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Abstract

The recent proliferation of devices that are capable of sending information about their location over time

(e.g., GPS-equipped smartphones), has turned big spatio-temporal data processing into a mainstream,

highly relevant for a broad class of applications. Recent literature in the area of big data has focused on

how to exploit recent hardware trends/mechanisms to accelerate big data processing.

This thesis focuses on how to exploit Transactional Memory (TM) to accelerate applications that

target big spatio-temporal data. TM has emerged as a promising abstraction for parallel programming,

which aims at enhancing performance and simplify programming of concurrent applications. Specifically,

we use Hardware Transactional Memory (HTM) as a synchronization alternative to conventional locking

for main-memory spatio-temporal indexing data structures and seek an answer to the following research

questions: i) what efficiency levels can be achieved by applying HTM to state of the art single-threaded

(i.e., non-thread safe) spatio-temporal indexes algorithms? In particular, how does the performance of

such HTM-based algorithms compare with state-of-the-art concurrent algorithms, designed from scratch

to cope with the consistency issues arising in multi-threaded environments? ii) to what extent can

HTM be applied to state-of-the-art concurrent indexing algorithms for spatio-temporal data, in order to

enhance their efficiency?

Keywords: Spatio-Temporal Data, Spatio-Temporal Indexing Structures, Concurrency Control

schemes, Transactional Memory, Performance.
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Resumo

A recente proliferação de dispositivos capazes de enviar informação acerca da sua localização ao

longo do tempo (e.g., smartphones equipados com GPS), tornou o processamento de grandes con-

juntos de dados espaço-temporais numa convenção de alta relevância para uma vasta classe de

aplicações. Literatura recente na área de grande data tem-se focado em como explorar recentes

tendências/mecanismos de hardware para acelerar o processamento de grande conjuntos de dados.

Esta tese foca-se em como explorar Memoria Transacional (MT) para acelerar aplicações que têm

como alvo grandes conjuntos de dados espaçotemporais. A MT emergiu como uma abstracção promis-

sora para programação paralela, que tem como alvo melhorar a performance e simplificar a programação

de aplicações concorrentes. Especificamente, nós usamos a Memória Transacional em Hardware

(MTH) como alternativa de sincronização ao convencional bloqueio, e procuramos responder às seguintes

questões de pesquisa: i) que nı́veis de eficiência podem ser atingidos ao aplicar MTH em ı́ndices

espaçotemporais single-threaded (i.e não permitem concorrência). Em particular, como é que a per-

formance de tais algoritmos baseados em MTH se compara com algoritmos concorrentes do estado

da arte, desenhados desde o principio para suportar com os problemas de consistência surgindo em

ambientes multi-threaded? ii) até onde pode a MTH ser aplicada em algoritmos de ı́ndice do estado da

arte para data espaço-temporal, de modo a melhorar a sua eficiência?

Palavras-chave: Dados Espaço-temporais, Estruturas de Índices Espaço-Temporais, Es-

quemas de Controlo de Concurrência, Memória Transaccional, Performance.
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Chapter 1

Introduction

Over the past decade the amount of data generated in a global scale has increased exponentially and

it appears that this trend is not going to change in the near foreseeable future. “The world contains an

unimaginably vast amount of digital information which is getting ever vaster ever more rapidly” [1]. The

“big data” term is used to describe these large amounts of data. Big data applications range a broad

number of domains, including disease prevention, crime combat and prediction of business trends.

This dissertation is focused on a specific sub-domain of big-data, namely the development of con-

current indexes for big spatio-temporal data applications. The relevance of spatio-temporal data appli-

cations, and the volume and velocity of such a type of data has dramatically increased over the last

few years thanks to the proliferation of GPS equipped devices (e.g., smartphones). This has enabled a

number of challenging data-intensive applications in the spatio-temporal domain, including traffic control

[2] and geo-localized social networks [3].

The problem of developing indexes for spatio-temporal queries is well-known and several approaches

have been proposed in literature. Existing solutions can be coarsely grouped into three classes: i)

indexes that use specialized data-structures designed for the multi-dimensional nature of spatio-temporal

data, such as Quad-Trees, R-Trees, K-Trees, Grids [4, 5, 6, 7], ii) solutions that first linearize spatio-

temporal data into a one-dimensional space and then apply generic/non-specialized indexing solutions,

such as the B+-tree [8], and iii) solutions which combine both techniques used in previous classes, using

linearization techniques to speed up the mapping of spatio-temporal information to multi-dimensional

data structures [9, 10].

The problem addressed in my thesis is to study efficient ways to enable concurrent access to spatio-

temporal indexes, in order to take full advantage of modern multi and many core architectures. Moreover,

this thesis is framed in the context of a more general trend, which has focused on how to exploit recent

hardware advances to accelerate big data processing. In particular, we plan to study how to exploit

hardware implementations of Transactional Memory (TM) to allow concurrent access to spatio-temporal

index in a multi-threaded environment.

TM has emerged as a promising abstraction for parallel programming, which aims at enhancing

performance and simplifying programming of concurrent applications when deployed on modern parallel
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systems. TM represents an alternative to the traditional approach for regulating concurrency in a multi-

threaded program, i.e., locking. However, the use of fine-grained locking is known to be quite complex,

even for experienced programmers [11, 12], and to lack one important property that is fundamental in

modern software engineering approaches: composability [13].

In contrast, TM is a much more straightforward approach to building concurrent software, since all

code that has to execute atomically has simply to be wrapped within a transaction. The underlying

TM implementation transparently ensures atomicity, making programmers life much easier. Further,

locks use a pessimistic approach, which ensures correctness by restricting parallelism. Conversely, TM

allows to fully untap the parallelism offered by modern multi-core architectures by adopting an optimistic

approach that allows atomic code blocks to be executed in a speculative fashion, aborting execution only

in case conflicts are actually detected.

More in detail my thesis seeks to answer two main questions:

1. what efficiency levels can be achieved by applying HTM to state of the art single-threaded (i.e.,

non-thread safe) spatio-temporal indexes algorthms? In particular, how does the performance of

such HTM-based algorithms compare with state-of-the-art concurrent algorithms, which rely on

complex, and carefully optimized, fine grained locking schemes?

2. can HTM be applied to state-of-the-art concurrent lock-based indexing algorithms for spatio-temporal

data, in order to enhance their efficiency?

We answer these questions by conducting an extensive experimental evaluation considering 3 dif-

ferent architectures: Intel Core [14] Haswell and Broadwell, and IBM POWER8 [15] CPUs. Hence, we

are able to use multiple HTM interfaces, which result in multiple HTM implementations. Moreover, we

consider realistic workloads, generated using standard benchmarking tools that allow to faithfully cap-

ture the characteristic of real life workloads by simulating e.g., traffic, using a network where objects can

move through and comply with its rules.

As a preliminary step, before addressing the two aforementioned questions, we conduct a systematic

study on the tuning of some key parameters and runtime libraries that are known to affect significantly

HTMs performance: transactional retry logic and implementation of the dynamic memory allocator (TC-

Malloc [16]). We come to the conclusion the standard GNU C library (Glibc) [17] memory allocator is

best when coupled with non-HTM indexes. Moreover, it does not falter (see Chapter 4) as TCMalloc

with PGridHTM [5], hence, we conclude that in general the Glibc memory allocator is the most well

suited memory allocator to handle our spatio-temporal indexes. The optimal configuration for the trans-

actional retry logic strongly depends on the target platform. Nevertheless, our results show that a 20

retry value is able to ensure high performance in all machines. This study is aimed at ensuring the

correct tuning of these parameters, for the considered application domain/workloads, so to ensure a fair

and representative comparison with other lock-based solutions, which are conducted in the following.

In order to answer the first question, we consider Update efficient Grid (u-Grid) [4] as the target

single-threaded algorithm where to apply HTM. Since this algorithm is not suited to handle concurrency,

we have to wrap the main operations (update and query) with transactions, which may not be ideal for

2



performance. The other baseline single-threaded algorithm is the Update efficient R-tree (u-R-tree) [4],

which we will not be applying HTM to, due to implementation constraints. However, it is a plain compar-

ison with u-Grid. Moreover, we include algorithms that provide concurrency with the same consistency

levels as single-threaded algorithms, and we include concurrent algorithms that lower the consistency

level in order to provide better parallelism and fresher query results, respectively Serialized Grid (Serial)

[5] and Parallel Grid (PGrid). The results of this study shows that u-GridHTM is able to achieve perfor-

mance comparable to state of the art concurrent algorithms that use complex and carefully engineered

fine-based locking schemes, specifically Serial and PGrid.

As for the second question, we consider as baseline PGrid, which as confirmed in the first study,

has very competitive performance. The main key ideas used to enhance its parallelism via HTM are

the following: i) to replace the critical sections with transactions by eliding the locks. ii) to maintain its

query semantics by reusing the already present atomic instructions (OLFIT). iii) to deal with the non-tx-

friendly synchronization scheme (waiting for readers to become 0). iv) to partition query transactions as

to avoid contention and transactional memory overflow. With these implementations we are able to make

PGridHTM have better performance over PGrid in query intensive workloads and be the best performing

index in update intensive workloads.

The remainder of this document structures as follows. Chapter 2 provides a background on two main

areas: TM and spatio-temporal index structures. Chapter 3 describes our HTM solutions for spatio-

temporal indexes. Highlighting the research directions we intend to study in this thesis. Chapter 4

presents the extensive experimental study made to our solutions. Finally, Chapter 5 concludes the

dissertation by summarizing the work done this thesis and discusses possible future research.

3



4



Chapter 2

Background

2.1 Transactional Memory

Transactional Memory (TM) is a concurrency mechanism that many researchers believe to be the path

to follow to untap the parallelism of modern multi-core systems, while drastically simplifying parallel

programming. TM has several design characteristics that achieve greater parallelism than locks, and for

that reason, it can be better suited for new multi-threaded processors.

TM is a mechanism that offers the possibility for programmers to define the transactional area of

code. TM will then take under account all concurrency issues on that given area of code and provide

parallel transactions.

Transactions have been successfully implemented in database systems since the early 90’s [18].

Transactions provide atomicity, a transaction either fully completes its read/write operations and commits

or it has no effect (aborts). Transactions buffer their writes and store their reads in memory in order to

detect conflicts, and abort the transactions that compromise some target consistency criterion, typically

opacity [19]. Opacity ensures that a committed transaction can be serialized instantaneously in the

moment in which is committed.

In the TM programming environment, programmers simply define as transactions the program re-

gions that access shared variables. TM runtime systems achieve high concurrent performance by opti-

mistically executing the transactions in parallel [20].

Conflicts happen when two transactions address the same memory location. Conflict detection may

be at transaction start time (eager), or at the end of the transaction (lazy).

The most important advantages that transactions bring in comparison with locks are their simplicity

of implementation and their optimistic conflict detection.

There are various possible implementations of TM, in Hardware (HTM), in Software (STM), or com-

binations thereof, also called Hybrid TM (HyTM). In the following, each of these variants will be over-

viewed.
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2.1.1 Hardware Transactional Memory

HTM is a concurrency protocol that provides the use of atomic operations (transactions) at cache level.

This occurs via ad-hoc extensions of the processor instruction set (e.g., TSX in Haswell [21]). HTM can

be implemented with the cache coherency protocol of multiple CPUs, with multiple memory architectures

as: Non-uniform memory access (NUMA) and uniform memory access (UMA). Thus, HTM may have an

exponential performance potential if it suits such architectures.

In commercial HTM implementations, HTM uses the processors’ cache to store the meta-data gen-

erated by transactional read/writes, and the cache coherence protocol to detect conflicts. Performance

is increased since memory operations are made in cache and there is no need for software instrumen-

tation, which greatly reduces overheads. The consequence of this design is the low amount of memory

(cache) available to store the metadata (read/writes sets) of transactions. Workloads including big trans-

actions may exceed hardware memory capacity, resulting in transactional aborts and inducing a big

overhead.

Due to these (and other) limitations, HTM transactions are never guaranteed to complete (best-effort

HTMs). A fall back plan (usually resorting to locks) is required to maintain at least serial performance in

case a transaction fails repeatedly (and potentially deterministically) in hardware.

Recently, IBM and Intel have introduced HTM implementations respectively for High-Performance

Computing (HPC) and commodity processors. “This represents a significant milestone for TM, mainly

due to the predictable widespread availability of Intel Haswell processors, which bring HTM support to

millions of systems ranging from high-end servers to common laptops” [22].

In the rest of this section we overview four commercial processors which support HTM, comparing

their architectural structure. Following, we specifically review Intel Core and POWER8, which are the

processors we used to evaluate our solutions. Finally, we make a depiction of the basic fall-back paths,

focusing on how they influence HTMs performance.

2.1.1.1 Overview of existing HTM implementations

Paper [20] investigates in depth the HTM implementations existent in four commercial processors from

Blue Gene/Q [23], zEnterprise EX12 [24], Intel Core [14] and POWER8 [15]. From this research, various

design choices of each processor are revealed. In Table 2.1 we can observe such design choices. We

Table 2.1: HTM implementations of Blue Gene/Q, zEC12, Intel Core i7-4770, and POWER8 [20]

compare two specific design choices that have the most impact in the HTM environment.
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The first choice is conflict-detection granularity. The conflict-detection granularity in zEC12, Intel

Core, and POWER8 it is their cache-line sizes. When working with HTMs, even if two transactions

address different bytes of a cache-line, this results in a conflict. This is called a false conflict. As shown

in Table 1, zEC12 has the bigger cache granularity, which provides better data locality. However, in the

case of HTMs, it induces the bigger abort rate due to false conflicts.

The second choice is transactional capacity. Transactional capacity is the maximum amount of mem-

ory data that can be accessed by a transaction [20]. This resource is scarce in HTMs since transactions

use the cache to store their metadata. This metadata is composed by accessed memory locations,

used for conflict detection, and buffered transactional stores, used to store the data required to commit

or abort the transaction.

In general, the load capacity is larger than the store capacity because the conflict detection has to

record only the accessed memory addresses, while the store buffering needs to keep the stored data.

Finally, when a transaction tries to access a cache line that will exceed the capacity, it is aborted. This

is called a capacity-overflow abort.

2.1.1.2 Intel Core

Intel Core [14] uses the L1 cache for conflict detection and store buffering [21]. Further research from

[20], evaluates that the load and store capacities are 4MB and 22KB, respectively, on Core i7-4770.

Moreover, they claim that the load capacity is larger due to because it uses other resources to track

the cache lines that were evicted from the L1 cache. And that, the transaction capacity for the stores is

within the size of the L1 cache. In comparison with POWER8, Intel’s transactions have a considerable

higher amount of memory to work with.

The latest Haswell processors made by Intel Core come with a new extension of the instruction set

architecture (ISA) [21], which supports Hardware Transactional Memory, called Transactional Synchro-

nization Extensions (TSX). TSX provides two software interfaces to handle HTM, named, Hardware Lock

Elision (HLE) and Restricted Transactional Memory (RTM).

HLE can be seen as subset of RTM, meant to be backward compatible with processors without

TSX support. HLE is able to replace lock implementations with two provided prefixes XAQUIRE and

XREALEASE. These prefixes are used with locks. When the software acquires the lock, the hardware

has the ability to check if a thread executing the critical conflicts with other threads (speculatively).

Threads that will not generate conflicts may run in parallel with others. Thus, the lock is elided and

threads may run without requiring any communication with the lock. However a conflict might happen

for various reasons, in that case threads get rolled back and acquire the lock.

RTM provides three new prefixes XBEGIN, XEND and XABORT to handle transactions (more pre-

fixes are available). The programmer can start, end, or abort a transaction in any part of the program.

Another difference in RTM is that programmers must define a fall-back path for an aborted transaction.

RTM brings more flexibility to the programmer as he can choose what to do when a transaction aborts

and explicitly start or end transactions without requiring locks.

In summary HLE is used for compatibility with legacy processors. In contrast, RTM explicitly en-
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ables the programmer to define the transactional critical areas, thus bringing more flexibility. However it

requires programmers to define a fall-back path.

2.1.1.3 POWER8

POWER8 [15] uses content addressable memory (CAM) linked with the L2 cache for conflict detection

[25]. This CAM is called the L2 TMCAM. The L2 TMCAM records the cacheline addresses that are

accessed in the transactions with bits to represent read and write. Although the transactional stored

data is buffered in the L2 cache, the transaction capacity is bounded by the size of the L2 TMCAM.

Since the number of the entries for the L2 TMCAM is 64, the total transaction capacity combined for

loads and stores is 8 KB (=64*128 bytes), where each cache line size has 128 bytes.

POWER8s default HTM interface already allows the user to specifically set the parameters, TM abort

and TM begin in the code, and define a fall-back path, as RTM. Therefore, allowing a higher level of

flexibility to programmers.

Another step towards HTM progress, is a new technique proposed by Issa et al. [26], which uses a

hardware-software co-design, based on HTM, to speculatively Read Write locks. Hardware Read-Write

Lock Elision (HRWLE) exploits two hardware features of POWER8 processors: suspending/resuming

transaction execution and rollback-only transactions (ROT). HRWLE provides two major benefits with

respect to existing HLE techniques: i) eliding the read lock without resorting to the use of hardware

transactions, and ii) avoiding to track read memory accesses issued in the write critical section.

(a) The write back of shared variables updated by a writer must
be delayed until after all readers have completed their critical
sections to preserve consistency.

(b) A new reader accessing a shared variable updated by a sus-
pended writer will abort the suspended hardware speculation of
the writer upon resume.

Figure 2.1: Writers quiescence mechanism to ensure consistency

Unlike read/write locks, in HRWLE reads and writes are concurrent. In read critical sections, trans-

actions are completely free, lacking any instrumentation (non-speculative). They only flag their state in

shared memory, to indicate whenever a read critical section starts. Since writers execute within HTM

transactions, they are protected from any conflict developed with other writers. However, it is still not

safe to commit writers with concurrent non-speculative readers, thus, they have to wait until they can

commit (Fig. 2.1 (a)).

To do so, writers use a quiescence call to ensure correctness with readers. The quiescence call is

implemented with the suspend/resume hardware feature, which has two primary characteristics. First, it

drains all current readers that may touch a writer, so that writers may commit. Second, any reader that

tries any memory position updated by a concurrent suspended writer will cause the abort of this writer

(Fig. 2.1 (b)).

Writes have several steps to follow. First, they are issued as with plain HTM (speculative), if a write
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cannot commit after several attempts, a ROT is issued instead. ROTs lower the semantics of the overall

transaction in order to allow writers not to track read memory access. Thus, this transactions have nearly

unlimited read capacity, which increases their chances of surviving big transactions. ROT’s benefit from

read-dominated workloads since read memory accesses usually compromise 80%-90% of the whole

memory access [26]. However, ROTs themselves can not be concurrent with each other, as they do not

track their reads. Nevertheless, here we are opting for a better read/write concurrency scheme, at the

cost of serial writers. Finally, after several aborted attempts of a ROT transaction, a lock is grabbed as

the transactions ultimate fall-back path.

2.1.1.4 Single Global Lock Fall-back

As noted, HTM has become a commercial reality, however, Intel Core and POWER8 offer no progress

guarantees (best-effort HTMs), implying that some form of software fall-back is needed. In the sin-

gle global lock (SGL) approach, each shared data structure has an associated lock. When it starts, a

hardware transaction immediately reads the lock state, an action known as eager subscription. When

a repeatedly failed hardware transaction restarts in software, it acquires exclusive access to the lock,

forcing any subscribed hardware transactions to abort. SGL fall-back is attractive because it is simple,

requiring no memory access annotation, and no code duplication between alternative paths. Neverthe-

less, an inherent limitation of current SGL fall-backs schemes is that hardware and software transactions

that share a global lock cannot execute concurrently. Figure 2.2 shows the four ways in which hardware

and software transaction can overlap. In cases 2 and 3, the hardware transaction is aborted as soon

as it checks the lock, while in cases 1 and 4 the hardware transaction is aborted when the software

transaction acquires the lock. With eager subscription, it makes sense for a thread starting a hardware

transaction to wait until the SGL becomes free.

Figure 2.2: SGL fallback path (eager subscription) [27]

In a eager SGL implementation (E-SGL), a hardware transaction immediately adds the lock to its read

set, ensuring the transaction will be aborted if that lock is acquired by a software transaction. Hardware

and software transactions cannot overlap (Figure 2.2). Lazy subscription can improve the chances of
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Figure 2.3: SGL fallback path (lazy subscription) [27]

success of a hardware transaction by allowing some overlap with a software transaction. In Figure 2.3,

L-SGL allows transactions (3) and (4) to commit, while E-SGL would abort them.

Software and hardware transactions are treated differently in L-SGL. Each software transaction must

acquire the SGL. Hardware transactions do not acquire the SGL, but they must check its status. With

some exceptions, L-SGL hardware transactions read the lock only at the end, right before committing.

If the lock is held by a software transaction, the hardware transaction explicitly aborts. This check is

necessary because the hardware transaction may have observed an inconsistent state. If the lock is

free, then no software transaction is in progress, and the hardware transaction can commit.

However, a recent paper ([28]) shows that lazy subscription is not safe for transactional lock elision

(TLE) because unmodified critical sections executing before subscribing to the lock may behave incor-

rectly in a number of subtle ways. They also show that recently proposed compiler support for modifying

transaction code to ensure subscription occurs before any incorrect behaviour could manifest, is not

sufficient to avoid all of the pitfalls they identify. They further argue that extending such compiler support

to avoid all pitfalls would add substantial complexity and would usually limit the extent to which subscrip-

tion can be deferred, undermining the effectiveness of the optimization. Concluding, in order to avoid

the pitfalls (inconsistencies) identified in [28], we avoid using the L-SGL fall-back path, and instead, use

the traditional E-SGL.

2.1.2 Software Transactional Memory

STM has been focus of intense research along the past decade [22, 12]. Software is responsible to

store the metadata (read/write sets) of transactions and detect conflicts. Since STMs are not cache

dependent, as HTMs, they are better equipped to handle big transactions. However, STMs have bigger

overheads over HTMs, due to the need of software instrumentation.

Throughout the years a number of STM designs have been explored:

1. lock-based vs lock-free - whether an STM uses locks to handle concurrency.
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2. encounter-time locking vs commit-time locking - when conflict detection is performed either at

commit time (lazy) or encounter time (eager).

3. word-based vs object based - granularity at which memory is accessed, usually used to validate

transactions data-sets.

4. Contention Management Scheme (CMS) - Contention manager module is responsible for ensuring

that the system as a whole makes progress [29].

5. visible readers vs invisible readers - whether readers actions are visible to the rest of the system.

6. weakly atomic vs strongly atomic - whether non-transactional code may access the same data as

of transactions.

In the rest of this section will be presented two STMs, Swiss-TM [12] and NOrec [30]. They have

different designs and are optimized for different workloads, Swiss-TM design choices focus on complex

workloads and achieving good performance with large scale benchmarks, which require big transactions.

NOrec however, is a much simpler approach to STM, and it is focused on applications with few concurrent

writers and many concurrent readers, thus improving the performance of read only transactions.

2.1.2.1 Swiss-TM

Swiss-TM [12] focuses on large applications as games or business applications in order to use the power

of multi-core processors to the full extense. These are the design choices of Swiss-TM; “Swiss-TM is

lock- and word-based and uses (1) optimistic (commit-time) conflict detection for read/write conflicts and

pessimistic (encounter-time) conflict detection for write/write conflicts, as well as (2) a new two-phase

contention manager that ensures the progress of long transactions while inducing no overhead on short

ones” [12]. Since Swiss-TM supports mixed workloads consisting of small and large transactions, as

well as complex data structures, it uses these software mechanisms to achieve a greater performance.

Correctness, i.e., opacity [19], in Swiss-TM is achieved using a metadata structure where the cur-

rent timestamp of each transaction is stored. The timestamps are ordered using a global counter. To

validate a transaction, the timestamp of such transaction must never be greater than the timestamps

of the resources it read. If such resources have a bigger timestamp, it means that another transaction

concurrently changed them. Finally, a locking strategy is used to ensure that changes in memory are

atomic.

Swiss-TM uses a mixed conflicting scheme. For read/write conflicts an optimistic (lazy) approach is

used in order to allow more parallelism between transactions. Moreover, big transactions may address

memory locations being read by other transactions. If a eager/pessimistic approach was used all other

transactions would abort, leading to an overall slowing of the system. In contrast, for write/write conflicts

it is used a pessimistic approach, in order to prevent transactions that are doomed to abort from running

and wasting resources.

The two-phase CMS enables that short read-write or read only transactions have no overhead, while

favouring the progress of transactions that have made many updates (big transactions). For short read-
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write or read only transactions it is used a timid CMS, which aborts transactions at the first encountered

conflict. For bigger transactions, it is used the Greedy [29] CMS, which induces more overhead, but

ensures completion of big transactions, thus preventing starvation.

2.1.2.2 NOrec: Streamlining STM by Abolishing Ownership Records

In order to better understand NOrec it is best to learn about Transactional Mutex Locks (TML) [31], the

system where it “evolved” from. This is a particular simple system, which uses a single global sequence

lock to serialize writer transactions. A single global sequence lock ensures that every invisible reader in

the system must be prepared to be invalidated (restart), once one of its peers becomes a writer.

The primary advantage of a sequence lock is that readers are invisible, and need not induce the

coherency overhead associated with updating the lock. In contrast, the primary disadvantage is that

doomed readers may be concurrent with writers, thus readers may read inconsistent data modified by

writers. TML’s built in memory management system handles these dangerous memory deallocations

situations. Summarizing, TML is a very low overhead STM that is highly scalable in read-mostly work-

loads.

However, there are two main properties that limit TML’s scalability, which will be improved and result

in NOrec. Firstly, the eager acquisition of the lock by writers, in a single global sequence lock, means

that only one writer may be active at a time. Secondly, invisible readers must be extremely conservative

and assume that they may be invalidated by any writer, even if the writers accessed data did not conflict

with the readers.

To solve the first problem, NOrec uses a lazy conflict-detection and a redo log for concurrent spec-

ulative writers. Modified values are locally stored in the redo lock, if the transaction is able to commit

then the values are stored in the shared memory. Furthermore, writing transactions do not attempt to

acquire the lock until their commit points, which ensures that the lock is held the minimum amount of

time possible, thus increasing the likelihood of read-only transactions to commit.

To handle the second problem, NOrec uses Value-Based Validation (VBV) to allow transactions, both

readers and writers, to detect if they actually where invalidated by a committing writer rather than making

an conservative approach. VBV allows the abolishment of ownership records (thus the name NOrec),

which is used in many other STM implementations to associate transactional meta-data with each data

location. In many STMs the maintenance of this table is a hard task and induces a big overhead. With

VBV, the actual address and value of the memory location are logged. Thus, validation only consist on

re-reading the addresses and verifying if there is a point (namely now) where the transactions’ reads

could have occurred atomically (to check if the value present in the memory address is equal to the

one in the log). The global sequence lock provides a “consistent snapshot” where these validations can

occur.

Finally, these new mechanisms enable NOrec to achieve a greater scalability, since there can be

multiple transactions (either readers or writers) that are able to “survive” through a writers non-conflicting

commit.

12



Figure 2.4: Instrumentation of hardware transactions in hybrid NOrec algorithms [33].

2.1.3 Hybrid Transactional Memory

HyTM [32], is a mixture between both transactional paths, i.e, HTM and STM. Theoretically, in order to

take advantage of the strengths of both STMs and HTMs, HyTMs seem to be a viable solution. In order to

provide support for best-effort HTMs, the Hybrid solution may be used as the fall-back path of the system

(instead of the usual SGL approach). Thus, this is achieved by instrumenting a hardware transaction

with accesses to STM metadata, allowing it to detect conflicts with software transactions. This approach

enables logical transactions (HTM transactions) to switch over to STM, per-transaction basis. However,

the synchronization required to support both TM implementations within the same system can cause

major overheads. Thus, recent research [22] reveals that the combination of best-effort HTMs with

STMs has a lower performance than the use of the separate transactional paths.

Among the various HyTMs present in literature, hybrid NOrec [33] is probably one of the most popular

solutions. Hybrid NOrec is a HyTM which combines the NOrec STM (previously presented) with a

best-effort HTM. Hybrid NOrec allows concurrency between both STM and HTM, however hardware

transactions must respect the single writer NOrec protocol. Thus, hardware transactions cannot commit

while there are running software writeback transactions and must signal their commit, so as to trigger

validation by concurrent software transactions.

Hybrid NOrec uses algorithms, as demonstrated in Figure 2.4, to ensure consistency within STM and

HTM concurrent transactions. Note that these algorithms are only used for hardware transactions and

are not applied for read-only transactions.

The first, most naive algorithm, is simply to read the global sequence lock (used by HTM and STM)

whenever a hardware transaction wants to start. If the lock is taken, the hardware transaction spins until

the lock is released. Since the lock value is incremented when this happens, and since the read of the

lock by the hardware transaction is transactional, the hardware transaction aborts and retries.

The problem with this first approach is that any hardware transaction will conflict with any software

transaction, due to the early read of the sequence lock in HW POST BEGIN. The second, and more

worrisome problem, is that any hardware transaction will conflict with any other hardware transaction

due to the increment of the sequence lock when committing. These conflicts exist for each transaction’s

full duration, eliminating concurrency.

Concurrency between hardware transactions is managed by the hardware itself, so there should not
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be any type of instrumentation at software level. To solve this second issue, algorithm 2-Location uses a

new variable named counter. Counter is used by hardware transactions to signal software transactions

of their commit, making the conflict between other hardware transactions only at commit time, and thus,

improving concurrency between hardware transactions. The last algorithm is P-Count, it uses a different

counter per thread to avoid even further conflicts with other hardware threads, however both algorithms

require software instrumentation to include verification to the counter variable, inducing more overheads.

2.2 Workload Generators for Spatio-Temporal Applications

Spatio-temporal data has the specific characteristic of having multiple-dimensions, specifically, time and

space. Thus, in order to create workloads with this type of data, a series of steps is required to achieve

a final result. The final result, however, is always a trace. There are two different possible types of traces

that benchmarks use. Recorded traces use real data made from analysis of events like traffic, providing

a very realistic job stream. In contrast, synthetic traces attempt to capture the behaviour of observed

workloads, and have the advantage of isolating specific behaviours that are not clearly expressed in

recorded traces.

The first step is to gather the spatial data required for the workload, which is done by Geographical

Data Systems (GIS) [34]. These systems are able to capture, store and manage spatial data. GIS data

is stored in the popular ERSI Shapefile [35] data format, which can spatially describe vector features:

points, vectors and polygons, representing for example, roads, rivers, and lakes.

The second step is to transform shapefiles into node and edge files, and finally, the third step is to

take those edge and node files, and generate position and query traces. For such, we use a Moving

Objects Trace generatOr (MOTO) which is based on Brinkhoff [36]. Thomas Brinkhoff’s Network-based

Generator of Moving Objects [36] has a special feature that usual spatio-temporal benchmarks do not

consider. Moving objects, like traffic, usually have a specific path they must follow, where they interact

with each other, while obliging to the paths’ rules. With this in consideration Brinkhoff’s generator uses a

network to simulate the paths where moving objects can move through. The network is used to simulate

real world and it combines real data (the network) with user-defined specifications of the properties of

a real data dataset. Moreover, it has the ability to create hotspots, e.g., further populate the cities of a

country. MOTO [37] is a trace generator for the moving objects application domain, a spatio-temporal

data workload generator. Its main strength is scalability for large networks (from Brinkhoff [36]) and

many moving objects.

2.3 Indexing Algorithms for Spatio-Temporal Data

In this section we focus on concurrent indexing data structures for spatio-temporal data on parallel

systems, which will represent the area of work of my thesis. These solutions aim at taking maximum

advantage from modern multi and many core architectures, supporting concurrent execution of updates
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Figure 2.5: Level of Consistency [5]

and query operations. As such, they represent important building blocks for several of the distributed

platforms for spatio-temporal data.

2.3.1 Semantics and Parallelism

In order to ensure the correctness and efficiency of concurrent data-structures, like the spatio-temporal

indexes considered in this work, it is crucial to adequately synchronize the concurrent execution of

update and query operations. An ideal synchronization scheme strives to maximize the parallelism

achievable when accessing the index, while preserving some target consistency criterion aimed at guar-

anteeing its correctness.

In literature, 4 different levels of consistency are usually considered for spatio-temporal indexes;

Serializable (also called Degree 3), Snapshot Isolation (SI), Freshness Isolation and Degree 2.

Degree 3 is full serializabilty. A transaction schedule is serializable if its outcome (e.g., the resulting

state of the system) is equal to the outcome of its transactions executed serially, i.e., without overlapping

in time.

HTM provides degree 3 consistency. Even though transactions may be concurrent, their execution is

equivalent to a serial one. The cache coherency protocol ensures conflicts are detected, while transac-

tions ensure correctness, hence, it is possible to order transactions as an equivalent serial execution.

The next lower level of consistency is SI. An SI implementation must respect two key properties [38]:

i) (Snapshot Read) All operations read the most recent committed version as of the time when the

transaction began.

ii) (No Write-Write Conflicts) The write sets of each pair of committed concurrent transactions must

be disjoint.

SI is weaker than serializability as it does not detect read-write/write-read conflicts between concur-

rent transactions, but provides an interesting property, called timeslice semantics: a query result reflects

all previously executed transactions and none of the transactions executed after the query has started.

Timeslice semantics, when applied to individual operations (insert, delete, update of an object in the

index) of a (spatio-temporal) index, is, in fact, sufficient to ensure the equivalence to a serial schedule of

those operations. However, it should be noted though, if the indexes are used in a more complex user

level transaction, the whole application can be exposed to an anomaly that goes under the name of write

skew (see Figure 1 for an example).
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Algorithm 1: Assume two nodes N and N ′ are in a given range R. Any sequential execution will
never remove both N and N ′. Running with SI, both transactions take a snapshot of the current
data base at transaction start. Concurrently, T1 and T2 respectively read N and N ′, before writing.
Since SI does not detect read-write/write-read conflicts, it is possible that both nodes are removed.
As both transactions do not write to the same node (no Write-Write Conflict).

1: Transaction 1 (T1)
2: begin
3: if( query(N is in range R) == true )
4: update (remove N ′ from R)
5: commit
1: Transaction 2 (T2)
2: begin
3: if( query(N ′ is in range R) == true )
4: update (remove N from R)
5: commit

The key benefit of SI is that it eliminates all interference between update and query transactions.

Queries can access the entire database without being affected by writes made by concurrent updates.

Moreover, queries are never aborted, nor they cause an abort of a update. On the other hand, typical

SI implementations rely on multi-versioning schemes, which can introduce non-negligible overheads

in terms of memory consumption and version management (e.g., version visibility logic and garbage

collection of obsolete versions).

Finally, Freshness Isolation is a consistency criterion weaker than SI that allows various concurrency

anomalies, called phantoms in the literature [39], which are illustrated in the following. Consider a CC

scheme where updates are atomic and where queries are able to execute reads “freely”, i.e., without

synchronizing with any concurrent writer. Let us consider the execution illustrated in Figure 2.6, which

depicts a query whose execution spans the [ts,te] time interval, and which is assumed to be now scan-

ning a specific region at some time t in the interval [t1,t2]. The figure shows concurrent updates affecting

objects, black dots represent objects initial positions and white dots represent their updated positions.

We can identify four phantoms (concurrency anomalies):

i1 : Object A is in the query range at ts. However, it exits the range before being seen by the query

and therefore is not reported. With timeslice semantics, A would be reported as it could not be

updated after the query started. Note that B also exits the range during [t1, t2], but is captured in

both CC schemes.

Figure 2.6: Parallel updating and querying [5]
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i2 : Object C is not within the query range at ts. However, it is reported because it enters the range

during [t1, t2]. With timeslice semantics, C would not be reported. Note that D also enters the

range during [t1, t2], but is not reported in either CC scheme.

i3 : Some of the reported object positions are fresher than others. For example, objects E and F

are both in the query range before and after being updated. However, only F’s updated position is

reported. With timeslice semantics both objects initial positions would be reported.

i4 : Both of object G’s positions are in the range, but the query fails to capture G because the update

moves from the yet unscanned to the already scanned query region. This does not occur with

timeslice semantics.

Of all of the phantoms, only i4 phantoms must be avoided to ensure freshness semantics. i4 phan-

toms happen when an object, yet to be scanned, updates its position to an already scanned area (object

G). Thus, the object is still in the query range but it seems to have disappeared. It has been argued

by [5] that this type of anomaly is strongly undesirable for typical applications. The resolution of this

problem is made in the description of PGrid, in Section 2.3.2.4.

With freshness semantics, a query processed from ts to te returns all objects that have their last

reported positions before ts in the query range, and it reports some (fresher) objects that have their last

reported positions after ts (and before te) in the query range. We formally conclude freshness semantics

applied to a range query. We use pos• and pos◦ to denote the previous and current position of an object,

respectively, and tu denotes the last time an object was updated.

Definition 1 Given a range query R with processing time [ts,te], its result O is said to satisfy freshness

semantics if for any object o, the following hold:

1. if o.tu < ts then o ∈ O if and only if o.pos◦ ∈ R

2. if ts < o.tu < te then

(a) if o.pos• ∈ R and o.pos◦ ∈ R then o ∈ O

(b) if o.pos• /∈ R and o.pos◦ /∈ R then o /∈ O

(c) if o.pos• /∈ R and o.pos◦ ∈ R then o may or may not belong to O

(d) if o.pos• ∈ R and o.pos◦ /∈ R then o may or may not belong to O

The first part of Definition 1 says that if o was only updated before the query started then whether or

not o is in the query result is determined by its up-to-date position. The second part deals with objects

that are updated during the query processing and covers the cases discussed already. Observe that

cases 2c and 2d imply that if one position is within the query range while the other is not, the decision

to add o to the result is arbitrary. Such happens since updates after ts are not necessarily seen by

the query during [ts,te]. For example, object A is updated after the query started, however its updated

position lands outside the query range, thus it is not reported. Finally, freshness semantics reports the

fresher updated objects and cannot guarantee serializable semantics (see Fig. 2.7) as the result of two

queries in the same area may not be equivalent to a serial execution.
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Figure 2.7: Freshness semantics is not serializable [5]

2.3.2 Indexes Implementation

In this section we review several existing indexes for spatio-temporal data, which we list in Table 2.2.

The considered algorithms all target in-memory data structures, but differ across multiple dimensions.

While presenting the various algorithms, we shall focus in particular on u-Grid and PGrid, as, in Chapter

3, we will use them as starting point to derive HTM-enhanced versions. The remaining algorithms will

instead be overviewed at a higher level of abstraction.

All indexes presented in the following use two different structures. The primary structure is a tree or

a grid. The primary indexes are used to allow efficient retrieval of objects based on their spatial position

during query operations.

A secondary index structure is also used, a hashtable, which stores objects using their id as key.

This index is used by update operations, to efficiently locate the corresponding entry to be updated in

the primary index. This technique, which aims to accelerate access to objects in the primary index, is

called bottom-up fashion update.

All the indexes reviewed in the following support the same set of operations, namely the Update

(Object id, old x, old y, x, y), and the RangeQuery (Rectangle q).

Name Grid vs Tree -based Multi-threaded Semantics
u-R-tree Tree No –
u-Grid Grid No –
Serial Grid Yes Timeslice
PGrid Grid Yes Freshness

Table 2.2: Indexes Configuration

2.3.2.1 u-R-tree

R-tree based indexing algorithms have been investigated for decades in the literature [4, 6, 40]. The

R-tree is known for its support for a large number of different query algorithms, and its ability to index

spatial-extended objects (objects larger than a single point). However, the main issue with the R-Tree is

its poor performance in update management — which motivated the design of the u-R-tree algorithm.

Both the R-tree and u-R-tree algorithms are not designed to support concurrent manipulations, i.e., they

assume a single threaded execution model. We focus on the u-R-tree algorithm and further overview it.

Figure 2.8 depicts the u-R-tree’s structure. The u-R-tree is a hierarchy structure of Minimum Bound-

ing Rectangles (MBR). An MBR is the smallest rectangle that encloses a group of objects. There are

18



Figure 2.8: Structure of a conventional R-tree (the gray elements are present only in the u-R-tree [4].

two types of nodes in this tree. Internal nodes, which have other nodes as child, and leaf nodes, who

are at the bottom of the tree and contain moving objects in them. These nodes are organized according

to their MBR. Parent nodes MBR contain all child nodes MBR. Finally, the u-R-tree is defined with two

parameters that are needed to adjust the tree in order to achieve a good tree balance and thus a good

performance. These are node size (ns), expressed in cache lines and minimum children (mc) expressed

as a fraction of the full node. In any node of the tree its entries must occupy at least mc percentage of

ns otherwise the node is considered underfull and is merged with the parent node. If a leaf node is too

full with objects, it is considered a node overflow, and it splits generating two leaf nodes.

Range Query: The range query in the u-R-tree is performed as a depth-first traversal from the root

down to the leaves accessing the nodes with MBRs overlapping the range of the query. When the leaf

nodes are finally reached, objects that satisfy the range query are output.

Updates: Update operations in the u-R-tree usually have worse performance when compared to

queries. In the following, we describe the update operation and illustrate the reasons of this inefficiency.

Updates are performed by two separate top-down operations, deletion and insertion.

The deletion operation descends the tree from the root searching the old position of the object. This

is done by recursively accessing the nodes that contain the position of the object in their MBR. MBRs

may overlap, so more than one path can be visited while searching for the object. Once the required

leaf node is located, the appropriated entry is deleted. Finally, ancestors (all nodes above the current)

MBRs, may become not minimum (removal of the object may shrink the MBR), thus requiring traversing

the tree back to the root adjusting the MBRs. Furthermore, the nodes may become underfull (as earlier

explained), requiring an expensive reinsertion of their entries.

The second part of the update operation uses the insertion algorithm. Insertion begins by traversing
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Figure 2.9: Bottom-up update in the u-R-tree [4].

the tree from the root to the leaf node as well. At each node a heuristic function is called to choose

the most suitable path to further descent the tree. When a suitable leaf node is located, the object is

inserted there. Once again, by inserting a new object, ancestors MBRs may become invalid and have to

be adjusted traversing the tree to the top. Also when inserting a new object on the leaf node, we might

be causing a node overflow (earlier explained), which originates a node split on that leaf node. By doing

this we are adding another entry to the parent node, which itself may exceed node capacity, and split.

The split may propagate up the tree. Summarizing, a single update results in at least 3 tree transverses,

thus this being the main reason why updates in the R-Tree are very poor, performance wise.

Bottom-up Updates: In order to improve updates performance, u-R-tree makes updates in a bottom-

up fashion. To do so, an extra secondary index (hashtable) (Figure 2.8) is used, which facilitates updates

to the tree providing direct access to objects inside the tree. However, bottom-up updates do not solve

problems as the leaf node overflow, which split may propagate up the tree. Nevertheless, there is no

need to make a costly traverse to the tree searching for the object and near constant O(1) updating time

can be achieved. This is a simplified version of the algorithms proposed by Lee et al [41] in order not to

complicate too much the already CPU-heavy algorithms (updates and queries).

Figure 2.9 demonstrates how updates are classified depending on their new position. If the new

position is within its MBR, two options follow. First, if the old position is within the MBR boundary, a

pure-local update occurs. Second if the old position is in the limit of the MBR then a shrinking-local

update occurs. Conversely, if the new position is not within its MBR, two options follow. First, if its

optimal node is the same, a expanding-local update occurs. Second if its optimal node is a different one,
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Figure 2.10: u-Grid Structure [4]

a non-local update occurs.

2.3.2.2 u-Grid

u-Grid is a single-threaded index structure that offers high performance for traffic monitoring applications

in single-threaded settings [4]. Queries are serviced using a uniform grid [42], while updates are facil-

itated via a secondary index in bottom-up fashion. A uniform grid (Figure 2.10) is a space-partitioning

index where a defined area is divided into cells (grid), whose resolution can be statically set based on

the expected data density. However, no grid refinement or re-balancing is made during the execution of

the system, as it occurs with the u-R-tree. Objects within a particular grid cell belong to that cell. Grid

cells are stored as a two-dimensional array. Each grid cell stores a pointer to a linked list of buckets,

these contain the object data. Objects are incrementally stored in buckets following no specific order.

Thus, the grid is defined by three parameters: grid area, grid cell size (gcs), and bucket size (bs).

Updates are performed in a bottom-up fashion and queries are made by searching/scanning the

grid (primary index). The pseudo code for the update algorithm (Algo. 2) is defined as follows. A

new ObjectTulpe is to be updated, its coordinates are extracted to calculate its corresponding cell (Line

1). The secondary index entry (sie) is extracted with the new ObjectTuple object id (oid), which is the

secondary index (hashtable) key. However, the object in the hashtable is the current version of object,

not the new version. Hence, OldCell and current object, obj, are extracted from the sie. Both objects cells

are used to check whether the update is local (same cell), or non-local (Line 5). If the former is the case,

obj is overwritten with new’s coordinates in the grid. The sie is not changed since the object remains in

the same location in the grid. If the latter occurs, the current object has to be physically deleted (nullify

hashtable entries and remove from grid) and the new object is inserted (added in hashtable and grid).

These procedures are managed by the insert and delete algorithms.

Algorithm 3 is the delete function. The sie of the object to deleted (Obj) is used to extract its location

in the grid. Obj is to be overwritten by the last object of the first bucket (Cell points to first bucket). The

object is overwritten in Line 4. Once the object is overwritten, the number of objects in the first bucket
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Algorithm 2: update(ObjectTuple new)
1 newCell = computeCell(new.x, new.y) ;
2 sie = SecondaryIndex.lookup(new.oid);
3 oldCell = sie.cell;
4 obj = getObj(sie.bckt, sie.idx) ; // object tuple

5 if newCell == oldCell then
// local update

6 obj.x = new.x;
7 obj.y = new.y;
8 else

// Nonlocal update

9 delete(sie) ; // physical deletion

10 insert(new, newCell, sie) ; // physical insertion

11 end

is decremented. Once reached 0 objects, the first bucket is to be deleted, and the next bucket is to be

set first (Line 6-8). Finally, the deleted objects references are nullified from the hashtable. In contrast,

the sie of lastObj (object used to overwrite) is updated with its new position in the grid, concluding the

delete algorithm.

Algorithm 3: delete(SIEntry sie)
1 Obj = sie.Bckt.entries[sie.Idx];
2 firstBckt = *sie.Cell ; // cell refers to the 1st bucket

3 lastObj = firstBckt.entries[firstBckt.nO - 1];
4 write(lastObj, Obj) ; // lastObj copied over Obj

5 firstBckt.nO– ; // decrement number of objects

6 if firstBckt == 0 then
7 *sie.Cell = firstBckt.nxt ; // No more queries can enter firstBckt

8 free(firstBckt);
9 end

10 Nullify all Obj references in sie;
11 Lookup for lastObj’s sie and update it ;

The insert algorithm inserts the new object in the new cell. If the first bucket is full a new one must

be allocated (Line 2,3). The object is inserted in a free position of the first bucket (Line 5,6). The

sie is updated with the new object position in the grid (Lines 7-9). Finally, the first bucket number is

incremented, concluding the inset algorithm.

Algorithm 4: insert(ObjectTuple new, Cell cell, SIEntry sie)
1 firstBckt = *cell ; // cell refers to the 1st bucket

2 if isFull(firstBckt) then
3 Allocate new bucket and make it first ;
4 end
5 freePos = firstBckt.entries[firstBckt.nO];
6 write(new, freePos) ; // new written to freePos

7 sie.cell = cell;
8 sie.bckt = firstBckt;
9 sie.idx = firstBckt.nO;

10 firstBckt.nO++ ; // increment number of objects

22



The range query retrieves all objects form a rectangle area. Algorithm 5 depicts the pseudo-code.

The cells covered by the query range are computed (Line 2). Each cell is scanned (CellScan) for their

objects, which are then retrieved and added to the result (Line 4,5). Similar processing is done to

partially covered cells.

Algorithm 5: rangeQuery(Rect q, int ts)
1 res = 0 ; // container for storing the result

2 cells = computeCoveredCells(q);
3 for cell ∈ cells do
4 objects = CellScan(cell);
5 res.add(objects);
6 end
7 Similar processing is performed for partially covered cells;
8 return res;

Finally, we review the how cells are scanned in the CellScan algorithm (Algorithm 6). Each bucket is

read, starting from the first bucket until there are no remaining buckets (Line 2). Buckets are read from

the beginning to the end (Line 3). Consequently, objects are retrieved and added to the result (Line 4,5).

Finally, the next bucket is set to be read (Line 7), concluding the CellScan algorithm.

Algorithm 6: CellScan(Cell cell)
1 objects = 0 ; // container for storing the result

2 while bckt != null do
3 for idx := 0; To bckt.nO - 1; Step +1 do
4 obj = readObj(bckt.entries[idx]);
5 objects.add(obj);
6 end
7 bckt = bckt.nxt;
8 end
9 return objects;

2.3.2.3 Serial

Serial is a multi-threaded version of u-Grid, with a fine-grained (non-strict) 2 phase read/write locking [43]

scheme, which ensures timeslice semantics. Timeslice semantics are guaranteed by ensuring that there

are no concurrent updates and queries in the same cells, however, there can be concurrent operations

in different cells. Moreover, as queries are read-only, they acquire a read lock, making it possible to have

concurrent queries on the same cells. In contrast, updates to an object preclude any concurrent access

to the cell, either update or query — which represents one of the main limitations of this relatively simple

algorithm. Synchrony between the primary and secondary index is held with cell locks, as an updater

locks the primary index cell and the secondary index entry with the same cell lock.

Range Query: Range queries (readers) acquire (read) cell locks in shared mode. A growing phase

starts until all cells from the grid, within the query range, are locked. No updates are made to locked cells,

thus, queries are now able to scan cells and read their buckets. The next phase is the decrementing
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phase. Once a cell is read, its locks are immediately released, ensuring that queries acquire locks the

minimum possible time. The locks can be released safely before all the cells are inspected since range

queries are read-only and never aborted.

Bottom-up Updates: Before any object modification, each updater acquires a (write) lock on the

current object’s cell. If it is a local update, the objects’ entries in the grid are overwritten with the new

ones, and the lock is released. If the update is non-local, the updater tries to lock the new (destination)

cell as well. In case the lock is obtained successfully, the old object is deleted from the old cell and

inserted into the new cell. Finally, both cell locks are released. If the lock on the new cell is not acquired,

the update is aborted and restarted to avoid deadlocks.

Overview: Overall, locks are expected to be held for a very short duration of time as there is no grid

refinement or re-balancing. At most two cells are locked during an update, and multiple queries can

access the same cells. Results from [5] indicate that Serial has a limited scalability, since it has a high

sensitivity to update-update and update-query contention. Hence, Serial suffers the most with hotspots,

where an above average number of objects are scanned/updated in neighbour cells.

2.3.2.4 PGrid

PGrid (Fig. 2.11) is a multi-threaded version of u-Grid with a fine-grained 2 phase locking [43] scheme.

Unlike Serial, PGrid avoids acquiring locks on the entire set of cells to be accessed by a query before

starting scanning such cells. Conversely, queries that need to scan multiple cells acquire at most a

cell lock at a time, and only to enlist the reader into the cell, i.e. for a very short duration. This pro-

motes further parallelism between updates and queries, unlike with Serial. In order to ensure freshness

semantics, PGrid uses two additional ideas/mechanisms:

1. whenever an update alters the position of an object it always preserves the object’s previous posi-

tion. This allows queries to detect and fix situations where the i4 phantom may arise (which would

cause objects to be missed due to concurrent updates moving the object from a cell yet to be

scanned to an already scanned cell, see Fig 2.6) by letting queries return the position of objects

not reflecting the updates issued by concurrent updates.

2. in order to ensure that concurrent execution of updates does not jeopardize the correctness of

queries, the atomicity of each object read is carried out using lock-free mechanisms (possibly

exploiting specialized hardware support).

With the execution of multiple concurrent updates, both the primary (Grid directory) and secondary

index (hashtable) are going to be manipulated concurrently. The changes made in one have to be

reflected in the other. To guarantee consistency between the two, PGrid’s Concurrency Control (CC)

scheme includes two types of locks: object locks and cell locks.

The main purpose of object locks is to provide synchronized, single-object updates between the two

structures. After an object lock is acquired, the updater is sure that the object-related data is not changed
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Figure 2.11: PGrid Structure [5]

in either index by concurrent updates. Since an object lock blocks write accesses just to one particular

object, it has only a modest effect on the potential parallelism. As mentioned before, concurrent updates

to the same object are rare if ever encountered.

The main purpose of a cell lock is to prevent concurrent cell modifications, i.e., physical dele-

tion/insertion of new objects in a cell and, consequently, deletion/insertion of new buckets in the cell.

For example, when a bucket becomes full, the cell lock guarantees that only one thread at a time allo-

cates a new bucket and modifies the pointers so that the new bucket becomes the first (bucket pointed

by cell).

PGrid’s updates are also made in bottom-up fashion (see Fig. 2.11). Local updates are treated

the same way as previous implementations, since no explicit object insertion/deletion is required, and

since objects stay in the same cell. Then, it is only required to overwrite the object. Non-local updates,

however, do not follow the same pattern. Since i4 phantoms must be avoided, there is the need to

maintain the old position of the object in case the range query misses the new updated position. Thus,

PGrid introduces a new notion of logical deletion. When a non-local update occurs, the old position of

the object is kept (logically deleted), thus its entries on the secondary index are moved from its current

entries (cell, bckt, idx) to the logically deleted entries (ldcell, ldbckt, ldidx). Moreover, in the primary

index, a deletion flag is set to the object’s timestamp. This informs the queries that this is the old position

of the object. The next update to the same object will delete the object’s old position (logically deleted)

from both indexes, performing a physical deletion.

An assumption is made by [5] that the processing time of a query [ts,te] is shorter than the time

between two consecutive updates. Therefore, case i4 can be handled by keeping one previous object

position in the index, which will be deleted in the next update. Doing so guarantees that a query always

encounters at least one object version and does not miss any objects. In Figure 2.6, the query then

reports G’s previous position (black dot). However, in cases where a query is longer than two consecutive

updates, a simple timer may be added, where if the query surpasses the timer’s limit then it is aborted

and redone.

PGrid allows concurrent updates and queries in the same cells, hence, it is required that read/write
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operations made to the primary index (Grid) are made atomically. This ensures that the execution

of updates does not jeopardize the correctness of queries. To do so, PGrid considers two lock-free

mechanisms, specifically, Optimistic Lock-Free Index Traversal (OLFIT) and Single Instruction Multiple

Data (SIMD).

OLFIT was designed as a cache-conscious CC scheme for main-memory index structures on shared-

memory multiprocessor platforms [44]. This approach maintains a latch and a version number for each

object. Updates’ always obtain a latch first, to ensure no concurrent writes to the same data item. In

addition, before a latch is released, an updater increments the version number. A reader starts by

copying the version number and optimistically reads the data without latching. Then, if the latch is free

and the current version number is equal to the copied one, the read is consistent; otherwise, the reader

starts over. Thus, OLFIT ensures optimistic reads which are favourable for multi-core architectures since

they avoid the memory write required by latching. Since, with latching, even if the actual object data does

not change, the entire cache line where the memory write was made will be invalidated, forcing all other

cores to also invalidate the cache lines with that memory address.

SIMD is a technique currently supported by commodity processors. This technique makes possible

the transportation of multiple data items via vector operations. Such processors come with instructions

for loading and storing data into SIMD registers. Thus, SIMD can be employed in PGrid in order to

make writes/reads to objects atomic. Micro-benchmarks made by [5] confirm that loading/storing a

double quad-word (128-bit value) into/from SIMD registers (xmm) from/to a memory location aligned on

a 16-byte boundary is atomic [14].

We proceed with the detailed description of PGrid’s algorithm, which we will use as starting point to

derive an HTM-based variant in Chapter 3.

The update algorithm, Algorithm 7, starts by computing the cell where the object is to be updated

(Line 1). Immediately after, it locks the object since the sie (secondary index entry) of this object will

have to be accessed (Line 3). With the sie, we can check if the object has a logically deleted (ld) position

(Line 6), in this case, it is deleted. As previously mentioned, an assumption is made indicating that the

processing time of a query is shorter than the time between two consecutive updates. Therefore, it

is safe for updates to delete their ld positions, this is called a physical deletion. If deletion fails, the

object lock is unlocked and the whole update operation restarts, in order to avoid deadlocks (Line 8,9).

Following, we must check if the update is local or non-local. This is done comparing the current object’s

cell (oldCell) and the new updated objects’ cell (newCell) (Line 10). If it is a local update, we overwrite

the current object with the new object in the grid index (primary). Notice that this write (Line 11) must be

atomic, as there could be concurrent queries reading the same cell. However, if it is a non-local update,

we first need to logically delete the current object. This is done by moving the object’s entries in its sie

from the new to the ld entries (Lines 13-15). Moreover, the timestamp of the object in the grid index must

be negated so queries distinguish current and ld objects (Line 17). Finally the new object is inserted in

the new cell (Line 16).

Algorithm 8 contains the pseudo code for the physical delete operation (Line 7 of Algorithm 7).

Physical deletion of objects is secured using a cell lock, so that only a single thread is able to perform
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Algorithm 7: Update(ObjectTuple new) [5]

1

Algorithm 8: bool delete(SIEntry sie) [5]

1
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deletion at a time, in the same cell. Deletion starts by using the objects’ sie to lock the cell where its

ld position resides (Line 1). This is necessary in case the first bucket of that cell becomes empty and

has to be deleted. The ld object is extracted using the new objects sie, received as argument (Line 2).

In the grid index, to perform a deletion of an object, the last object of the first bucket is always used to

overwrite the object to be deleted. Hence, we extract the last object of the first bucket (Line 3,4). We

try to lock lastObj in order to perform the deletion, however, if the lock is already acquired by another

thread, the entire operation is restarted falling back to the update function (Lines 16,17). This costly path

is necessary to avoid dead locks, which could occur in very specific situations.

Nevertheless, if the lock is successfully acquired, the ld object is overwritten atomically by the last

object of the first bucket, and the number of objects in the first bucket is decremented (Lines 6,7). If the

first bucket becomes empty then the next bucket is assigned first (Line 9) and the first is freed (Line 10).

However, there can still be queries reading from this respective cell. Hence, deletion must wait for all

queries to conclude their scanning in order to free the first bucket, which occurs in the waitUntilNoRead-

ers function. Finally, all ld references are nullified in the sie (sie of ldObj) and the lastObj’s sie is updated

since this object was moved in the grid to overwrite ldObj (Lines 11,12). Eventually deletion concludes

by unlocking both locks.

Algorithm 9: insert(ObjectTuple new, Cell cell, SIEntry sie)) [5]

1

Object insertion is relatively simple (Algorithm 9). A new object is always inserted in the first bucket,

which is pointed by the cell (Line 2). In case the bucket is full, a new bucket is allocated and the

necessary pointers are updated, so that the new bucket becomes the first (Line 4). The first free position

at the end of the first bucket is determined (Line 5), and the new tuple is written (Line 6). The fields cell,

bckt, and idx in the sie are also updated accordingly (Lines 7–9). Finally, the number of elements in the

bucket is incremented. This process is secured by the target cell lock, other threads cannot concurrently

perform any deletion or insertion of objects in the specific cell.

Algorithm 10 represents the range query algorithm, which is structured as follows. The algorithm

takes two inputs: a two-dimensional rectangle specifying the query range (q) and an integer value

specifying the query’s timestamp (ts). The algorithm returns the objects covered by the query range.

For simplicity, Algorithm 10 shows only the processing of fully covered cells (computed in Line 2). Thus,
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Algorithm 10: rangeQuery(Rect q, int ts) [5]

1

the extra check (whether an object is within the range), done for partially covered cells, does not appear

in the algorithm.

All cells buckets are scanned in order to retrieve the objects tuple (Line 4). A filtering mechanism is

applied to objects in order to gather only the most up-to-date objects and assure freshness semantics

(Line 6-9). If a current version of the object is read (objects’ timestamp is higher than 0), the object is

immediately added, overwriting any previous object in the result.

In contrast, a negative timestamp signals that the tuple contains a ld object. A ld object is added to

the result if two conditions hold. First, the absolute value of its timestamp exceeds that of the queries’.

This implies the object was updated after the query started, hence, it must be considered to guarantee

the i4 phantom does not occur (Fig. 2.6, Line 8). The second condition is realized via the container (Line

9): The tuple is only added if the result does not contain an object with the same oid. This as well as

add-and-overwrite functionality can be efficiently supported using an unordered map from the Standard

C++ library.

Before reading a bucket, queries use a compare and swap (CAS) instruction to atomically increment

the number of readers (nR) of that bucket, which signals updates that a query is reading that bucket.

The opposite occurs when queries leave buckets. To note, the CAS instruction is only used to allow

concurrent query threads to modify the nR of a specific bucket.

Nevertheless, queries always scan cells from the first bucket to the last. To ensure a safe read of the

first bucket, a cell lock is briefly acquired as concurrent updates may delete the first bucket (Lines 2-8).

The cell lock blocks any insertion/deletions from concurrent updates, hence, ensuring the first bucket will

not be deleted or modified. Solely incrementing the nR of the first bucket is not enough as the bucket

may be deleted/modified before the query increments its nR. For the subsequent buckets, the counter

can be accessed safely, as updates only insert/delete objects using the first bucket (Lines 13–16).

Recall that an updater can move the last object of the first bucket (to overwrite an object to be

deleted). If a query scans a bucket from its beginning, the moved object could be missed if it is moved

from the as-yet-unscanned part of the bucket to the already scanned part. To eliminate this problem,
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objects within a bucket are examined starting from the last entry of the bucket (Line 10).

Finally, PGrid relies on two alternative mechanisms to guarantee that queries do not observe par-

tial object updates performed by concurrent update operations (which modify several metadata of the

object).

Algorithm 11: pCellScan(Cell cell) [5]

1
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Chapter 3

Hardware Accelerated Big

Spatio-Temporal Data Indexes

In this chapter we present HTM-based spatio-temporal indexes. The starting point to derive such al-

gorithms are two state of the art solutions, namely u-Grid and PGrid (see Section 2.3). For u-Grid we

consider implementations based both on plain HTM interface, as well as on HRWLE (see Section 2.1.1).

For PGrid, we consider how to integrate HTM in the OLFIT-based version, and consider the possibility of

ensuring atomicity of the objects scanned during the query operations via HTM transactions spanning

a tunable number of objects. Table 3.1 depicts all of our solutions distinguished by base algorithms,

interfaces used and number of transactions used in their main operations. These solutions will be ex-

perimentally evaluated in Chapter 4.

3.1 Analysis of HTM Spatio-Temporal Indexes

The HTM-based spatio-temporal indexes that we developed differ by the number of transactions that are

used to support queries. We do so to solve two HTM drawbacks: contention and HTM capacity.

Contention happens when concurrent transactions access the same cache line and at least one of the

two transactions writes to it. Contention may occur between updates and between updates and queries.

However, algorithms such as PGrid’s range query (Alg. 10), increment/decrement the variable (nR) in

their cells’ buckets as to alert updates that there are queries currently scanning those buckets. Hence,

PGrid’s queries are not read-only and can therefore, potentially, contend with each other. However,

contention generated by this is negligible in practice.

Updates are short and access a small amount of shared variables. Indeed, the use of the bottom-up

Name Base Algorithm HTM Interface # Update Transactions # Query Transactions
u-GridHTM u-Grid HTM 1 1
PGridOHTM PGridOLFIT HTM 1 Partitioned
u-GridHRWLE u-Grid HRWLE 1 0

Table 3.1: Spatio-temporal indexes HTM solutions
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update scheme allows direct access to the grid (primary index) using an hashtable (secondary index).

The hashtable is also TM-friendly as objects are stored by their object id, hence, only a single hashtable

entry is accessed to fetch a specific object, avoiding further conflicts with other updates. Hence, con-

tention between updates is not a major concern for HTM.

The major cause of contention are concurrent updates and queries. The grid, being composed by a

linked list of buckets is not TM-friendly, as queries are forced to read the entire list to return their result.

Any modification (update) to a previously read bucket/cell will force an abort of one of the transactions

(update or query), depending on the architecture. Hence, it is imperative to maintain contention between

updates and queries low to achieve good performance.

The other main issue of HTM relates with its limited capacity. In the considered spatio-temporal

indexes, the capacity issue is particularly relevant for queries, as updates access a small number of

memory locations. In contrast, queries may have to scan multiple cells. All memory addresses of the

objects inside the cells buckets have to be stored, which consumes the cache’s store capacity (reviewed

in Section 2.1.1.1). Hence, it is imperative to maintain small query transaction sizes as so not to exceed

transactional capacity.

This is precisely the first approach we took when designing PGridHTM, in which queries scan cells

using multiple transactions. Hence, contention between updates and query transactions drastically low-

ers, and memory footprint is not exceeded as we pre-define the size of query transactions. In contrast,

the second approach does not rely in transactions to perform the cell scanning. Instead, we use the

atomic instructions (i.e., OLFIT), present in PGrid, to perform the cell scanning. Doing so reduces con-

tention as conflicts will only occur directly between objects being updated/read concurrently. Moreover,

memory consumed by queries will be negligible as OLFIT is used to perform the query scan.

Finally, workloads have a big impact on HTMs performance. Query intensive workloads allow queries

to run with larger transactions due to the lower update count, which generates less contention with

queries. In contrast, queries read sets quickly fill HTMs capacity, hence, transaction sizes cannot overly

increase.

On the other hand, update intensive workloads may force queries to run with a smaller transaction

size, as the sheer amount of concurrent updates greatly increases contention between updates and

queries. Capacity aborts are a minor issue in these workloads due to the low amount of queries.

After having discussed the main challenges/performance pathologies that we expect to encounter

when using HTM to build concurrent spatio-temporal indexes, we can now describe the proposed solu-

tions.

3.2 u-GridHTM and u-GridHRWLE

Our first approach was to straightforwardly apply HTM to a state of the art single-threaded index, u-Grid

[4], by wrapping all of its operations with HTM transactions (see Algs. 12 and 13). The modifications

made to the original u-Grid’s algorithms are marked with a yellow shading. Note that these algorithms

use HTM with a SGL fall-back path, which is detailed in Appendix A.1.
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When applying HTM this way to indexes, the resulting consistency level is Degree 3 (Fig. 2.5), pro-

viding full serializability. However, wrapping the two main operations in a single transaction, respectively,

may not be ideal in terms of performance. If on the one hand, update transactions are small and un-

like to conflict with other update operations, on the other hand, queries access a much larger number

of memory locations. Wrapping them within a single hardware transaction makes them prone both to

suffer from capacity exceptions and to contention with concurrent update transactions.

Algorithm 12: update(ObjectTuple new)
1 newCell = computeCell(new.x, new.y) ;
2 TM BEGIN SGL( ) ; // begin transaction

3 sie = SecondaryIndex.lookup(new.oid);
4 oldCell = sie.cell;
5 obj = getObj(sie.bckt, sie.idx) ; // object tuple

6 if newCell == oldCell then
// local update

7 obj.x = new.x;
8 obj.y = new.y;
9 else

// Nonlocal update

10 delete(sie) ; // physical deletion

11 insert(new, newCell, sie) ; // physical insertion

12 end
13 TM END SGL( ) ; // end transaction

Algorithm 13: rangeQuery(Rect q, int ts)
1 res = 0 ; // container for storing the result

2 cells = computeCoveredCells(q);
3 TM BEGIN SGL( ) ; // begin transaction

4 for cell ∈ cells do
5 objects = pCellScan(cell);
6 res.add(objects);
7 end
8 Similar processing is performed for partially covered cells;
9 TM END SGL( ) ; // end transaction

10 return res;

A similar approach was used to derive u-Grid with HRWLE (u-GridHRWLE). In this case, query

transactions are mapped to a read-only transaction/critical section, whereas updates are mapped to a

write critical section. HRWLE is expected to make HTM capacity issues negligible, by allowing queries

to run uninstrumented and, hence, without any capacity limitation. Nevertheless, contention between

updates and queries still exists. Further, HRWLE induces extra costs to update transactions, by forcing

them to undergo a quiescence phase to wait for any active reader. As such, HRWLE is expected to be

better fitted for query (read) intensive workload scenarios.

In terms of consistency, u-GridHTM and u-GridHRWLE deliver Degree 3 consistency level, which

provides serializability and timeslice query semantics.
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3.3 PGridHTM

PGridHTM uses a complex and carefully optimized algorithm, based on the joint use of fine-grained

locking, atomic operations and non-blocking synchronization techniques (e.g. OLFIT). Further, in order

to boost performance, PGridHTM adopts a non-serializable consistency criterion, namely freshness

semantics (see section 2.3.1), already present in PGrid. In the following we depict the main changes

brought by PGridHTM:

1. HTM is used to elide object and cell locks. As reviewed in section 2.3.2.4, when a non-local

update occurs, a deletion or insertion of an object may incur in the deletion or creation of a new

bucket (see Algs. 8 and 9). These operations have to be performed by a single thread in order to

allow correct modifications to the first bucket (pointed by the cell). Therefore, these operations are

guarded with cell locks, preventing any concurrent deletion and insertion of objects in the cell. The

other operation guarded by cell locks is the reader subscription into a cell (see Alg. 11), where

queries are required to ensure the nR of the first bucket is incremented before performing a scan.

This way, concurrent updates know that the query is currently reading the first bucket of that cell,

and hence, they are prevented from deleting the first bucket. Finally, object locks used to serialize

concurrent single object updates are also elided.

By eliding cell and object locks we allow optimistic concurrency in these operations, further increas-

ing parallelism. Even though these operations access shared data that would result in a conflict

between concurrent transactions to the same operation (e.g., nR, or the increment/decrement of

the number of objects of the first bucket), there can still be coexistent transactions. The conflict

window (time span where conflicts occur) does not last the entire duration of the operation. Hence,

there can be concurrent transactions to the same operation as long as they do not coexist during

each others conflict window. In contrast, the conflicting window with locks spans during the entire

duration of operations, limiting parallelism.

2. Since PGrid relies on a fine-grained locking scheme, in the moment in which HTM is used to elide

its locks, one is left with the decision on how to regulate the fall-back path of HTM.

The simplest solution consists in falling back to a SGL, which is subscribed by every transaction

(reader or writer). This has the effect of ensuring that whenever a transaction activates the fall-back

path, every other concurrent transaction, even if accessing a different object/cell, is immediately

aborted and blocked. In case of fall-back activation, thus, a SGL-based approach restricts paral-

lelism with respect to the original PGrid algorithm, where operations accessing different objects

and cells can always run concurrently.

This observation led us to develop a second variant that exploits the original PGrid locking-scheme

in order to derive a fine-grained locking fall-back mechanism for HTM transactions. This is relatively

simple to achieve, as it only requires to replace each request to acquire a lock L with a transaction

begin followed by a read to L. This is sufficient to guarantee that if a transaction activates the

fall-back path and acquires a set of locks S (as prescribed by PGrid), it will cause the abort only of
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transactions that are attempting to elide a lock in S.

This, on the one hand, preserves the original consistency guarantees of PGrid, while, on the

other hand, enabling a higher degree of concurrency with respect to the SGL-based approach.

Nevertheless, the fine-grained locking fall-back path has a concerning disadvantage. The use of

multiple locks adds extra instrumentation, forcing searches in index structures (hashtables, arrays

or trees) for the specific locks and consuming additional transactional capacity.

Since we wanted to optimize the acquisition of locks by the HTM, we use padded locks with a size

corresponding to each architecture cache line size. This way, we ensure that no false conflicts

occur in the acquisition of the locks. We further tested this solution using the hashtable that PGrid

uses to store its locks (same hashtable used in the secondary index). We found out that the

hashtable has very poor performance with the padded locks, hence, we had to use a different

structure to store the locks, we opted by an array. The array is compatible with padded locks,

moreover, we know the exact position of the lock in the array before searching it. Hence, searches

are made directly to the position where the lock resides, optimizing performance.

3. We maintain freshness semantics by reusing the already present atomic instructions (OLFIT),

which allow atomicity between updates and queries, whether running transactionally or in the fall-

back path.

In order to allow concurrent updates and queries, PGrid resorts to atomic operations (e.g. OLFIT)

to ensure queries do not read corrupted object data, concurrently modified by updates. In order

to allow the same mechanism with lock elision, the fall-back path uses these operations to ensure

atomic operations. Conversely, transactions provide atomicity, hence, they do not require any

instrumentation. In fact, PGridHTM allows concurrency between transactions and OLFIT, hence,

we explain how we ensure correctness between reads and writes.

Concurrent read/write and write/read access to the same data (object) by OLFIT and HTM must be

properly synchronized to ensure correctness. In case there is a concurrent HTM writer and OLFIT

reader, the HTM writer will not detect the OLFIT reader. In contrast, the OLFIT reader reads the

version (timestamp) of the object at the beginning and end of the operation. If the latter version

is not equal to the former, it means a concurrent update to the object was performed, hence, the

reader aborts ensuring consistency. The other possible case occurs with a concurrent HTM reader

and an OLFIT writer. In this case the OLFIT writer does not abort, in contrast, the HTM reader

is aborted since the accessed data is concurrently modified, naturally triggering a conflict (even

without OLFIT). Hence, transactions can be safely concurrent with OLFIT.

4. We provide the possibility of performing query scans in multiple transactions, which we call Trans-

actional Partitioned Queries. In PGrid, these were made using atomic operations (e.g OLFIT)

without resorting to locks. Nevertheless, we want to evaluate if issuing transactions in query scans

(instead of using OLFIT), can improve performance. To do so, we had to modify the delete op-

eration (see Alg. 8) to make the “waitUntilNoReaders” function cope with the transactional query

scanning.
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In PGrid, a cell lock is used to perform the delete operation, ensuring further queries are blocked

from scanning the cell. This way, if the number of elements in the first bucket reaches 0, the

“waitUntilNoReaders” function loops over the nR of the first bucket until all queries have left it, and

then the bucket can be freed.

However, the delete operation does not cope with the transactional query scanning. Queries are no

longer blocked by the cell lock, instead, they are blocked by the HTM fall-back path. The fall-back

path mechanism blocks all concurrent transactions, in case the SGL approach is used, or it blocks

concurrent transactions on the same cell/object, in case the FGL approach is used. Specifically,

the problem surges when the delete operation acquires the fall-back path, and remains in the

“waitUntilNoReaders” waiting for queries to leave the first bucket. Since the fall-back path blocks

all other transactions (SGL approach) or blocks transactions in the specific cell (FGL approach), a

deadlock is created, where queries scanning the first bucket are blocked from leaving it, hence, no

progress is made as deletion is waiting for queries to leave the first bucket.

Therefore, we had to resort to a non-blockable fall-back path (see Algs. 30 and 31), where query

scanning resorts to the atomic operations found in PGrid (e.g. OLFIT) to complete the scan in

case the fall-back path is acquired. This way, the deadlock is resolved since scanning transactions

are no longer blocked by the fall-back path, instead, they resort to OLFIT continue the scan as in

PGrid.

We implement PGridHTM with two different fall-back paths. The first version, uses the SGL as its

fall-back path, whereas the second version uses the fine-grained locking system of PGrid as its fall-back

path. They are respectively named PGridHTM-SGL and PGridHTM-FGL. The full description of the

fall-back path algorithms can be found in Appendix A.

The following algorithms are based on the ones in Section 2.3.2.4, which we modify in order to

implement an HTM version of these. Hence, these algorithms were previously explained in detail and

we now focus on the differences which we introduced to take advantage of HTM. Note that we identify

the new modifications to the algorithms with a yellow shading.
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3.3.1 PGridHTM-SGL

In this version of PGridHTM we use the SGL as the fall-back path to HTM, all previous locks (cell and

object) were removed, and all synchronization relies on HTM or in the SGL fall-back path. Following, we

detail the algorithms used in PGridHTM-SGL.

One of the two interface operations, the update algorithm (Alg. 14), is wrapped within a transaction

(Lines 2-22). Insert and delete algorithms are a part of the update, hence, they are already inside the

transaction (Lines 7, 19). Updates are concurrent with other updates and queries. Hence, they use the

SGL fall-back path in order to synchronize them when the available HTM attempts expire (Algorithms

23, 24). The major difference in this algorithm is in the way writes are performed to the primary index.

Recall that writes to the primary index must be atomic to ensure that concurrent queries may read the

primary index correctly.

When running transactionally, writes to the primary index do not need to use the OLFIT mechanism

originally used in PGrid, since HTM already provides atomicity in transactions. Hence, we use a mix

of instructions depending whether if we are running on the fall-back path or running transactionally.

When running with transactionally, plain writes are performed (Line 13). In contrast, when running in the

fall-back path, writes use the original PGrid’s OLFIT logic (based on CAS operations, Line 11).

The delete operation (Alg. 15), also distinguishes writes depending on whether they are made trans-

actionally or requiring to the fall-back path (Lines 5, 7). Recall that if the deletion of an object includes

the deletion/modification of the first bucket of a specific cell, deletion must wait until no queries are

present in the first bucket (“waitUntilNoReaders”), and no more queries may enter the cell during this

time. Previously in PGrid (Section 2.3.2.4), this is ensured with a cell lock, which blocks further queries

from entering the specific cell. When running with the fall-back path we use the SGL to achieve same

effect. In contrast, running transactionally, this operation is optimistic and does not rely no locks. How-

ever, we want to replicate the same behaviour as with PGrid, and not waist transactional attempts on

trying to delete the first bucket when queries may be constantly entering. Hence, we lower the number of

attempts to 1 whenever a deletion of the first bucket is required (Line 13). This ensures that if transaction

fails, the fall-back path is acquired and any further readers are blocked from entering the cell, allowing

for the fast removal of the first bucket and avoiding wasting further transactional attempts.

Moreover, we make the distinction between the transactional path and the fall-back path in the “wait-

UntilNoReaders” function. The “waitUntilNoReaders” function loops over the nR of the first bucket until it

becomes 0. When running transactionally, any modification to this variable (by a concurrent transaction)

will deterministically force an abort of the current transaction, hence, we avoid this by immediately abort-

ing the transaction. This way, we avoid the time spent waiting for an abort. In contrast, when running

with the SGL, the thread may wait until the nR becomes 0 and finally free the first bucket.

The insert algorithm (Algorithm 16) is equal to the PGrid’s one. The only difference is again in the

way writes are made to the primary index, as previously explained.

The range query algorithm (Algorithm 17) is the other interface operation allowed by the indexes.

The pseudo code for this algorithm maintains the same as PGrid’s. However, changes are performed in

the PpCellScan(cell) function contained in it.
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Algorithm 14: update(ObjectTuple new)
1 newCell = computeCell(new.x, new.y) ;
2 TM BEGIN SGL( ) ; // begin transaction

3 sie = SecondaryIndex.lookup(new.oid);
4 oldCell = sie.cell;
5 obj = getObj(sie.bckt, sie.idx) ; // object tuple

6 if hasLD(sie) then
7 delete(sie) ; // physical deletion

8 end
9 if newCell == oldCell then

// local update

10 if fallback then
11 OLFIT write(new, obj) ; // atomic OLFIT write

12 else
13 *obj = new ; // new copied over object

14 end
15 else

// Nonlocal update

16 sie.ldCell = sie.cell;
17 sie.ldBckt = sie.bckt;
18 sie.ldIdx = sie.idx;
19 insert(new, newCell, sie) ; // physical insertion

20 obj.tu = -new.tu ; // mark as logically deleted

21 end
22 TM END SGL( ) ; // end transaction

Algorithm 18 introduces the changes made to the range query algorithm. The critical section used

in PGrid to obtain a reference to the first bucket of the cell and increment the nR is replaced with an

HTM transaction (Lines 2-12). We recall that this increment ensures the first bucket of the cell is safe for

reading, also in this case, performed via simple accesses to memory from a transactional context and

using atomic operations from within the fall-back path. Recall that an updater may need to stop queries

from entering a cell, in order to perform a deletion of the first bucket. It is in this critical area where queries

are stopped until the updater is finished. In order to achieve this synchronization between update and

query operations, this transaction subscribes the SGL. This guarantees that if some update operation

detects the need to garbage collect a bucket, by activating the fall-back it will block any concurrent query

(by aborting it and forcing to wait for the SGL to become free).

As for the scanning of the bucket, in PGrid this is performed in a lock-free fashion, by resorting to

OLFIT to ensure correct reads. In fact, since a bucket is scanned by a query only after the nR has been

incremented, that bucket is guaranteed not to be garbage-collected while the reader is scanning. Also,

the freshness semantics (along with the use of logically deleted versions) allows to observe any object

stored in the bucket as long as it reflects atomically the updates of concurrent update operations.

As mentioned, we have here an opportunity for replacing the OLFIT mechanism with transactions, to

perform a consistent scanning of the bucket. There is one important observation that can be done here,

though: the transaction used during the scanning phase can avoid subscribing the SGL, as it can safely

run with any concurrent update operation executing in the fall-back patch, which by using OLFIT writes

would cause the corresponding transaction to abort anyway. Also, if the transaction encompassing
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Algorithm 15: delete(SIEntry sie)
1 ldObj = sie.ldBckt.entries[sie.ldIdx];
2 firstBckt = *sie.ldCell ; // cell refers to the 1st bucket

3 lastObj = firstBckt.entries[firstBckt.nO - 1];
4 if fallback then
5 OLFIT write(lastObj, ldObj) ; // atomic OLFIT write

6 else
7 *ldObj = *lastObj ; // lastObj copied over ldObj

8 end
9 firstBckt.nO– ; // decrement number of objects

10 if firstBckt == 0 then
11 *sie.ldCell = firstBckt.nxt ; // No more queries can enter firstBckt

12 if attempts > 1 then
13 attempts = 1 ; // ensures no further deterministic failure attempts occur

14 end
15 if fallback then
16 waitUntilNoReadersLock() ; // wait and proceed

17 else
18 waitUntilNoReadersTM() ; // if nR > 0; abort transaction

19 end
20 free(firstBckt);
21 end
22 Nullify all ld references in sie;
23 Lookup for lastObj’s sie and update it ;

Algorithm 16: insert(ObjectTuple new, Cell cell, SIEntry sie)
1 firstBckt = *cell ; // cell refers to the 1st bucket

2 if isFull(firstBckt) then
3 Allocate new bucket and make it first ;
4 end
5 freePos = firstBckt.entries[firstBckt.nO];
6 if fallback then
7 OLFIT write(new, freePos) ; // atomic OLFIT write

8 else
9 *freePos = new ; // new written to freePos

10 end
11 sie.cell = cell;
12 sie.bckt = firstBckt;
13 sie.idx = firstBckt.nO;
14 firstBckt.nO++ ; // increment number of objects
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Algorithm 17: rangeQuery(Rect q, int ts)
1 res = 0 ; // container for storing the result

2 cells = computeCoveredCells(q);
3 for cell ∈ cells do
4 objects = pCellScan(cell);
5 for obj ∈ objects do
6 if obj.tu > 0 then
7 res.addAndOverwrite(obj);
8 else if abs(obj.tu) > ts then
9 res.addIfNoSuch(obj);

10 end
11 end
12 Similar processing is performed for partially covered cells;
13 return res;

Algorithm 18: pCellScan(Cell cell)
1 objects = 0 ; // container for storing the result

2 TM BEGIN SGL() ; // being transaction

3 if isEmpty(cell) then
4 return objects;
5 end
6 bckt = *cell ; // cell refers to the 1st bucket

7 if fallback then
8 aInc(bckt.nR) ; // CAS increment of number of readers

9 else
10 bckt.nR++ ; // increment number of readers

11 end
12 TM END SGL() ; // end transaction

13 while bckt != null do
14 TM BEGIN NB TX() ; // begin transaction without subscribing the SGL

15 if fallback then
16 for idx := bckt.nO - 1 ; To 0 ; Step -1 do
17 obj = readObj(bckt.entries[idx]) ; // atomic OLFIT read

18 objects.add(obj);
19 end
20 if bckt.nxt ! = null then
21 aInc(bckt.nxt→nR) ; // atomic CAS increment

22 end
23 aDec(bckt.nR) ; // atomic CAS decrement

24 bckt = bckt.nxt;
25 else
26 for idx := bckt.nO - 1 ; To 0 ; Step -1 do
27 obj = bkct.entries[idx] ; // plain memory read

28 objects.add(obj);
29 end
30 if bckt.nxt ! = null then
31 bckt.nxt→nR++; // non-atomic increment

32 end
33 bckt.nR– ; // non-atomic decrement

34 bckt = bckt.nxt;
35 end
36 TM END NB TX() ; // end transaction

37 end
38 return objects;
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the scanning phase exhausts its available attempts and has to use the fall-back path, it can use the

original OLFIT read mechanism, which is guaranteed to ensure atomic reads of objects in presence of

concurrent updates executing either in the fallback path (i.e., using OLFIT writes) or in transactions.

In the light of this considerations, the transactions that we use to replace OLFIT reads do not sub-

scribe any lock. This allows these transactions to avoid blocking/aborting in case the SGL fallback path

is activate. Because of this, we call these transactions, non-blockable transactions (nb-transactions).

The fallback path of nb-transactions consists of the original PGrid’s OLFIT read logic, and continues to

be executed in a lock-free way.

In this pseudo code we partition the transaction with the length of a while loop, which is equivalent

to an entire bucket (64 objects, 1024 bytes). However, we are able to partition transactions with any

desired length, from a single object per transaction up to x buckets per transaction. This provides us

various transactional sizes to experiment, which influence the contention and the memory footprint of

transactions.

The while is divided between the fall-back and the transactional path (respectively Lines 15-25, 25-

35). When in the fall-back path we use atomic operations to read the bucket entries (Line 17) and to

increment/decrement the nR (Lines 21, 23). In contrast, a transaction is already atomic, hence, we

simply read the bucket entries (Line 27) and increment/decrement nR (Lines 31, 33).

3.3.2 PGridHTM-FGL

The HLE mechanism of TSX can already be used to transparently elide the locks of a program and

substitute them with transactions. When transactional attempts expire, transactions acquire the elided

locks. However, HLE is an automatic process, which disregards some important optimizations, which

we are able to perform with RTM, by explicitly controlling lock elision via the RTM’s interface of TSX. For

example, PGrid’s algorithms require acquiring multiple locks to support operations’ execution. In an HLE

approach, each level of locks would be substituted by a begin htm tx(), which would result in several

nested transactions. Even though HTM disregards nesting, in the sense that all transactions are treated

as a flat transaction, where if a inner transaction aborts it is rolled back to the most outer one. There is

a cost in opening/closing transactions, which we are able to avoid using RTM. Moreover, since our goal

is to achieve the best throughput, every optimization is essential.

In the following, we describe the changes brought by the fine-grained locking fall-back system. To

note, all previous locks used in PGrid are maintained, transactional handlers now read the specific locks

needed and use them as fall-back path, in case HTM attempts expire. Note that transactions are safe to

proceed if the lock is unlocked, since any modification to the state of the lock by a concurrent thread will

result in the abort of the transaction.

Moreover, there are two types of transactional handlers: the outer (Algo. 25 and 26) and the inner

handlers (Algo. 27, 28, and 29). The outer handlers are the only ones which actually begin/end a trans-

action and initialize the variables used to control the code flow, e.g., the fallback variable. In contrast,

the inner handlers are not required to do so as they are already inside the critical section. Hence, we
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Algorithm 19: update(ObjectTuple new)
1 newCell = computeCell(new.x, new.y);
2 objLock = getObjLock(new.oid);
3 TM BEGIN OUTER FGL(objLock) ; // begin transaction

4 sie = SecondaryIndex.lookup(new.oid);
5 oldCell = sie.cell;
6 obj = getObj(sie.bckt, sie.idx) ; // object tuple

7 if hasLD(sie) then
// physical deletion

8 if !delete(sie) then
9 TM END INNER FGL(objLock);

10 go to 3;
11 end
12 end
13 if newCell == oldCell then

// local update

14 if fallback then
15 OLFIT write(new, obj) ; // atomic OLFIT write

16 else
17 *obj = new ; // new copied over object

18 end
19 else

// Nonlocal update

20 sie.ldCell = sie.cell;
21 sie.ldBckt = sie.bckt;
22 sie.ldIdx = sie.idx;
23 insert(new, newCell, sie) ; // physical insertion

24 obj.tu = -new.tu ; // mark as logically deleted

25 end
26 TM END OUTER FGL(objLock) ; // end transaction
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use them to read the locks, and to decide whether to follow the HTM or the fine-grained locking path, in

regards to the control flow variables.

The update algorithm, Algorithm 19, reads the lock of the object to be updated in order to properly

react to its state (Line 3). In order to ensure no deadlocks, as it occurs in PGrid, if the deletion of a

logically deleted object returns false (Line 8), then we must unlock all previous locks and restart the

update operation. Hence, we are respecting the fine-grained locking system found in PGrid. This The

update algorithm ends with the commit of the transaction or the release of the updated objects’ lock

(Line 26).

Algorithm 20: delete(SIEntry sie)
1 cellLock = getCellLock(sie.ldCell);
2 TM BEGIN INNER FGL(cellLock) ; // begin transaction

3 oldObj = sie.ldBckt.entries[sie.ldIdx];
4 firstBckt = *sie.ldCell ; // cell refers to the 1st bucket

5 lastObj = firstBckt.entries[firstBckt.nO - 1];
6 lastObjLock = getObjLock(lastObj.oid);
7 if TM BEGIN INNER DEADLOCK FGL(lastObjLock) then
8 if fallback then
9 OLFIT write(lastObj, ldObj) ; // atomic OLFIT write

10 else
11 *ldObj = *lastObj ; // lastObj copied over ldObj

12 end
13 firstBckt.nO– ; // decrement number of objects

14 if firstBckt == 0 then
15 *sie.ldCell = firstBckt.nxt ; // No more queries can enter firstBckt

16 if attempts > 1 then
17 attempts = 1 ; // ensures no further deterministic failure attempts occur

18 end
19 if fallback then
20 waitUntilNoReadersLock() ; // wait and proceed

21 else
22 waitUntilNoReadersTM() ; // if nR > 0; abort transaction

23 end
24 free(firstBckt);
25 end
26 Nullify all ld references in sie;
27 Lookup for lastObj’s sie and update it ;
28 TM END INNER FGL(lastObjLock);
29 TM END INNER FGL(cellLock);
30 return true;
31 else
32 TM END INNER FGL(cellLock);
33 return false;
34 end

The delete algorithm, Algorithm 20, also reads the locks in order to properly react to their state.

However, it also ensures there are no dead locks when in the fall-back path, by returning false in case

the lastObj lock is not able to be acquired (Line 7, 32-33). Recall that the lastObj is used to overwrite

the logically deleted object, performing its physically deletion. The major advantage of using the FGL
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version in the delete algorithm is that, in the fall back path, we only lock the specific cell where the

logically object object resides, hence, only the queries that want to read this cell are blocked. Moreover,

only the last object of the first bucket is locked, which is needed to perform the overwrite operation (Line

7). At the end of the algorithm, depending whether we are running transactionally or in the fall-back

path, we respectively proceed without committing, as we are inside a transaction already, or we unlock

the cell and lastObj locks (Line 28,29).

Algorithm 21, is the insert algorithm, which is protected by a inner handler. Therefore, the specific

cellLock is read and no transactions are started or committed. In case we are running in the fall-back

path, the cellLock is locked and unlocked (Line 2, 17).

Finally, we describe the changes made to the the pCellScan algorithm, Algorithm 22. Recall that the

scanning of cells must ensure the first bucket is not deleted/modified before the scan starts (Line 3-13).

With PGridHTM-SGL version, when we were running non-transactionally, we used the SGL to perform

the block of concurrent updates. In contrast, the FGL version only uses the specific cellLock to to block

concurrent updates which target the same cell, hence, facilitating parallelism. Finally, the scan of the

cells is still made with nb-transactions.

Algorithm 21: insert(ObjectTuple new, Cell cell, SIEntry sie)
1 cellLock = getCellLock(cell);
2 TM BEGIN INNER FGL(cellLock);
3 firstBckt = *cell ; // cell refers to the 1st bucket

4 if isFull(firstBckt) then
5 Allocate new bucket and make it first ;
6 end
7 freePos = firstBckt.entries[firstBckt.nO];
8 if fallback then
9 OLFIT write(new, freePos) ; // atomic OLFIT write

10 else
11 *freePos = new ; // new written to freePos

12 end
13 sie.cell = cell;
14 sie.bckt = firstBckt;
15 sie.idx = firstBckt.nO;
16 firstBckt.nO++ ; // increment number of objects

17 TM END INNER FGL(cellLock);
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Algorithm 22: pCellScan(Cell cell)
1 objects = 0 ; // container for storing the result

2 cellLock = getCellLock(cell);
3 TM BEGIN OUTER FGL(cellLock) ; // being transaction

4 if isEmpty(cell) then
5 return objects;
6 end
7 bckt = *cell ; // cell refers to the 1st bucket

8 if fallback then
9 aInc(bckt.nR) ; // CAS increment of number of readers

10 else
11 bckt.nR++ ; // plain increment of number of readers

12 end
13 TM END OUTER FGL(cellLock) ; // end transaction

14 while bckt != null do
15 TM BEGIN NB TX() ; // begin non-blockable transaction

16 if fallback then
17 for idx := bckt.nO - 1 ; To 0 ; Step -1 do
18 obj = readObj(bckt.entries[idx]) ; // atomic OLFIT read

19 objects.add(obj);
20 end
21 if bckt.nxt ! = null then
22 aInc(bckt.nxt→nR) ; // atomic CAS increment

23 end
24 aDec(bckt.nR) ; // atomic CAS decrement

25 bckt = bckt.nxt;
26 else
27 for idx := bckt.nO - 1 ; To 0 ; Step -1 do
28 obj = bckt.entries[idx] ; // plain memory read

29 objects.add(obj);
30 end
31 if bckt.nxt ! = null then
32 bckt.nxt→nR++; // non-atomic increment

33 end
34 bckt.nR– ; // non-atomic decrement

35 bckt = bckt.nxt;
36 end
37 TM END NB TX() ; // end transaction

38 end
39 return objects;
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Chapter 4

Evaluation

In this chapter we conduct an extensive study aimed to quantitatively assess the performance of the

proposed HTM-based algorithms and compare them with state of the art single-threaded and multi-

threaded (lock-based) solutions. In our study we will evaluate the HTM implementations available in

three different architectures (Haswell and Broadwell by Intel and IBM Power8) using a test bed composed

by 4 primary workloads. We conduct a preliminary study aimed at identifying the optimal tuning of

several relevant parameters affecting HTMs performance, in particular, retry count, choice of the memory

allocator, size of query transactions and thread pinning. Next, equipped with the knowledge on how

to tune the proposed HTM-based indexing algorithms, we seek to identify the workloads where HTM

implementations are advantageous in comparison with the state of the art indexes.

4.1 Description of the workloads

Update and query traces are used to create workloads with different configurations. Table 4.1 shows

the configuration setup of our workload. We enforce these workload specifications used in [5] in order to

have some fixed point of view in comparison with their results. Our workloads are composed of 1 million

objects with 10 timestamps, resulting in 10 million updates (Fig. 4.1). Workload density (# objects /

km2) is enough to create sufficient contention and transactions to provide a proper evaluation to the

indexes. We use Germany as the monitored area, which was constructed grouping all shapefiles of

German cities. We specifically use all German roads as our (Brinkhoff [36]) network where objects may

move through. Our workload generator (MOTO) has the ability of creating hotspots in cities, simulating

reality.

The workload parameters we target to evaluate are the range query size and the update/query ratio.

The update/query ratio is the fundamental balance of the workload when targeting HTM study. The

other parameter we target is range query size. As we can see in Figure 4.2, range query size has

a big impact on the area covered by queries. This is an image of two query traces each with 40k

range queries, representing the query ranges of, respectively, 4km and 250m. The difference in area

coverage is considerable, despite only changing the range query size. As reviewed in section 2.1.1.1,
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Parameter Values
Objects (x 106) 1
Updates (x 106) 10
Monitored Region (km2) Germany, 641 x 864
# road network segments 32,750,494
# road network nodes 28,933,679
Speed (km/h) 20, 30, 40, 50, 60, 90
Update/query ratio 1:1, ...1:10, ...250:1, ...1000:1, ...16000:1
Range query size (km2) 0.25, 1, 4, 16

Table 4.1: Workload Configuration

HTM struggles with exceeding memory capacity. By increasing/decreasing the range query size we are

also increasing/decreasing the number of objects that are swiped in a range query. Thus, we aim to

see how this affects HTM in terms of conflict and capacity aborts, due to the higher number of objects

needed to be transactionally read.

Finally, the configurations of the base workloads used to tune HTM (Section 4.3) and to perform

the final evaluation (Section 4.5) are represented in bold (see Table 4.1). We specifically use opposing

parameters to ensure our study encompasses a larger variety of workload configurations, and hence,

our experiments are suited to a broader range of workloads.
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Figure 4.1: MOTO Germany update trace file with 1 million objects and 10 timestamps, total of 10M
updates

(a) Query range 4km (b) Query range 250m

Figure 4.2: MOTO Germany query trace files with 40k queries and variable query ranges
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4.2 Platforms and Metrics

Our evaluation is split among 3 different platforms:

1. Broadwell: Intel(R) Xeon(R) CPU E5-2648L v4 @ 1.80GHz processor with 2 sockets, connected

with UMA, 14 physical cores per socket, where each core can execute 2 hardware threads (hyper-

threading [45]). The operative system (OS) is Ubuntu 16.04.4 and uses GCC version 5.4.0.

2. Haswell: Intel(R) Xeon(R) CPU E3-1275 v3 @ 3.50GHz processor with 1 socket, 4 physical

cores, where each core can execute 2 hardware threads (hyper-threading [45]). The OS is Ubuntu

12.04.2 LTS and uses GCC version 4.8.1.

3. POWER8: 80-way IBM POWER8 8247-21L @ 3.42 GHz processor with 2 sockets, connected with

NUMA, 5 physical cores per socket, where each core can execute 8 hardware threads. The OS is

Fedora 24 with Linux 4.7.4 and uses GCC version 6.2.1.

Both Haswell and Broadwell share similar (Intel) TSX implementations, specifically regarding their

transactional capacity and cache line granularity (see Table 3.1). Hence, we expect similar behaviours

since HTM environments are also similar. In contrast, POWER8 has a 128 bytes cache line granularity,

whereas Intel only has 64 bytes. This makes POWER8 more subjective to false conflicts, as more mem-

ory is loaded into cache, further increasing the possibility of invalidating other cache lines. Moreover,

POWER8s transactional capacity is very small (8KB). Hence, we expect POWER8 to be the platform

which delivers the worst HTM environment.

Haswell is a single-socket 4 core CPU with hyper-threading technology [45], which allows each core

to execute 2 hardware threads. Hence, we evenly distribute threads until all cores have at least one

thread. Then, we activate hyper-threading distributing the remaining threads evenly by all cores. In the

end, each core is running 2 hardware threads, hence, reaching 8 threads in total.

Simultaneous multi-threading (SMT), also know as hyper-threading in Intel, is a technology which

may significantly improve systems performance, however, it also has some drawbacks. The main idea of

SMT is to have parallel threads in the same core, increasing performance with instruction level schedul-

ing, which grants the possibility of having more instructions in each cpu cycle. Instructions come from

the several threads the core has attached to it, and hence, each cpu cycle may have several instructions

from parallel threads. Nevertheless, there are drawbacks in this technique. Each thread has to share

the cores’ resources, in regards to HTM, the main concern is whether there is enough cache to fit each

threads’ transactional meta-data. Moreover, as resources are shared (including bandwidth) it means

that threads run slower than they would do if they had exclusive use of the processors’ core. However,

in most cases, the combined throughput of the threads is greater than the throughput of either one of

them running exclusively [46].

The Broadwell and POWER8 machines are instead dual socket machines. In these machines, one

has the possibility to opt between two main thread-pinning 1 alternatives.

1Thread pinning allows the programmer to choose how threads are attributed to the different CPU cores.
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In both alternatives, we start by first assigning threads to different physical cores of the same socket.

Once we have one thread per core of the first socket, we are faced with a choice: the next thread can

be assigned to a different socket or to the same socket. We call the former multi-socket-first (MS-first)

or SMT-first.

In order to conduct a proper evaluation of our experiments we use 3 types of metrics/parameters:

Performance Metrics:

1. Throughput - Measures the overall performance of the system. It measures the number of trans-

actions committed per second.

2. Breakdown of commits - Percentage of committed transactions running HTM or that have used

the fall-back path mechanism. In case of HRWLE, we also consider which fraction of transactions

committed/aborted using ROTs, and read only transactions.

3. Breakdown of aborts - Percentage of aborted transactions, split by reason why they aborted.

Configuration parameters:

1. Transactional Retries - Number of times a transaction may abort until it acquires the fall-back

path.

2. Thread Pinning - Whether threads are pinned with MS-first or SMT-first.

3. Memory Allocation - Experiments running with either TCMalloc [16] or the Glibc memory alloca-

tor.

Index parameters

1. Query Transaction Size - Size of transactions in query cell scanning.

Workload parameters:

1. Update/query ratio - Ratio between read and write transactions.

2. Query range - Area covered by a range query.

All experiments where made with -O3 optimization level and 64 bits instruction size. The reported

results represent the average of 8 runs.

We summarize our findings in order to gain insights on the advantages and drawbacks of each

architecture. In Section 4.5, we make a final comparison between all the architectures.
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4.3 Tuning of HTM

We tune HTM in regards with four different parameters: Number of transactional retries, number of

objects read in query transactions (only for PGridHTM), memory allocators and thread pinning. For each

parameter we search empirically for the optimal value, which as, we will see, is often architecture and

index dependent. These parameters have dependencies between each other, hence, they are not trivial

to tune. To make a proper tuning we follow this specific order: First, we tune the number of transactional

retries until we spot the default optimal number. Next, we use the best performing configuration of

the transactional retries and assess the choice of the memory allocator. Second, we evaluate which

pinning technique has best performance. Third, we tune the number of objects read in a query (only for

PGridHTM), which we found to have a non-negligible impact on the memory allocation performance for

the case of PGridHTM (but not for u-GridHTM). As such, for PGridHTM we evaluate the tuning of these

two parameters in conjunction.

Note that the experiments performed with PGridHTM, where performed with both versions of PGridHTM

(SGL and FGL) and with the OLFIT non-blockable fall-back path. However, neither fall-back path affects

the results, hence, we refer to the index solely by its first name, PGridHTM.

4.3.1 Transactional Retries

Transactional retries are the number of attempts a transaction can try to commit before recurring to the

fall-back path. A higher value of transactional retries may allow HTM to provide more robust performance

in contention prone scenarios, which trigger HTM to abort with higher probability. However, this can

also have repercussions as we are delaying HTM to acquire the fall-back path. Hence, deterministic

aborts take longer to follow the fall-back path, increasing the time they are exposed, where they may be

conflicting with other transactions.

4.3.1.1 Haswell

Figure 4.3 reports the plots used to set the transactional retry number for both u-GridHTM and PGridHTM.

We only use the query intensive workload scenarios as these are where the major performance differ-

ences, due to the retry number, occur.

Starting with u-GridHTM, it is clear that the best performance is achieved using the minimum transac-

tional retries value, 5. Unfortunately, u-GridHTM has serious contention and capacity struggles and, as

you can see from the abort breakdown of these plots in Figure 4.6, the abort percentage rounds about

70% to 90%. Due to these issues, it is actually best to reduce the transaction retry value and allow the

fall-back path to be acquired more often. Most of the aborts are capacity aborts, which are deterministic

and will only generate further contention.

In contrast, PGridHTM is only slightly affected by the different values of the transactional retry num-

ber. The breakdown of aborts illustrates a lack of HTM contention and memory capacity overflow.

Instead, most aborts are related with other causes as system calls or operating system interrupts. Due
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to the low abort count, transactional retries have negligible affect on performance. Hence, also for

PGridHTM we will use the same retries count value, namely 5.

With the optimal transactional retry value defined, we may focus on the different memory allocators

for u-GridHTM (no dependency with other parameters). As shown in Figure 4.5, u-GridHTMs perfor-

mance is greatly improved when using TCMalloc in query intensive workload scenarios (1u:1q). In

contrast, update intensive workload scenarios show similar performance between the two memory al-

locators. The abort breakdown (Fig. 4.6), shows that the abort percentage is similar between both

memory allocators. However, a difference can be spotted in the abort reasons, TCMalloc has a higher

conflict abort count, whereas Glibc has a higher capacity abort count. One can suggest that due to the

deterministic nature of the higher count of capacity aborts found in Glibc, these will never commit and

will force the acquisition of the fall-back path.

4.3.1.2 Broadwell

Figure 4.7 contains the plots used to define the optimal transactional retry value for u-GridHTM and

PGridHTM. As previously discussed, u-GridHTM is not scalable in query intensive workload scenarios.

Hence, its best performance is at the 14 thread count, a full socket working with hyper-threading. At this

point, 10 is the transactional retry value which achieve grater throughput. However, in terms of scalability,

20 is the best transactional retry value (56 thread mark). Moreover, we further tested u-GridHTMs

retry value in update intensive workload scenarios (plots not displayed). In these experiments, the

best retry value was clearly 20, in terms of scalability and throughput. u-GridHTM is not competitive in

query intensive workload scenarios, hence, we further value performance at update intensive workloads.

Concluding, the transactional value chosen was 20, as it has the greater scalability in both workloads

and the higher throughput in the favoured, update intensive workloads scenarios.

Next, we evaluate the optimal retry value for PGridHTM. A low amount of retries (5) hinders scalability

in query intensive workload scenarios. Adding additional retries reduces the amount of aborts, as we

can see in Figure 4.8, which contrasts with u-GridHTM. Therefore, the optimal retry value for PGridHTM

is 20.

Finally, we perform an evaluation to the different memory allocators in u-GridHTM. The results in

Figure 4.9 show us that the different memory allocators have similar performances. In query intensive

workload scenarios, the traditional Glibc memory allocator reaches further performance, nevertheless,

at the maximum thread mark its performance is similar to TCMalloc’s. The breakdown of aborts (Fig.

4.10) can help us select the better allocator. As we may conclude from the figure, there is a higher

count of conflict aborts with TCMalloc in the query intensive workloads, which also occurred in Haswell

(Fig. 4.6). Previously, TCMalloc was able to achieve better throughput, now however, performance is

not improved.

In update intensive workload scenarios, the performance of the two allocators is very similar. In the

following we will consider Glibc for Broadwell, since TCMalloc was not able to improve performance and

raised the conflict abort count.
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4.3.1.3 POWER8

With POWER8, we choose to evaluate the transactional retry number with update intensive workload

scenarios, where we most clearly can see the differences imposed by the transactional retry number.

Figure 4.11 has the plots used to evaluate both indexes (u-GridHTM and PGridHTM). A low retry

value in POWER8 drastically hinders performance. A loop is created where eventually almost all up-

dates acquire the fall-back path. As we can denote from Figure 4.12, the minimum amount of retries for

u-GridHTM and PGridHTM is respectively, 20 and 10. By increasing the retry value, we allow transac-

tions to fail more times, before acquiring the fall-back path. Hence, the best performing retry number for

both indexes is 20.

In Figure 4.13 we perform an evaluation to u-GridHTMs performance when applying the different

memory allocators. Respectively, the abort breakdown can be found in Figure 4.14.

In query intensive workload scenarios, TCMalloc is clearly the best memory allocator, maintaining

always a slightly superior performance over Glibc. Similarly, in update intensive scenarios, TCMalloc can

maintain better throughput throughout most of the thread spectrum. However, at the maximum thread

count, Glibc seems to achieve a slightly better performance. Nevertheless, the variance between both

indexes indicates that throughputs can be quite similar. Finally, we opt for TCMalloc as the best memory

allocator for u-GridHTM since it has the best average performance in both workloads.
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(a) u-GridHTM (b) PGridHTM

Figure 4.3: Haswell: Defining the optimal transactional retry number
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Figure 4.5: Haswell: Defining the best memory allocator for u-GridHTM
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(a) u-GridHTM (b) PGridHTM

Figure 4.7: Broadwell: Defining the optimal transactional retry number
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Figure 4.9: Broadwell: Defining the best memory allocator for u-GridHTM

 0

 20

 40

 60

 80

 100
1u:1q 250m

A
b
o
rt

s
 (

%
)

TCMallocglibc

16000u:1q 250m

Number of threads (1,7,14,21,28,35,42,49,56)

Explicit
Conflict
Capacity
Other

TCMallocglibc

Figure 4.10: Broadwell: u-GridHTM memory allocators abort breakdown

55



(a) u-GridHTM (b) PGridHTM

Figure 4.11: POWER8: Defining the optimal transactional retry number
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Figure 4.13: POWER8: Defining the best memory allocator for u-GridHTM
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4.3.2 Thread pinning

In this section we evaluate the different pinning techniques in regards to their performance. As previously

mentioned, these techniques are SMT-first and MS-first. Recall that the Haswell architecture does not

contain a second socket, hence, it is not possible to perform this experiment with it.

4.3.2.1 Broadwell

Broadwell activates hyper-threading past the 14 and 28 thread mark, respectively with the SMT-first and

MS-first pinning techniques. Figures 4.15 and 4.16 include the plots and respective abort breakdown for

PGridHTM.

In update intensive workload scenarios, the MS-first pinning technique achieves the overall best

throughput. Despite having a higher abort rate at lower thread counts, MS-first can still maintain a

higher throughput over SMT-first. Note that a loss on throughput can be clearly seen after the 14 thread

mark (hyper-threading activated) and again at the 28 thread mark (second socket hyper-threading). We

conclude that the extra capacity aborts cause by using hyper-threading, is the cause for the SMT-first

drop on performance after the hyper-threading thread marks. Indeed, as already discussed, to share

the same physical core increases the cache of incurring capacity aborts.

In contrast, in query intensive workload scenarios, the SMT-first pinning technique achieves the over-

all best throughput. The differences, anyhow, do not appear to be dramatic, and, therefore, in the follow-

ing we will opt for STM-first as the default thread pinning strategy when using Broadwell.

4.3.2.2 POWER8

POWER8 activates SMT past the 5 and 10 thread mark, respectively with the SMT-first and MS-first pin-

ning techniques. Figures 4.17 and 4.18 include the plots and respective abort breakdown for PGridHTM.

In both workload scenarios, the MS-first pinning technique is the pinning technique, which achieves

better throughput throughout the entire spectrum of the thread count. In the query intensive workload,

SMT-first encounters the same capacity related issues seen in Broadwell (Fig. 4.15). POWER8 ships

with a much smaller capacity for HTM transactions compared with the Intel processors, and supports

a much higher SMT-level (8x vs 2x). The net result is that, when SMT is fully enable in POWER8, the

available capacity for each hardware threads narrows down significantly. This causes a sharp increase

in the probability of aborts and, eventually, in the frequency of acquisition of the pessimistic fall-back

path. In contrast, update intensive workloads only suffer slightly from exceeding memory capacity. Due

to the obtained results, we choose MS-first as the default pinning technique in POWER8.
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Figure 4.15: Broadwell: Pinning techniques comparison
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Figure 4.17: POWER8: Pinning techniques Comparison
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4.3.3 Transactional Partitioned Queries

Transactional partitioned queries are only used in PGridHTM, which partitions queries by multiple trans-

actions in order to reduce contention between updates and queries, and to avoid exceeding transac-

tional capacity (see Section 3.1). Transactional partitioned queries acquire the non-blockable fall-back

path (i.e., OLFIT) in case they are not able to commit a respective number of times. The non-blockable

fall-back path may also be permanently used, in case its performance is better than the use of transac-

tions.

In this section we vary the number of objects read within transactions in the bucket scanning phase

and empirically assess the corresponding impact on performance. Recall that the maximum amount of

objects in a bucket is 64 (1024 bytes).

4.3.3.1 Haswell

Figure 4.19 reports the experimental results obtained while varying the transaction’s size when using,

on the left, the Glibc memory allocator and, on the right, TCMalloc. Let us start by analysing the results

using Glibc.

Our studies reveal that the optimal transaction size is workload dependent. In query intensive work-

loads the best performance is achieved with 1 and 2 buckets transaction size. With range queries of 250

meters, the 2 bucket transaction size is the best performing. However, increasing the range query size

to 16km makes so that the 2 bucket transaction size encounters further conflicts and capacity aborts

(Fig. 4.21). Hence, the smaller 1 bucket sized transaction is better suited for large query sizes.

In contrast, update intensive workloads have best performance with smaller transaction sizes, even

though performance differences are smaller, due to the low amount of transactions in these workloads

scenarios. This is imputable to the speed at which updates are processed with the lack of query inter-

ference. Hence, when a query transaction is performed, there are an abundant number of concurrent

update transactions, which easily conflict with the query transaction.

For both update intensive workloads, the optimal transaction size is 32 elements per bucket or the

usage of atomic operations as OLFIT, instead of transactions. This occurs since the higher number

of concurrent updates forces a higher contention with queries. Hence, a lower transaction size avoids

further conflicts with the high number of updates. Abort breakdown is negligible as there are too few

queries.

The use of TCMalloc usually improves the overall performance, however, it restricts the query trans-

action size. This is better visualized in query intensive workloads, see the 16km query size plot. The

overall performance is increased by TCMalloc, with respect to Glibc. However, the 2 bucket size trans-

actions suffer a huge drop on performance. Similarly, the 250m query size plot improves its overall

performance. However, the best transaction size is no longer 2 buckets, instead, the single bucket

transaction is the only one which prevails.

The same happens for update intensive workloads, however, performance changes are almost neg-

ligible due to the already fast updating speed. Transactional query size, however, is still affected by
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TCMalloc. In both workloads, the 1 and 2 bucket size transactions are slightly affected.

4.3.3.2 Broadwell

The plots are again organized depending on the memory allocator (Fig. 4.20), and we first do the

analysis of the plots with Glibc and only then with TCMalloc. With Broadwell we expanded the limit of

the transaction size to 3 buckets since this architecture had promising results with only 2 buckets. The

abort breakdown of these plots is in Figure 4.22.

Starting with query intensive workloads, 2 buckets is the ideal transaction size for both 250m and

16km range query sizes. Interestingly, the abort rates descend from 1 bucket to 2 bucket transaction

sizes. This occurs due to the fact that this is a query intensive workload, where contention between

updates and queries is is relatively modest. We also tested the 3 bucket sized transactions in order to

see if there was even further potential. However, transactions this big start originating capacity issues

and slow down the overall throughput.

In update intensive workloads the results are too similar to distinguish the best transaction size.

Despite that, we define again 2 buckets as the transaction size. What we can retrieve is that HTM is

generally faster than using OLFIT.

When adding TCMalloc to query intensive workloads, there is a surge of conflicts when threads start

to be active on both sockets (>28 threads), and throughput lowers drastically. To avoid this, the transac-

tion size must be set as low as possible. In the 250m example, the 32 and 16 elements transaction sizes

avoid such a sharp drop of performance and attain good scalability. However, by decrementing so much

the transaction size, the final throughput is worst than running with the Glibc memory allocator. Bigger

transaction sizes generate too much conflicts to have a good performance (Fig. 4.22).

With update intensive workloads the results are similar. However, we still achieve better results with

the Glibc memory allocator. Moreover, the same happens at a smaller scale, as the 2 and 3 bucket sized

transactions throughput is worse, due to the conflicts TCMalloc imposes to HTM.
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Figure 4.19: Haswell: Defining the optimal transaction size in PGridHTM. Left - Glibc : Right - TCMalloc

61



Figure 4.20: Broadwell: Defining the optimal transaction size in PGridHTM. Left - Glibc : Right - TCMal-
loc
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4.3.3.3 POWER8

Performance shifts occur due to the SMT-first pinning technique used in these experiments. When STM

is activated performance drops, in contrast, when MS is used performance raises.

The partitioning of transactions in POWER8 is even more important due to its small L2 TMCAM

cache size and its higher SMT-level. For query intensive workloads (Fig. 4.23), we found that OLFIT-

only query scanning achieves 50% speedups. Using transactions to perform queries in POWER8 is

too big of a burden. Transactions are restricted to small sizes in order not to exceed memory capacity

(see 4.24), which forces the closer/opening of multiple more transactions, hindering performance. This

trade-off is not worth it, hence, the OLFIT-only solution achieves the best performance.

Update intensive workloads show analogous trends. The OLFIT-only query scan ensures best overall

results. Even though capacity aborts are negligible in these workloads, they still occur to the few queries

performed. Moreover, conflicts are prone to happen due to the higher contention between updates and

queries. Hence, the OLFIT-only query scan is able to achieve 5% speedups.

The TCMalloc tests for P8 are not present since their performance in query intensive is very poor.

The low memory capacity and high cache granularity, generated up to 90% capacity aborts. Moreover,

in update intensive workloads, TCMalloc also performed worst.
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Figure 4.23: POWER8: Defining the optimal transaction size in PGridHTM
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Figure 4.24: POWER8: Abort breakdown in PGridHTM.
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4.3.4 Tuning Results

We summarize our HTM tuning results in order to have a general view of how each index and corre-

sponding platform are tuned. We make such depiction in Table 4.2. To note, we split query transaction

sizes between query intensive workloads (QIW) and update intensive workloads (UIW). Our results

show us that the number of transactional retries is strongly depended to the platform used. Moreover,

we also conclude that the higher the thread count of the platform, the higher is the need to increment the

number of retries. The higher the thread, the higher the possibility of conflicts between threads, which

ultimately resort to the fall-back path. Hence, increasing the retry number generally yields more robust

HTM performances.

In terms of the partitioned transaction query size, we conclude that larger transactions are better for

query intensive workloads. In contrast, update intensive workloads, a smaller transaction size avoids the

contention generated by numerous concurrent updates. However, depending on the workload, a proper

tuning must be made to retrieve the optimal transaction retry value. Finally, Intel processors, which as

already mentioned ensure larger transactional capacities, favour the use of larger bucket sizes, when

compare to POWER8.

As for the choice of the memory allocator, we observe that, TCMalloc is usually good when combined

with u-GridHTM, except for the Broadwell’s case. In contrast, Glibc is usually better when combined

with PGridHTM. Most significantly, TCMalloc seems to increase performance at the cost of a superior

conflict count. Hence, when applied to a platform with a low thread count (Haswell), it is able to improve

performance. However, when used in platforms supporting a larger degree of hardware parallelism, the

conflict count is too high, ultimately decreasing performance.

Finally, we also tested the optimal memory allocator for the non-HTM indexes. Even though no single

memory allocator is best in all cases, the most consistent one which brought the overall better results is

Glibc, in all architectures. These plots can be found in Appendix B.

Index Architecture Number of Retries Query Transaction Size (QIW) Query Transaction Size (UIW) Memory Alloc
u-GridHTM Haswell 5 – – TCMalloc
u-GridHTM Broadwell 20 – – Glibc
u-GridHTM POWER8 20 – – TCMalloc
PGridHTM Haswell 5 1 bucket 32 elements TCMalloc
PGridHTM Broadwell 20 2 buckets 2 buckets Glibc
PGridHTM POWER8 20 OLFIT OLFIT Glibc

Table 4.2: HTM indexes tuned parameters

4.4 Performance Evaluation

In this section we compare the performance of the HTM-based indexes presented in Chapter 3 with

various state of the art solutions. This evaluation is aimed to gain insights on which concurrency mech-

anism is better suited for spatio-temporal indexes, and to understand the impact of the workload’s and

platform’s characteristics on the considered solutions. The evaluation is done using the parameters’

tuning derived in the previous section, in order to guarantee the representativeness of the observed per-
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formance results. To note, we performed experiments with PGridHTM using OLFIT atomic operations

as the non-blockable fall-back path, namely PGridOHTM.

Finally, we consider the following algorithms in our evaluation:

1. Single-threaded algorithms which we only report performance achieved in single-threaded config-

urations, namely u-Grid and u-R-tree.

2. Multi-threaded algorithms with a fine-grained locking concurrency scheme, namely Serial and

PGrid.

3. Multi-threaded algorithms with an HTM-based concurrency scheme, namely u-GridHTM, u-GridHRWLE

and PGridHTM.

4.4.1 Haswell

In query intensive workloads (top plots of Fig. 4.25), Serial is clearly the best performing index. Mainly

due to the relatively low frequency of update operations, which contribute to the rare existence of

hotspots. Moreover, recall that Serial relies on read locks to protect queries’ execution, while ensur-

ing that these can be processed concurrently.

Both PGrid versions (SIMD/OLFIT) have a scalable performance. Similarly, both versions of PGri-

dOHTM (SGL/FGL) are scalable and able to achieve 17.5% speedups with respect to PGrid’s both

versions. Interestingly, the SGL version is able to reach better performance in comparison with FGL.

This occurs due to the the low frequency of aborts incurred by these HTM-based indexes (see Fig.

4.26), which results in the infrequent activation of the fall-back path. Hence, the extra instrumentation

require to subscribe multiple fine grained locks during transaction’s execution, in PGridOHTM-FGL, in-

troduces overheads that are not outweighed by the additional degree of concurrency achievable in case

of fall-back activation.

The u-R-tree has a competitive performance even though it is a single-threaded index. This occurs

due to the efficient queries performed in it (reviewed Sec. 2.3.2.1). In contrast the u-Grid is better

suited for update intensive workloads, hence, it has a considerably lower performance than the u-R-tree.

Finally, u-GridHTMs performance is very poor, as previously explained, capacity and conflict aborts are

abundant due to the need of wrapping the entire update and query functions in single transactions.

Update intensive workloads originate completely different results (bottom plots of Fig. 4.26). Serial’s

performance drastically diminishes due to the hotspots generated by updates. Hence, it becomes the

worst performing multi-threaded index. In contrast, u-GridHTM performance drastically improves, be-

coming competitive with PGrid and PGridHTM indexes. It is interesting to observe that in the 16000u:1q-

250m workload u-GridHTM, which is obtained by straightforwardly applying HTM to a single threaded

index, achieves performance on par (or even better) than the lock-based PGrid variants, which rely on

complex and highly optimized synchronization strategies.

The best performing index is PGridOHTM-SGL, achieving 25% speedups in comparison with PGrid-

SIMD. Again, PGridOHTM-FGL extra instrumentation hiders performance since the fall-back path is
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Figure 4.25: Haswell: All indexes performance evaluation
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Figure 4.26: Haswell: Abort Breakdown of HTM indexes
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rarely acquired. u-Grid’s throughput is able to surpass the u-R-tree’s, due to the update efficient grid

structure.

The obtained results answer the fundamental questions this thesis proposes. First, we are able to

achieve on par (or even better) with a single threaded index made concurrent with HTM, in compar-

ison with a state-of-the art lock-based multi-threaded indexes, specifically designed to support multi-

threading. Second, we achieve better performance using HTM against lock-based multi-threaded in-

dexes. Using HTM in ways that improves parallelism and performance of these indexes. Finally, there

seems to be potential to improve by using HTM, but the degree of parallelism is too small to emphasize

the gains, in Haswell. Therefore, we will be answering these question when considering Broadwell and

P8 architectures, which do support a higher degree of parallelism.

4.4.2 Broadwell

Figure 4.27 depicts the performance of all indexes in the Broadwell architecture. In query intensive

workloads, Serial is again the index with the best performance. We attribute this performance due

to the low frequency of hotspots generated in these workload scenarios, and due to the lightweight

instrumentation imposed to queries in Serial. Nevertheless, PGridHTM is able to outperform PGrid. In

the 16km query range scenario, PGridHTM-FGL is the index with the higher throughput during the entire

thread spectrum. At maximum thread count, the two highest throughput indexes are PGridHTM-FGL

and PGridSIMD. In contrast, in the 250m query range scenario PGridHTMs (SGL/FGL) achieves 5%

speedups over PGrid (OLFIT/SIMD). Figure 4.28 depicts the abort breakdown, where we can see that

the FGL version has less aborts than the SGL version. Finally, u-GridHTM throughput is lower than the

single threaded indexes, due the earlier explained contention and capacity overflow. The u-R-tree is

again able to have better performance over u-Grid in query intensive workloads.

In update intensive workload scenarios the best solutions are both PGridHTM’s versions. However,

the SGL version achieves a higher throughput over the FGL version. As previously explained, the

extra instrumentation of FGL, plus, the lack of lock acquisition in update intensive workloads, hinder

its performance. Most importantly, PGridOHTM is able to achieve 25% speedups over PGridSIMD and

40% over PGridOLFIT.

Serial’s performance is again drastically affected due to the contention generated by updates. In

contrast, u-GridHTM drastically improves due to the much lower frequency of queries, which generate

contention and capacity issues. In the 250m scenario, it is even capable of out-performing PGridHTM

(OLFIT version), due to its lack of instrumentation. Finally, u-Grid is able to out-perform u-R-tree, due to

the more conflict prone update processing of the u-R-tree.

u-GridHTM’s results confirm the first question proposed in this thesis, thanks to HTM, it is possible to

achieve performance competitive to complex lock-based algorithms at a fraction of the complexity. This

is only true, though, if the workload characteristics fit the architectural restrictions (e.g., transactional

capacity). The architectural restrictions imposed to current HTM implementations restrict their usage. In

this sense, these results suggest that ad-hoc locking strategies, despite more complex and error prone,
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Figure 4.27: Broadwell: All indexes performance evaluation

represent currently a more robust and general solution that HTM.

As for the second question, PGridHTM is able to achieve 25% speed-ups over PGrid. The fact that

HTM can further improve over complex locking scheme, in realistic workloads, confirms the potential

and relevance of HTM.
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4.4.3 POWER8

Performance regarding HTM indexes is expected to be the most affected in POWER8, due to its more

constrained HTM environment. Figure 4.29 reports the performance of the considered indexes in this

architecture.

Figure 4.29: POWER8: All indexes performance evaluation

In query intensive workloads (top plots of Fig.4.29), Serial is the best performing index. As previously

explained, due to the low contention between updates, a few amount of hotspots is generated, which

are the source of bad performance in Serial.

PGridHTM-FGL is able to achieve performance equal or better than PGridOLFIT. Being able to

achieve 25% speedups in the 1u:1q-16km workload scenario. As we can see in Figure 4.30, both ver-

sions of PGridHTM (SGL and FGL) have a negligible abort count, this relates to the OLFIT mechanism

used to perform query scans. We find this a great discovery for architectures with small transactional

capacities, which have issues with the amount of memory used in query scans. This occurs by exploit-

ing concurrency between non-bockable synchronization techniques (i.e., OLFIT) and atomic operations

(transactions). Interestingly, the FGL version is able to achieve a higher throughput over the SGL ver-

sion, hence, the overhead of using multiple locks (FGL) is favourable to the overhead of blocking all

transactions when an abort occurs (SGL).

Next, u-GridHTM performance is still worse than the single-threaded indexes. Due to contention

and capacity issues, it is even more explicit in POWER8s environment. In contrast, u-GridHRWLE is

able to begin with a competitive performance until the 16 thread mark, since it does not exceed capac-
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ity with its non-speculative queries. Nevertheless, after the 16 thread mark contention starts to rise,

conflict aborts become excessive and throughput drops below the single-threaded indexes throughput.

We include the commit breakdown in POWER8 (see Fig. 4.31) to deepen our comprehension on the

reasons behind u-GridHRWLE’s poor performance. As we can see, at the 32 thread mark, updates are

mostly committing using the serializable ROTs. Hence, contention is forcing ROT’s to be predominant,

which drastically hinders performance. Finally, as previously mentioned, the u-R-tree has a faster query

scanning algorithm, which allows it to have a superior throughput over u-GridHTM.

Update intensive workload scenarios force a completely different behaviour on indexes. In these

scenarios, PGrid is the best performing index. In contrast, Serial’s performance is drastically affected,

mostly due to the contention between updates. Serial only allows serializable updates in the same

cell, which does not favour update intensive scenarios. u-Grid is able to outperform the u-R-tree in this

scenario. Mostly, due to the already discussed inefficiency of u-R-tree in handling update operations.

PGridHTM is only able to achieve the second best throughput. Moreover, the SGL version is capable

to achieve a higher throughput due to its lightweight instrumentation, which is especially noticeable in

high throughput workloads. u-GridHTM has a bad performance on the 16km range query workload,

which forces capacity and conflict aborts. Conversely, in the 250m scenario it has competitive perfor-

mance with PGridHTM. u-GridHRWLE has competitive throughput until the 32 thread mark, however,

due to the few queries present in theses scenarios, contention between updates and queries still occurs,

and performance drops lower than the single-threaded indexes.
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4.5 Experimental Summary

We conclude our evaluation chapter with a summary of the obtained results in the extensive experimental

study.

Architectural considerations

• From an architectural perspective, POWER8 is the platform which achieves the higher throughput.

Nevertheless, the use of update intensive workloads hinders the most HTM performance: even

though aborts are negligible in these kind of workloads, PGridHTM is not able to reach perfor-

mance comparable with PGrid. Conversely, on the Intel’s platforms, PGridHTM outperforms the

complex lock based algorithm, PGrid.

What efficiency levels can be achieved by applying HTM to state of the art single-threaded (i.e.,

non-thread safe) spatio-temporal indexes algorithms?

• The conclusions we reached suggest that, on the one hand the speculative approach used by

HTM has good potential - we have shown that it is indeed possible, in the considered application

context, to achieve performance competitive with highly efficient fine grained locking scheme at a

fraction of the complexity.

On the other hand, the ability to concretize such potential is strongly dependant on whether the

limitations (especially in terms of capacity) of existing HTM implementations meet the workload

characteristics.

To what extent can HTM be applied to state-of-the-art concurrent indexing algorithms for spatio-

temporal data, in order to enhance their efficiency?

• HTM can in fact be useful to boost optimized lock-based algorithms: Up to 40% gain vs PGrid.

An interesting consideration is that, in optimized synchronization schemes that use fine-grained

locking, like PGrid, locks are typically maintained for a very short time period and, as such, access

a relatively few number of items. When using HTM to elide these locks, the probability of success

of running in hardware are normally quite high. Conversely, in Power8, PGridHTM was able to

surpass PGrid’s performance in update intensive workloads.

By applying HTM in PGrid we were able to achieve the following extra gains:

1. Eliding the locks, which provides optimistic updates and queries, most significantly, optimistic

insertion/deletion of objects in cells, and optimistic subscription into the cell, performed by

queries.

2. Concurrency between updates and queries, whether running transactionally or in the fall-back

path. Provided by the use of transactions in conjunctions with OLFIT atomic operations.

3. Transactional Partitioned Queries, which provides optimistic scans to buckets in cells, and

avoids extra costs as OLFIT (OLFIT only used as fall-back path). Moreover, the size of these
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transactions can be pre-defined in order to avoid contention and exceeding transactional ca-

pacity.

FGL vs SGL fall-back paths

• Another, somewhat surprising, finding emerged from the results gathered in this work is related to

the performance of fine grained vs single global lock fall-back paths: approaches based on a single

global lock have most frequently outperformed, in our study, approaches that acquire, the originally

elided fine grained locks. Despite the latter can theoretically achieve a higher degree of parallelism

than the former, it also imposes additional instrumentations in the critical path of execution of

transactions. Our results have shown that these instrumentation costs end up, in most of the

considered workloads, outweigh the potential for higher concurrency of fine grained lock -based

fall-back paths. The exception to this being both 1u:1q-16km/250m workloads in POWER8, we

argue that POWER8s constrained HTM environment forces additional transactions to acquire the

fall-back path, hence, despite the additional overheads, the fine-grained locking fall-back path still

achieves higher performance.

Serial

• Interestingly, the index with best performance in query intensive workloads is always Serial. This

index has lightweight instrumentation and achieves best performance when hotspots do not occur,

which is exactly what occurs with query intensive workload scenarios. In future work, it would be

interesting to design and evaluate mechanisms based on HTM to accelerate Serial. — in a way

analogous to what was done in this work for PGrid.

HRWLE

• HRWLE did not have an easy run with the workloads scenarios used. Certainly, if we considered

scenarios with a superior read ratio, its performance would greatly improve. Most significantly,

HRWLE does not solve contention between updates and queries, hence, conflicts between queries

and updates are still predominant and the reason of its poor performance at high thread count.

Glibc vs TCMalloc

• Interestingly, the memory allocator which proved to be generally best in our experiments is the

traditional Glibc memory allocator (in HTM and non-HTM indexes). Despite TCMalloc being able

to achieve better performance in some experiments, its results were not as consistent as Glibc’s.

Moreover, when combined with partitioned queries, the conflict and capacity abort count exponen-

tially raised, drastically lowering performance.

HTM ease of use

• Another comment is that the ease of use of HTM currently is limited by a number of factors: first,

lack of robust tools for automated self-tuning. Works like Tuner [47] or ProteusTM [48] could poten-

tially simplify this task. The cost of/time spent while tuning HTM is in fact quite high: in our study
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we have considered at least 4 factors that had a strong impact on HTM’s performance. Manually

tuning them all is prohibitive and urges better tool supports. Second, debugging: when debug-

ging HTM, the programmer is forced to inject superfluous code to monitor HTMs behaviour (e.g,.

counters and flags), which are error prone and do not contribute to the programmers intentions.

Most significantly, the inability to pinpoint where aborts occur in transactions poses quite some

problems. Usually, this forces programmers to have an abstract idea of where transactions could

be having conflicts in certain points of the program, and manually compute experiments to see

check whether they were right, which be an iterative process until the cause is reached. Hence,

proper debugging tools for HTM could potentially simplify this task and ensure greater productivity.

Architecture Query Intensive W Update Intensive W
Haswell Serial PGridHTM
Broadwell Serial PGridHTM
POWER8 Serial PGridOLFIT

Table 4.3: Best performing indexes
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Chapter 5

Conclusions

The relevance of spatio-temporal data applications and the volume and velocity of such type of data

has dramatically increased, over the last few years, thanks to the proliferation of GPS equipped devices.

The problems of developing indexes for spatio-temporal queries is well-known and several have been

proposed in literature [5, 10]. In this thesis, we study efficient ways to enable concurrent access to

spatio-temporal data indexes, in order to take advantage of modern multi and many core architectures.

TM has emerged as a promising abstraction for parallel programming. Specifically, we use HTM

as a synchronization alternative to conventional locking for main-memory spatio-temporal indexing data

structures and seek an answer to the following research questions: i) what efficiency levels can be

achieved by applying HTM to state of the art single-threaded (i.e., non-thread safe) spatio-temporal in-

dexes algorithms? In particular, how does the performance of such HTM-based algorithms compare with

state-of-the-art concurrent algorithms, designed from scratch to cope with the consistency issues aris-

ing in multi-threaded environments? ii) to what extent can HTM be applied to state-of-the-art concurrent

indexing algorithms for spatio-temporal data, in order to enhance their efficiency?

To answer the first question we apply HTM to u-Grid, a state of the art single threaded index that is

well known for its high efficiency in dealing with update operations. Our results show that u-GridHTM is

able to achieve performance comparable to state of the art concurrent algorithms that use complex and

carefully engineered fine-based locking schemes.

To answer the second question we study how HTM can be used to execute in a speculative fashion

the critical sections used in the PGrid concurrent algorithm. Our results demonstrate that PGridHTM is

able to achieve 25% speedups over PGrid in query intensive scenarios, and up to 40% speedups over

its rival, PGridOLFIT, in update intensive workload scenarios.

Evaluation was performed considering 3 different parallel machines, equipped with processors that

adopt different architectures and HTM implementations. In particular the Intel Haswell and Broadwell and

IBM POWER8 CPUs. Moreover, we considered a data set of 4 different realistic workloads, generated

using MOTO.
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5.1 Future Work

In this section, we discuss the possibilities for future research in regards to this dissertation. This doc-

ument makes an extensive study on the behaviour of HTM when applied to spatio-temporal indexes.

Moreover, it highlights the most important factors in spatio-temporal indexes, which influence the most

HTM performance.

A first direction would be to apply HRWLE to promising index structeres as Serial and PGridHTM

(with partitioned queries). Serial uses a read/write lock scheme to synchronize updates and queries.

Since HRWLE has uses the same concept with transactions, it could be worth to evaluate its gains/losses

in performance. Moreover, Serial is best in query intensive workloads, which further suits the strengths

of HRWLE. PGridHTM could also be an index interesting to study with HRWLE, as with its partitioned

queries it solves the main difficulty of HRWLE, which is contention between updates and queries.

Another direction could be to prolong this study with STM or HyTM. HTM is the TM mechanism

which can achieve the best throughput, due to its cache-coherency conflict detection, which ensures

no software instrumentation and fast memory access. However, it is also the most volatile, due to its

best-effort nature. Hence, depending on the workloads, indexes and platforms, it may not be the best

option as the concurrency mechanism for spatio-temporal indexes. To deepen the study made on this

dissertation, future research on the integration of spatio-temporal indexes with STM and HyTM would

be a great opportunity.

STM offers great advantages which HTM cannot, for example, abundant memory capacity. However,

it also has attached disadvantages not present in HTM, as software instrumentation. Similarly, HyTM is

able to use the best of each TM system, for example, using the abundant memory capacity of STM for

large transactions, and the quickness of HTM for small transactions. However, it also has disadvantages

attached to it, synchronizing concurrent activities of STM and HTM transactions, has been shown to

incur non-negligible overheads.
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Appendix A

Fall-Back Paths

In this appendix we include the algorithms used to implement PGridHTM’s SGL and FLG fall-back paths.

A.1 SGL fall-back path

Algorithm 23: TM BEGIN SGL( )
1 attempts left = MAX ATTEMPTS ;
2 fallback = false ;
3 while 1 do
4 while IS LOCKED(single global lock) do
5 asm ( ”pause;”);
6 end
7 unsigned status = begin htm tx();
8 if status == XBEGIN STARTED then
9 if IS LOCKED(single global lock) then

10 xabort(”abortCode”);
11 end
12 break;
13 end
14 attempts left–;
15 if attempts left <= 0 then
16 while CAS(single global lock, 0, 1) == 1 do
17 asm (”pause;”);
18 end
19 fallback = true;
20 break;
21 end
22 end

Algorithm 24: TM END SGL( )
1 if attempts left > 0 then
2 xend();
3 else
4 single global lock = 0;
5 end
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A.2 FGL fall-back path

Algorithm 25: TM BEGIN FGL(lock)
1 attempts left = MAX ATTEMPTS ;
2 fallback = false ;
3 while 1 do
4 while IS LOCKED(lock) do
5 asm ( ”pause;”);
6 end
7 unsigned status = begin htm tx();
8 if status == XBEGIN STARTED then
9 if IS LOCKED(lock) then

10 xabort(”abortCode”);
11 end
12 break;
13 end
14 attempts left–;
15 if attempts left <= 0 then
16 while CAS(lock, 0, 1) == 1 do
17 asm (”pause;”);
18 end
19 fallback = true;
20 break;
21 end
22 end

Algorithm 26: TM END FGL(lock)
1 if attempts left > 0 then
2 xend();
3 else
4 lock = 0;
5 end

Algorithm 27: TM BEGIN INNER FGL(lock)
1 if attempts left <= 0 then
2 while CAS(lock, 0, 1) == 1 do
3 asm (”pause;”);
4 end
5 else
6 while IS LOCKED(lock) do
7 asm ( ”pause;”);
8 end
9 end

Algorithm 28: TM END INNER FGL(lock)
1 if attempts left <= 0 then
2 lock = 0;
3 end
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Algorithm 29: TM BEGIN INNER DEADLOCK FGL(lock)
1 if attempts left <= 0 then
2 if CAS(lock, 0, 1) == 1 then
3 return false ; // Avoid dead-locks

4 end
5 else
6 while IS LOCKED(lock) do
7 asm ( ”pause;”);
8 end
9 end

A.3 Non-blockable fall-back path

Algorithm 30: TM BEGIN NB TX( )
1 attempts left = MAX ATTEMPTS;
2 fallback = false;
3 while 1 do
4 begin htm tx();
5 if status == XBEGIN STARTED then
6 break;
7 end
8 attempts left–;
9 if attempts left <= 0 then

10 fallback = true;
11 break;
12 end
13 end

Algorithm 31: TM END NB TX( )
1 if attempts left > 0 then
2 xend();
3 end
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Appendix B

Memory allocators in non-HTM

indexes

In this appendix are the tests evaluating performance of the different memory allocators (Glibc and

TCMalloc) in the non-HTM indexes. We recall that the best memory allocator for these indexes in

all platforms was Glibc. Figures B.1, B.2 and B.3 are the tests respective to Haswell, Broadwell and

POWER8.
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Figure B.1: Haswell - Non HTM indexes performance evaluation with different memory allocators. Left -
glibc — Right - TCMalloc
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Figure B.2: BroadWell - Non HTM indexes performance evaluation with different memory allocators. Left
- glibc — Right - TCMalloc
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Figure B.3: POWER8 - Non HTM indexes performance evaluation with different memory allocators. Left
- glibc — Right - TCMalloc
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