch of transactions

The QueueBatch function receives a batch to schedule. The batch, has mentioned before,

includes the transactions to execute and their conflict classes. The transactions are subdivided

into three subqueues, a queue of Direct transactions (DT), a queue for Indirect Transactions

(IT) and a queue for Read-Only Transactions (ROT). When the Lock Table receives a batch, it

is assigned a Lock Table ID to the batch. This ID is extracted in the function QueueBatch, and

identifies the Lock Table where transactions will be scheduled. The order that the batches are

scheduled is always the same. First is the ROT, then the IT and finally the DT. Regarding the

IT, before these transactions can be scheduled, the Queuer must wait for the Workers to finish

executing. This is because these transactions need to perform read operations to solve their

conflict classes. Thus, the Queuer has to guarantee that these reads are not done concurrently

with write operations to get the most recent values. The batch is then completely scheduled

when the three queues are all empty. In each cycle of function QueueBatch, it is extracted

38

a different subqueue of the transaction to schedule. Before proceeding with the scheduling of

the transaction’s subqueue (via the function QueueTransactions) is done a verification if there

are any failed transactions to be scheduled. The Queuer has the responsibility to notify the

Workers that they have transactions to execute. This is done in two phases: first the Workers

are notified to execute ROT and second, when the batch is completely scheduled the Queuer

notifies the Workers to start executing the update transactions (DT and IT). This is done

because the ROT can start being executed as soon as they are scheduled because they do not

need concurrency control. The only concurrency control between transactions in this situation

is between ROT and update transactions. Next, will be analysed the pseudocode of the function

QueueTransactions that is described in Algorithm 4.

39

1 Funtion QueueTransactions(transaction queue, lock table id) :

2 foreach transaction ∈ transaction queue do

3 if transaction is Read-Only then

4 ROTransactionsToExecute.add(transaction)

5 continue

6 if transaction is Indirect then

7 foreach indirect entry ∈ transaction.getIndirectEntries() do

8 foreach entry to read ∈ indirect entry.getEntriesToRead() do

9 entry table = entry to read.getTable()

10 entry key = entry to read.getKey()

11 entry row = entry to read.getRow()

12 value read = KeyValueStore.get(entry table, entry key, entry row)

13 indirect entry.addValueRead(entry to read, value read)

14 end

15 transaction.addNewLockTableEntry(indirect entry)

16 end

17 foreach lock table entries ∈ transaction.getLockTableEntries() do

18 table = lock table entries.getTable()

19 key = lock table entries.getKey()

20 queue = LockTable[lock table id][table].get(key)

21 queue.add(transaction)

22 if transaction is first in queue then

23 transaction.acquireLock()

24 end

25 number of locks to acquire = transaction.getLocksToAcquire()

26 if number of locks to acquire equal to 0 then

27 TransactionsToExecute[lock table id].add(transaction)

28 end

Algorithm 4: Function that schedules the transactions, populates the Lock Table and

determines what transactions can be executed

Algorithm 4 describes the pseudocode of function QueueTransactions. This function receives

as inputs the queue of transactions to schedule and the lock table id where the transactions will

40

be scheduled. In each cycle, a new transaction Tx is polled from the transaction queue. If Tx

is a ROT, it does not need to be inserted in the Lock Table and it is only added to the list of

ROT ready to be executed, ROTransactionsToExecute. If Tx is an update transaction, then

we verify if Tx needs to perform some reads before being scheduled, i.e. if Tx is an IT. If it

is, then the Queuer goes through all indirect variables that Tx has. For each indirect variable,

we perform a read for every read variable included. We extract the table, the key and the row

of the read variable. Then the value is read and stored in the indirect variable. After having

all the values for every read variable, we determine the conflict classes (or Lock Table entries)

of the indirect variable. Next, the conflict classes are inserted in the Lock Table. For each

conflict classes, we extract the corresponding table and key. Then we add the transaction to

the queue corresponding to the extracted table and key of the conflict class. Next, we check

if the transaction inserted is the first in queue. If it is, then the number of locks to acquire is

decremented. A lock for a transaction is considered acquired when that transaction is the first

in queue. The number of locks to acquire is represented by a counter that is decremented until

it reaches 0, this means that all locks for a transaction are acquired and the transaction is ready

to be executed. This verification is done after having inserted all the conflict classes, where the

number of locks to acquired is checked. If its equal to zero, then the transaction is ready to be

executed and is added to the queue TransactionsToExecute. These steps are performed until

every transaction is scheduled.

Worker Threads

The Worker Threads are responsible for executing the transactions that are in the queues Trans-

actionsToExecute and ROTransactionsToExecute. As described previously, the ROT can start

being executed before the update transactions. This allows the Workers to execute ROT while

they wait for the Queuer to finish scheduling the rest of the update transactions.

Algorithm 5 describes the overall logic of a Worker Thread. The Worker threads are kept

busy as long as there are transactions to execute. After executing a batch, the Workers check

if any IT failed during execution. An IT fails when, the values read during scheduling and the

current values differ. This means the values changed since scheduling and the transaction cannot

be executed safely. This transaction is then added to the queue of FailedTransactions, to be

later scheduled and executed again. So, if there are failed transactions, one Worker waits for

all Workers to finish executing and then signals the Queuer to schedule the failed transactions.

While the Workers wait for the failed transactions to be scheduled, they can execute ROT that

have been already scheduled for the next batch.. When there are no failed transactions to

41

schedule, the Workers go for the next batch. If there is no batch to execute, the Workers wait

and execute ROT. If there is a batch to execute, then the Workers get the Lock Table ID that

was assigned to the batch and start executing. Before executing any (update) transaction, the

Workers must wait for any Worker that is still executing ROT. The Workers are allowed to

start executing update transactions only when every Worker has stopped executing ROT. The

transactions to execute are polled from the queue TransactionsToExecute and are executed in

function ExecuteTransaction. This function, described in Algorithm 6, executes the transaction

and removes it from the Lock Table (with the corresponding Lock Table ID) after the transaction

has completed executing. This process is repeated until all transactions of the batch are executed.

Then the Worker finishes executing the rest of the ROT. Before executing ROT, is necessary to

verify if there are Workers still executing update transactions, to avoid concurrents reads and

writes. Next, we analyse function ExecuteTransaction, described in Algorithm 6.

42

1 upon Worker start :

2 while not stop do

3 if the batch is completely executed then

4 if the batch has failed transactions then

5 if lock is acquired by a Worker then

6 WaitForAllWorkers()

7 SignalQueuerToScheduleFailedTransactions()

8 else

9 WaitAndExecuteReadOnlyTransactions()

10 end

11 else

12 if no batch to execute then

13 WaitAndExecuteReadOnlyTransactions()

14 lock table id = LockTable.getLockTableIDOfBatchToExecute()

15 end

16 WaitForReaders()

17 foreach transaction ∈ TransactionsToExecute[lock table id]) do

18 ExecuteTransaction(transaction, lock table id)

19 end

20 ExecuteReadTransactions()

21 end

Algorithm 5: Worker overall logic

The function ExecuteTransaction, Algorithm 6, receives as input, a transaction and a Lock

Table ID. The task of this function is to execute the transaction and remove it from the Lock

Table. But before starting executing, if the transaction is IT then the values read during

scheduling must be verified. This is done by performing the same reads and comparing the new

values with the previous ones. If any value differs, then the transaction is considered as failed

and it is not executed. Afterwards, the transactions that have not failed are executed. When

the transaction has completed executing, it is removed from the Lock Table. In this process,

the Worker polls the transaction from the Lock Table queues corresponding to the transaction’s

conflict classes. After the transaction is polled from a queue, the Worker decrements the lock

counter of the next transaction in queue. If all locks of the next transaction are acquired, then

that transaction is added to the queue TransactionsToExecute. ROT do not need to do this

process because those transactions are not included in the Lock Table. Lastly, the transaction

43

is removed from the list TransactionsExecuting.

1 Funtion ExecuteTransaction(transaction, lock table id) :

2 if transaction is Indirect then

3 failure = VerifyIndirectValuesRead(transaction)

4 if failure then

5 transaction.failed()

6 if transaction not failed then

7 ExecuteTransaction(transaction)

8 if transaction not Read-Only then

9 foreach lock table entries ∈ transaction.getLockTableEntries() do

10 table = lock table entries.getTable()

11 key = lock table entries.getKey()

12 queue = LockTable[lock table id][table].get(key)

13 queue.poll()

14 if queue not empty then

15 next transaction = queue.getHead()

16 number of locks to acquire = next transaction.acquireLock()

17 if number of locks to acquire equal to 0 then

18 TransactionsToExecute[lock table id].add(next transaction)

19 end

20 TransactionsExecuting.remove(transaction)

Algorithm 6: Transaction execution and removal from the Lock Table

3.3 Correctness Argument

In this section, we sketch a correctness argument for the proposed solution.

The common concern behind the design of every algorithm of this solution is if the implemen-

tation is deterministic. The Queuer primary task is to schedule the transactions deterministically

across all replicas because the batch of transactions is ordered by consensus and there is only

one thread processing the batch. This means that after processing a batch, and before starting

execution, the Lock Table of all replicas is the same. The other big concern was, winding up

with the same state after concurrently executing a batch. This is addressed by the Lock Ta-

ble concurrency control mechanism. The Lock Table controls the order by which transactions

are executed and which transactions can be concurrently executed. So, the final state of each

replica will be the same. Finally, the last big concern is the IT. These transactions, when in

44

large number, are very likely to fail. The re-scheduling of these transactions needs to be done

following the same order. However, the order that the transactions fail is not always the same

when being concurrently executed. So, this order cannot be used for scheduling these trans-

actions, due to the fact of not being deterministic. To solve this problem, we order the failed

transactions by their ID. As transactions reach a consensus on the order of transactions in a

batch, it will be given the same IDs to the transactions. Also, for each batch, we know that the

set of failed transaction is the same, even if they don’t fail in the same order. So, by re-ordering

the failed transactions by their ID, we guarantee that they are re-schedule in the same order in

all replicas.

45

46

Chapter 4

Results

This chapter presents the experimental evaluation of the Symb-SMR. The experiments done

focus on evaluating the performance of the overall system, including the Queuer and Worker

threads, but also to identify potential bottlenecks that the system may have.

To evaluate the Symb-SMR’s performance we use a No Contention micro-benchmark and

the TPC-C benchmark [8]. The No Contention micro-benchmark, Section 4.2, generates a

non-conflicting workload of transactions. The goal is to evaluate the scalability of Symb-SMR

and to identify possible bottlenecks that affect the solution. The TPC-C benchmark, Section

4.3, generates real-world workloads to evaluate the overall performance of Symb-SMR. Symb-

SMR will be compared with two state of the art approaches, Nodo [32] and Calvin [39]. This

comparison will be done using the TPC-C benchmarks where each solution will process the same

workload.

In the next section, we will present the platform and evaluation metrics used in the experi-

mental evaluation.

4.1 Platform and Evaluation Metrics

Symb-SMR will be evaluated via the following metrics: (1) throughput of the system and (2)

number of times transactions fail. With the throughput, we measure the number of transactions

that are processed per second. In the fail rate, we will measure the number of times transactions

fail until being executed successfully. This measurement will be dependent on the workload being

processed, in particular to the percentage of indirect transactions included in the workload. The

solution will be evaluated with two different workloads, one generated from the no contention

micro-benchmark, and the other with the TPC-C benchmark [8]. We will also use TPC-C to

compare Symb-SMR with other previously presented state of the art solutions, Nodo [32] and

47

Calvin [39]. In particular, we will compare Calvin’s handling mechanism for transactions that

fail against the algorithm of Symb-SMR. With the No Contention micro-benchmark, we want

to evaluate the scalability of the system and identify possible bottlenecks, in particular in the

Queuer and Workers threads.

All the experiment results presented were obtained on a machine with the following specs: an

Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz processor with 2 sockets, connected with UMA, 14

physical cores per socket, where each core can execute 2 hardware threads with hyperthreading

[27]. The operating system is Ubuntu 16.04.3 and uses Java version 1.8.0 171.

In the experiments, we did various measures of the solutions with different numbers of

Workers, between 1 and 55. Some of these values have some important particularities:

• 1 worker - demonstrates the overhead of Symb-SMR versus the baseline of processing the

workload sequentially;

• 4 and 8 workers - are the typical number of Workers which state of the art solutions can

scale;

• 13 workers - the same number of threads (Queuer + Workers) as the number of physical

cores in a socket;

• 27 workers - the same number of threads (Queuer + Workers) as the number of cores in

both sockets or with hyperthreading in just one socket;

• 55 workers - the same number of threads (Queuer + Workers) as the maximum number

of cores with hyperthreading in both sockets

The underlying database that we used is RocksDB [6], a persistent key-value store developed

by Facebook. RocksDB’s library is implemented in C++ but it provides a Java API to interact

with the database. Although, RocksDB supports transactions operations, for these experiments

we disabled these features to increase performance but also, because Symb-SMR already works

as a concurrency control system, so there is no need for RocksDB’s own concurrency control.

For these experiments we do not determine at runtime the transactions’ conflict classes.

Instead, we use a pre-determined structure (based on the output given by JPF) that contains

the transactions conflict classes. We do this, to specifically evaluate the performance of Symb-

SMR without any external overheads.

48

4.2 No Contention Micro-Benchmark

This micro-benchmark generates workloads with no conflicting transactions. Each transaction

generated by the micro-benchmark will access a different line of a table resulting in transactions

not conflicting. With this we want to test the performance of the solution in scenarios with

no concurrency constraints, i.e. without conflicts between transactions, meaning that every

transaction can be executed concurrently. With this, we will evaluate the scalability of the

solution and identify possible bottlenecks that might affect Symb-SMR’s performance.

4.2.1 Experiment Results

In this experiment, we generate various No Contention workloads with 100 000 transactions.

We generate 10 batches of 10 000 transactions, 100 batches of 1 000 transactions and 50 batches

of 2 000 transactions. Theoretically, in scenarios without conflicting transactions Symb-SMR’s

throughput should scale relative to the number of Workers threads. Figure 4.1 (a) shows the

results for the above configurations with a varying number of Worker threads. Symb-SMR scales

well up to 13 Workers. Then between 13 and 27 Workers the throughput is roughly constant

at approximately 340 000 transactions per second. Afterwards the throughput decreases to ap-

proximately 175 000 transactions per second. There are 2 possible causes for this scalability

limitation: (1) the Queuer throughput is not high enough and (2) contention between Worker

threads. The first possibility is disproved by Figure 4.1 (b) which it shows the Queuer Thread

throughput and the max throughput achieved by Symb-SMR. Although, the Queuer thread

throughput is not constant, it is much higher than the max throughput of Symb-SMR. The

second possibility is analysed in Figure 4.2 that profiles the Worker threads execution by the

percentage of time: processing transactions, waiting for the Queuer thread to schedule trans-

actions and extracting a new transaction to execute from the TransactionsToExecute queue.

Figure 4.2 (a) shows the results for 10 batches of 10 000 transactions, Figure 4.2 (b) shows

the results for 100 batches of 1 000 transactions and Figure 4.2 (c) shows the results for 50

batches of 2 000 transactions. As we can see, the percentage of processing time decreases in all

scenarios when the number of Workers increases. Whereas the processing percentage decreases

the percentage of time where transactions are extracting a transaction to execute increases.

This is because all Workers extract transactions to execute from a single TransactionsToExecute

queue. This impacts the performance because the queue controls concurrent accesses, resulting

in Workers having to wait to extract a transaction from this queue. Thus the performance of

the system is limited by the contention on this queue. However, as we will see in the TPC-C

benchmark, which contains more complex transactional logic this limit is not reached.

49

The Symb-SMR’s throughput achieved in these experiments were very similar. However, we

observed a slightly higher throughput in the workload with the lowest batch size, the workload

with 100 batches of 1 000 transactions.

(a) Symb-SMR’s throughput (b) Queuer throughput and Symb-SMR’s max through-
put

Figure 4.1: No contention workload of 100 000 transactions

(a) 10 batches of 10 000 transactions (b) 100 batches of 1 000 transactions

(c) 50 batches of 2 000 transactions

Figure 4.2: Breakdown of Symb-SMR’s Workers when processing batches with different sizes

50

4.3 TPC-C Benchmark

TPC-C [8] is a well-known benchmark, that is widely used to evaluate transactional systems.

TPC-C is composed of five transactions, three update transactions, New Order, Payment and

Delivery, and two read-only transactions, Status Order and Stock Level. Two of the updates

transactions, New Order and Delivery, are Indirect transactions (IT) because they contain item

accesses that depend on other previous accesses. These two transactions will allow to evaluate

the performance of the mechanism for handling failed transactions of Symb-SMR and Calvin.

The TPC-C benchmark accesses 9 tables. However, the more critical table is the Warehouse

table, that is accessed by every transaction. The TPC-C standard size of the Warehouse table

is 10, where each warehouse has 10 districts and each district has 3 000 customers. Since every

TPC-C transaction depends on a Warehouse the amount of conflicting transaction will depend

on the size of the Warehouse table. Thus, we did experiments with 55 warehouses, equal to

the max number of Worker threads used in these experiments. With this, we will evaluate

the scalability of Symb-SMR when faced with real-world workloads and the amount of failed

transactions occurrences.

Before presenting the results we will describe the key implementational differences of Nodo

and Calvin compared to Symb-SMR

4.3.1 Nodo

Nodo [32] is a concurrency control system, that was described in Section 2.1.5. Symb-SMR

implementation was largely based on the Nodo idea of controlling the concurrency between

transactions based on their conflict classes. However, the big difference between both solutions

is that: (1) Nodo requires developers to provide the conflict classes of the transactions, whereas

we use Symbolic Execution to obtain that and (2) Nodo’s scheduling is very coarse-grained

because it only considers the tables that are accessed in a transaction. This limits the level

of parallelism of the system, where only transactions that access different tables are allowed to

be concurrently executed. Symb-SMR controls the concurrency of transactions based on the

tables and keys that are accessed. This results in more transactions being allowed to execute

concurrently increasing the system parallelism.

4.3.2 Calvin

Calvin [39] is a transaction scheduler, that was presented in Section 2.1.5. The way Calvin and

Symb-SMR work is very similar. However, the main differences are: (1) the way conflict classes

of transactions are determined, (2) how failed transactions are handled and (3) the scheduling of

51

Read-Only transactions (ROT). Calvin has two ways for determining the transactions’ conflict

classes. One way, similar to Nodo, requires developers to provide the conflict classes of trans-

actions. However, this can be too complex because Calvin requires a fine-grained description

of the conflict classes (table and key) which is unrealistic for large complex applications. As a

result, Calvin has an alternative way of determining the conflict classes. It does a reconnaissance

phase to obtain the transactions’ read and write set. The reconnaissance phase of transactions

is done by executing the transactions without acquiring any locks and without executing any

write operations. The problem with this is that the reconnaissance phase is done in the client

resulting in a considerable interval of time where the read and write set can be changed due

to concurrent updates in the database. As a result, if a transaction’s conflict classes change

before the transaction is committed, then the transaction is incorrectly scheduled and will end

up aborting. This occurs especially with IT, where transactions’ read and write set depend on

other read and write set. Symb-SMR mitigates this problem by solving the Indirect transactions

during scheduling and when there are no write operations in the database. This reduces the

chance of the determined conflict classes to be changed. When transactions abort, Calvin sends

these transactions back to the client. It is then, the client responsibility to re-do the reconnais-

sance phase and to re-send the transactions. Symb-SMR does not abort any transactions that

fail, instead, we aggregate these failed transactions and re-schedule them to be executed right

away. In the end, this will result in a lower number of failed transactions. The last main imple-

mentation difference is that Calvin does not differentiates ROT from the other transactions and

schedule them as regular update transactions. We choose to separate ROT because they can all

be executed concurrently due to these transactions only performing read operations. However,

ROT and update transactions cannot be executed in parallel due to possible conflicts in con-

current read and write operations. To avoid this, we do not allow to execute ROT concurrently

with update transactions. The advantage of not scheduling ROT is that this allows to execute

these transactions when the Workers are waiting for update transactions to be scheduled. This

way, we avoid the costs of scheduling ROT and we reduce the chance of the Workers threads

going idle.

4.3.3 Experiment Results

For these experiments, we generated TPC-C workloads of 100 batches with 100 transactions.

Figure 4.3 depicts the results of the solutions throughput for processing these workloads. In

these plots, we compare Symb-SMR with three other solutions, Sequential, Nodo and Calvin.

The Sequential implementation works as a baseline to measure the impact of each solution. In

52

(a) 10 Warehouses with 50% Indirect transactions (b) 10 Warehouses with 90% Indirect transactions

(c) 55 Warehouses with 50% Indirect transactions (d) 55 Warehouses with 90% Indirect transactions

Figure 4.3: Comparison of Symb-SMR vs Sequential vs Nodo vs Calvin with a TPC-C workload
with 10 and 55 warehouses with 50% and 90% of Indirect Transactions

Figure 4.3 (a) and Figure 4.3 (b) are the solutions’ throughputs resulted from processing a TPC-

C workload when the size of Warehouse table is 10. The difference between these two plots is in

the percentage of IT wherein Figure 4.3 (a) approximately 50% of the transactions are Indirect

transactions and in Figure 4.3 (b) 90% are IT. We experimented with different percentages of

IT to measure the impact that these transactions have in the system performance. Symb-SMR,

with 50% Indirect transactions scales until 16 Worker threads and then deeps where with 90%

of Indirect transactions the solution does not scale, not surpassing the 1500 transactions per

second. As we can see, the percentage of Indirect transactions have a big impact in Symb-

SMR’s performance, that was expected. Since Nodo does not suffer from Indirect transactions,

its throughput is not affected by the change in percentages. Figure 4.3 (c) and Figure 4.3 (d)

have the same respective changes in the number of Indirect transactions with the difference being

the size of the Warehouse table, that in these cases is 55. As we can, Symb-SMR scalability,

in Figure 4.3 (c), increased compared to Figure 4.3 (a). This is due to TPC-C transactions

53

conflicting less when the size of the Warehouses table increases. Since Nodo only considers the

tables to control the concurrency, an increase in the table size will not impact the performance

as we can observe in all plots. Also, the number of Workers do not benefit Nodo, in fact,

increasing the number of Worker threads slightly decreases the throughput of Nodo. Calvin’s

performance in all these scenarios is poor comparing to the others. The main bottleneck of Calvin

is the reconnaissance phase and the vulnerability window of the transactions’ conflict classes.

Performing the reconnaissance phase has already huge costs in the system throughput but the

costs increase even more due to transactions aborting and requiring to do the reconnaissance

phase again. Especially in these scenarios, where we have 50% and 90% of Indirect transactions,

the number of abort transactions will be very high. This will be further analysed next.

Failed Transactions

In these experiments we compare Symb-SMR with Calvin by measuring the number of times

transactions fail until they are successfully executed. Nodo is not included in these experiments

because is not impacted by IT resulting in transactions not failing due to changes in conflict

classes. Figure 4.4 show the number of times transactions failed during the processing of a

TPC-C workload. Each point represents the percentage of transactions that have failed x times.

The scenarios are the same than previously, Figure 4.4 (a) and Figure 4.4 (b) are with 10

Warehouses, 50% and 90% of Indirect transactions respectively. Figure 4.4 (c) and Figure 4.4

(d) are with 55 Warehouses with the same changes in Indirect transactions respectively. In

Figure 4.4 (a) and Figure 4.4 (b), we can see the main advantage of Symb-SMR compared

to Calvin. Symb-SMR achieves a higher percentage of transactions that executed successfully

without failures and the overall number of failures is lower compared to Calvin. Symb-SMR

by solving Indirect transactions during scheduling and when there are no update operations

being made in the database, allows to lower the chance of Indirect transactions to fail due to

changes in the database state. Calvin using the reconnaissance phase in the client, with possible

concurrent operations in the database, results on the determined conflict classes being possible

already incorrect in the moment of scheduling. As expected, with a higher number of warehouses

both solutions will have less failed transactions but Symb-SMR successfully executes over 90%

of all transactions without failures whereas Calvin achieves 70% at best.

4.4 Summary

In the first experiment we analysed Symb-SMR’s scalability and max throughput using the no

contention micro-benchmark. The workloads generated did not have conflicting transactions

54

(a) 10 Warehouses with 50% of Indirect transactions

(b) 10 Warehouses with 90% of Indirect transactions

(c) 55 Warehouses with 50% of Indirect transactions (d) 55 Warehouses with 90% of Indirect transactions

Figure 4.4: Percentage of failures per transaction for a TPC-C workload with 10 and 55 Ware-
houses and with 50% and 90% of Indirect transactions: Symb-SMR vs Calvin

55

resulting in all transactions being allowed to execute concurrently. The results obtained showed

that with a high number of Worker threads (from 27 Workers) Symb-SMR throughput begins

to decrease. The performance of Symb-SMR, in these scenarios, is limited due to the contention

in the TransactionsToExecute queue, that every Worker accesses. In the experiments with the

TPC-C benchmark we observed that this bottleneck was not that impactful. However, in these

scenarios Symb-SMR only scaled until 16 Workers and then the throughput begins to slightly

decrease. Although these scalability limitations, Symb-SMR overall throughput was 2 times

higher than Nodo and approximately 7 times higher than Calvin. In the last experiments,

with the failed transactions, Symb-SMR executes successfully over 80% of transactions without

failures whereas Calvin, in the same scenario, only executes successfully at first time less than

60% of transactions. Overall, Symb-SMR’s performance surpasses the performance of current

state of the art approaches in every scenario that was analysed. This shows that Symb-SMR is

a viable option to control the concurrency of transactions in SMR-based systems.

56

Chapter 5

Conclusions

The main goal of this dissertation is to increase the level of parallelism of a SMR-based system

and to mitigate the limitations that impact these type of systems. We do this by using Symbolic

Execution to determine a priori and in a fine-grained manner the items that transactions access

to control the concurrency between them. This is all done autonomously without requiring

anything to the developers, unlike other state of the art solutions that require developers to

provide the items accessed by the transactions. Symb-SMR uses the item accesses determined

by SE to build an efficient and deterministic concurrency control system that provides a higher

level of parallelism comparing to other state of the art solutions, like Nodo and Calvin. This is

proven in the experiments done where Symb-SMR throughput results surpass the results of the

other state of the art solutions by 2 and 7 times.

5.1 Future Work

Symbolic Execution and JPF Symbolic Execution has an immense power which we only

used a portion. There is much room for improvement in this part. First, we need to improve the

way we handle loops because transactions with big loops, that have many iterations, are not yet

supported. All the experiments done were using benchmarks that only used primitive variables,

e.g. integer, long and boolean, due to the current limitations with strings support. Databases

that do not use strings is not realistic, so it important to include the support of strings.

JPF Output Analysis The determination of transactions conflict classes, based on the out-

put given by JPF, is not efficient. This is due to using strings to identify and determine the

transactions’ conflict. To improve this, we need to implement a system that generates in real

time objects that contain the transactions conflict classes, this must be done efficiently to have

as much low impact in the performance.

57

Optimizations to Symb-SMR The experiments done showed that Symb-SMR’s perfor-

mance varies significantly when processing various batches with different number of transactions.

The solution scalability also has some room for improvement, by solving the contention problem

when with a large number of Worker threads.

58

Bibliography

[1] jCUTE. http://osl.cs.illinois.edu/software/jcute/. Accessed: 2018-10-15.

[2] JPF - Java Path Finder. https://github.com/javapathfinder/jpf-core. Accessed:

2018-10-15.

[3] JPF Listeners. https://github.com/javapathfinder/jpf-core/wiki/Listeners. Ac-

cessed: 2018-10-15.

[4] MySQL Replication. https://dev.mysql.com/doc/refman/5.7/en/replication.html.

Accessed: 2018-10-15.

[5] PostgreSQL. https://www.postgresql.org/. Accessed: 2018-10-15.

[6] RocksDB. https://rocksdb.org/. Accessed: 2018-10-15.

[7] Symbolic JPF. https://github.com/SymbolicPathFinder/jpf-symbc. Accessed: 2018-

10-15.

[8] TPC-C. http://www.tpc.org/tpcc/default.asp. Accessed: 2018-10-15.

[9] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos Karamanolis.

Sinfonia: A new paradigm for building scalable distributed systems. SIGOPS Oper. Syst.

Rev., 41(6):159–174, October 2007.

[10] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finoc-

chi. A survey of symbolic execution techniques. ACM Comput. Surv., 51(3), 2018.

[11] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1987.

[12] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. Chapter 8: The

primary backup approach, 1993.

59

http://osl.cs.illinois.edu/software/jcute/
https://github.com/javapathfinder/jpf-core
https://github.com/javapathfinder/jpf-core/wiki/Listeners
https://dev.mysql.com/doc/refman/5.7/en/replication.html
https://www.postgresql.org/
https://rocksdb.org/
https://github.com/SymbolicPathFinder/jpf-symbc
http://www.tpc.org/tpcc/default.asp

[13] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation, OSDI’08, pages

209–224, Berkeley, CA, USA, 2008. USENIX Association.

[14] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed

systems. J. ACM, 43(2):225–267, March 1996.

[15] A. Correia, J. Pereira, and Rui Oliveira. AKARA: A flexible clustering protocol for de-

manding transactional workloads. In On the Move to Meaningful Internet Systems: OTM

2008, OTM 2008 Confederated International Conferences, CoopIS, DOA, GADA, IS, and

ODBASE 2008, Monterrey, Mexico, November 9-14, 2008, Proceedings, Part I, pages 691–

708, 2008.

[16] Maria Couceiro, Paolo Romano, and Lúıs Rodrigues. Chapter 2: Towards autonomic trans-

actional replication for cloud environments, 2012.

[17] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of the

Theory and Practice of Software, 14th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin,

Heidelberg, 2008. Springer-Verlag.

[18] Nuno Diegues, Paolo Romano, and Stoyan Garbatov. Seer: Probabilistic scheduling for

hardware transactional memory. In Proceedings of the 27th ACM Symposium on Parallelism

in Algorithms and Architectures, SPAA ’15, pages 224–233, New York, NY, USA, 2015.

ACM.

[19] Shlomi Dolev, Danny Hendler, and Adi Suissa. Car-stm: Scheduling-based collision avoid-

ance and resolution for software transactional memory. In Proceedings of the Twenty-seventh

ACM Symposium on Principles of Distributed Computing, PODC ’08, pages 125–134, New

York, NY, USA, 2008. ACM.

[20] Aleksandar Dragojević, Rachid Guerraoui, Anmol V. Singh, and Vasu Singh. Preventing

versus curing: Avoiding conflicts in transactional memories. In Proceedings of the 28th

ACM Symposium on Principles of Distributed Computing, PODC ’09, pages 7–16, New

York, NY, USA, 2009. ACM.

[21] Xiang Fu and Kai Qian. Safeli: Sql injection scanner using symbolic execution. In Pro-

ceedings of the 2008 Workshop on Testing, Analysis, and Verification of Web Services and

Applications, TAV-WEB ’08, pages 34–39, New York, NY, USA, 2008. ACM.

60

[22] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random

testing. SIGPLAN Not., 40(6):213–223, June 2005.

[23] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The dangers of replication and

a solution. SIGMOD Rec., 25(2):173–182, June 1996.

[24] Narendra Jussien, Guillaume Rochart, and Xavier Lorca. Choco: an Open Source Java

Constraint Programming Library. In CPAIOR’08 Workshop on Open-Source Software for

Integer and Contraint Programming (OSSICP’08), pages 1–10, Paris, France, France, 2008.

[25] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi, and Mike

Dahlin. All about eve: Execute-verify replication for multi-core servers. In Presented as

part of the 10th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 12), pages 237–250, Hollywood, CA, 2012. USENIX.

[26] James C. King. A new approach to program testing. In Proceedings of the International

Conference on Reliable Software, pages 228–233, New York, NY, USA, 1975. ACM.

[27] D. Koufaty and D. T. Marr. Hyperthreading technology in the netburst microarchitecture.

IEEE Micro, 23(2):56–65, March 2003.

[28] P. J. Marandi, M. Primi, and F. Pedone. High performance state-machine replication. In

2011 IEEE/IFIP 41st International Conference on Dependable Systems Networks (DSN),

pages 454–465, June 2011.

[29] Parisa Jalili Marandi and Fernando Pedone. Optimistic parallel state-machine replication.

2014 IEEE 33rd International Symposium on Reliable Distributed Systems, pages 57–66,

2014.

[30] M. Marcozzi, W. Vanhoof, and J. L. Hainaut. A relational symbolic execution algorithm for

constraint-based testing of database programs. In 2013 IEEE 13th International Working

Conference on Source Code Analysis and Manipulation (SCAM), pages 179–188, Sept 2013.

[31] Ana Nunes, Rui Oliveira, and José Pereira. AJITTS: Adaptive Just-In-Time Transaction

Scheduling, pages 57–70. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[32] M. Patiño-Mart́ınez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scalable Replication in

Database Clusters, pages 315–329. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[33] Corina S. Pǎsǎreanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet, Michael

Lowry, Suzette Person, and Mark Pape. Combining unit-level symbolic execution and

61

system-level concrete execution for testing nasa software. In Proceedings of the 2008 Inter-

national Symposium on Software Testing and Analysis, ISSTA ’08, pages 15–26, New York,

NY, USA, 2008. ACM.

[34] Pedro Raminhas, Miguel Matos, and Paolo Romano. Fine-grained transaction scheduling

in replicated databases via symbolic execution, 04 2018.

[35] Lúıs Rodrigues, Hugo Miranda, Ricardo Almeida, João Martins, and Pedro Vicente. The

GlobData Fault-Tolerant Replicated Distributed Object Database, pages 426–433. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2002.

[36] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:

A tutorial. ACM Comput. Surv., 22(4):299–319, December 1990.

[37] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for c. In

Michel Wermelinger and Harald Gall, editors, ESEC/SIGSOFT FSE, pages 263–272, 2005.

[38] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Mar-

cos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agreements for

cloud storage. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, SOSP ’13, pages 309–324, New York, NY, USA, 2013. ACM.

[39] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and

Daniel J. Abadi. Calvin: Fast distributed transactions for partitioned database systems. In

Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’12, pages 1–12, New York, NY, USA, 2012. ACM.

[40] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory, Al-

gorithms, and the Practice of Concurrency Control and Recovery. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2001.

62

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Goals
	1.2 Thesis Outline

	2 Background and Related Work
	2.1 Database Replication
	2.1.1 Single Master
	2.1.2 Multi Master
	2.1.3 Two-Phase Commit
	2.1.4 Atomic Broadcast
	2.1.5 State Machine Replication
	2.1.6 Certification
	2.1.7 Summary

	2.2 Transaction Scheduling
	2.2.1 Replicated Databases
	2.2.2 Transactional Memory
	2.2.3 Summary

	2.3 Symbolic Execution
	2.3.1 Limitations and Challenges
	2.3.2 Improvements and Solutions
	2.3.3 Concrete and Concolic Execution
	2.3.4 Use Cases
	2.3.5 Summary

	3 Symbolic-SMR
	3.1 Overview
	3.2 Detailed Description
	3.2.1 Symbolic Execution
	3.2.2 Symbolic-SMR
	3.2.3 Overview

	3.3 Correctness Argument

	4 Results
	4.1 Platform and Evaluation Metrics
	4.2 No Contention Micro-Benchmark
	4.2.1 Experiment Results

	4.3 TPC-C Benchmark
	4.3.1 Nodo
	4.3.2 Calvin
	4.3.3 Experiment Results

	4.4 Summary

	5 Conclusions
	5.1 Future Work

	Bibliography

