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Resumo

Memória Transacional (TM) é um paradigma emergente de programação concorrente que

permite simplificar enormemente o desenvolvimento de aplicações concorrentes ao aliviar os

programadores de uma grande e complexa tarefa: como assegurar uma correta e eficiente

sincronização de acessos a memória partilhada. Apesar do grande número de estudos re-

centes dedicados a esta área, os sistemas TM ainda sofrem de graves grandes limitações

que dificultam limitam tanto a sua performance como a sua eficiência energética.

Esta tese aborda o problema de como construir implementações eficientes desta ab-

stração, nomeadamente a TM, ao introduzir técnicas inovadoras que discutem três limi-

tações cruciais dos sistemas TM existentes: (i) estender a capacidade efetiva das imple-

mentações de TM em hardware (HTM); (ii) reduzir os custos de sincronização nos sistemas

de TM híbridos (HyTM); (iii) melhorar a eficiência das aplicações de TM via esquemas de

gestão de contenção energeticamente cientes.

POWER8-TM (P8TM) é a primeira contribuição desta tese e aborda uma das mais

convincentes maiores limitações das implementações HTM: a inabilidade impossibilidade

de processar transações cuja quantidade de dados lidos e/ou escritos exceda a capacidade da

memória cache do processador. P8TM aproveita de uma forma inovadora duas caracterís-

ticas de hardware providenciadas pelos processadores POWER8 da IBM, nomeadamente

as Transações Rollback-only e o mecanismo de Suspensão/Retoma. P8TM pode alcançar

até 7× mais ganhos na sua performance em cenários que testam os limites da capacidade

da HTM.

A segunda contribuição é Dynamic Memory Partitioning-TM (DMP-TM), uma nova
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implementação HyTM que delega o custo de deteção de conflitos entre HTM e TM baseada

em software (STM) a mecanismos de proteção de memória do hardware e do sistema oper-

ativo. O design do DMP-TM é independente do algoritmo usado para regular transações

STM e tem a grande vantagem básica de permitir a integração, de uma forma eficiente,

de quaisquer implementações STM que permitam uma grande escalabilidade que, de outra

forma, exigiriam uma instrumentação dispendiosa sobre as transações HTM. Isto permite

ao DMP-TM alcançar ganhos até 20× comparativamente a outras soluções do estado da

arte da HyTM em cenários com pouca contenção nos acessos.

Green-CM, um gestor de conflitos (CM) com consciência energética, é a terceira con-

tribuição desta tese e apresenta dois aspetos inovadores: (i) um novo design assimétrico que

combina diferentes políticas de back-off, retirando vantagem das capacidades de hardware

da Frequência Dinâmica e do Escalonamento de Voltagem (DVFS) disponível na maioria

dos processadores modernos; (ii) uma implementação com eficiência energética de um com-

ponente fundamental para muitas implementações de CM, nomeadamente, o mecanismo

usado para fazer back-off de tarefas por um tempo predefinido. Graças ao seu inovador

design, Green-CM pode reduzir o Produto do Atraso Energético até 2.35× relativamente

aos CMs mais inovadores.

Todas as técnicas propostas nesta dissertação partilham uma importante característica

comum essencial para preservar a facilidade de uso da abstração que é a TM: a utilização,

em tempo de execução, de mecanismos de auto- configuração que assegurem uma perfor-

mance robusta mesmo em presença de uns cenários heterogéneos, sem requerer qualquer

conhecimento prévio dos cenários alvo ou da sua arquitetura.



Abstract

Transactional Memory (TM) is an emerging programming paradigm that drastically sim-

plifies the development of concurrent applications by relieving programmers from a major

source of complexity: how to ensure correct, yet efficient, synchronization of concurrent ac-

cesses to shared memory. Despite the large body of research devoted to this area, existing

TM systems still suffer from severe limitations that hamper both their performance and

energy efficiency.

This dissertation tackles the problem of how to build efficient implementations of the

TM abstraction by introducing innovative techniques that address three crucial limitations

of existing TM systems by: (i) extending the effective capacity of Hardware TM (HTM) im-

plementations; (ii) reducing the synchronization overheads in Hybrid TM (HyTM) systems;

(iii) enhancing the efficiency of TM applications via energy-aware contention management

schemes.

The first contribution of this dissertation, named POWER8-TM (P8TM), addresses

what is arguably one of the most compelling limitations of existing HTM implementations:

the inability to process transactions whose footprint exceeds the capacity of the proces-

sor’s cache. By leveraging, in an innovative way, two hardware features provided by IBM

POWER8 processors, namely Rollback-only Transactions and Suspend/Resume, P8TM

can achieve up to 7× performance gains in workloads that stress the capacity limitations

of HTM.

The second contribution is Dynamic Memory Partitioning-TM (DMP-TM), a novel Hy-

brid TM (HyTM) that offloads the cost of detecting conflicts between HTM and Software
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TM (STM) to off-the-shelf operating system memory protection mechanisms. DMP-TM’s

design is agnostic to the STM algorithm and has the key advantage of allowing for inte-

grating, in an efficient way, highly scalable STM implementations that would, otherwise,

demand expensive instrumentation of the HTM path. This allows DMP-TM to achieve up

to 20× speedups compared to state of the art HyTM solutions in uncontended workloads.

The third contribution, Green-CM, is an energy-aware Contention Manager (CM) that

has two main innovative aspects: (i) a novel asymmetric design, which combines different

back-off policies in order to take advantage of Dynamic Frequency and Voltage Scaling

(DVFS) hardware capabilities, available in most modern processors; (ii) an energy efficient

implementation of a fundamental building block for many CM implementations, namely,

the mechanism used to back-off threads for a predefined amount of time. Thanks to its

innovative design, Green-CM can reduce the Energy Delay Product by up to 2.35× with

respect to state of the art CMs.

All the techniques proposed in this dissertation share an important common feature

that is essential to preserve the ease of use of the TM abstraction: the reliance on on-line

self-tuning mechanisms that ensure robust performance even in presence of heterogeneous

workloads, without requiring prior knowledge of the target workloads or architecture.
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Chapter 1

Introduction

For decades, processor manufacturers have been able to double the computational power
of CPUs approximately every 18 months — a fact that goes commonly under the name
of Moore’s Law [1, 2]. Initially, such an exponential growth has been supported by a con-
tinuous increase in the clock frequency of processors. However, at some point processor
manufacturers were unable to further scale up the clock frequency of processors due to
thermal issues. This forced a paradigm shift towards having several cores that can operate
in parallel inside the same processor, marking the beginning of the multicore era. Nowa-
days, multicore processors represent the dominant architecture across all devices ranging
from servers to mobile devices, and the trend is towards having tens to hundreds of cores
integrated in the same platform.

In order to cope with this shift in processors’ design, software development has also
accordingly undergone a transition from serial to parallel programming — a notorious
harder problem. One of the key difficulties associated with parallel programming is how
to handle data races, which occur when threads running on different cores access the same
data at the same time, and at least one of them updates it. Without proper inter thread
synchronization, in these cases, the behavior of the program becomes unpredictable.

The traditional way of enforcing synchronization is by using mutexes or locks to protect
shared data. However, the inherently sequential nature of locks limits concurrency and
can severely hinder performance in large scale parallel systems. One way to minimize
the drastic effects of locking is to use fine-grained locking. Programs using fine-grained
locking schemes regulate logically independent accesses to different shared memory regions
via multiple locks. By allowing threads to acquire only locks protecting data that they are
going to access, fine-grained locking can enable high degrees of parallelism. Unfortunately,
though, they are also notorious for being complex to devise, debug and reason about. They
are also infamous for suffering of subtle pathologies (e.g., deadlocks, livelocks and priority
inversions) that are complex to reason about and reproduce as well as for compromising a
property that is crucial for modern software systems, namely composability [3].

Transactional Memory (TM) is an attractive, alternative synchronization paradigm for
parallel programming that preserves the simplicity of coarse-grained locking, while striv-
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ing to achieve performance levels on par, or even superior, to the ones attainable via the
use of complex fine-grained locking schemes. The main driver of TM lies in its simplicity:
TM has borrowed the semantics of atomic transactions from the database literature and
applied them to the concurrent programming domain, providing programmers with a fa-
miliar abstraction to synchronize concurrent accesses to shared memory regions. With TM,
programmers need to simply devise their code into atomic blocks, or transactions, delegat-
ing to the underlying TM system the problem of guaranteeing their atomicity. Recently,
TM has arguably made significant progresses towards mainstream adoption, thanks to the
achievement of an important milestone: the official integration of programming language
supports in two mainstream languages, namely C and C++ [4].

1.1 Problem Definition

Herlihy and Moss [5] initially proposed TM as a hardware modification to the cache coher-
ence protocol for multi-processor systems. However, only since the early 2000s, with the
advent of multi-core processors in mainstream architectures, that research in the area of
TM started to gain momentum. Since then, TM was the object of intense research efforts.
Unlike in its original formulation, though, most of the research during the first decade of
2000 was focused on Software Transactional Memory (STM) — mainly due to the lack of
availability of commercial hardware platforms supporting the TM abstraction and to the
portable and flexible nature of software. This resulted in a plethora of algorithms [6–10],
which aim to optimize STM performance when faced with different workloads, but that still
incur non-negligible instrumentation overheads due to the need for tracking transactional
accesses via additional software mechanisms [11–13].

Only recently, in 2012 specifically, IBM provided the first commercially available im-
plementation of Hardware Transactional Memory (HTM) in several processor families:
POWER [14], Blue Gene P/Q [15] and system Z [16]. This was not the first attempt
though: just a few years earlier, Sun declared a processor called Rock that has support for
HTM [17], but it never reached the market. AMD also released specifications and instruc-
tions set extension for HTM [18] that were never implemented by any of its processors.
More recently, Intel, starting from the Haswell family, has integrated in many of its CPUs
supports for HTM, which was named TSX [19].

Similarly to the initial proposal, existing HTM systems are implemented as an exten-
sion to the cache coherence protocol. This design choice has simplified the problem of
integrating HTM in existing processors. However, though, it has also intrinsically exposed
HTM to crucial limitations. One of the most crucial limitations is that, since with HTM
read-sets and write-sets are tracked in processor’s cache, transactions whose read-set and
write-set do not fit in the cache can never commit in hardware, even in absence of data con-
flicts. Other limitations include their inability to ensure atomicity of transactions that issue
prohibited instructions (e.g., system calls), or that incur page-faults and timer interrupts
[20, 21]. Thus, in order to ensure progress, HTM must be complemented with a fallback
synchronization mechanism, implemented in software. The typical fallback mechanism for
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HTM consists in acquiring a single global lock - an approach that has the advantage of
being simple and generic, but that imposes a severe performance toll as the activation of
the fallback aborts any concurrent transaction and prevents any parallelism.

Hybrid Transactional Memory (HyTM) [22, 23] were conceived to provide HTM with a
more scalable fallback path, by enabling the concurrent use of HTM and STM. Conceptu-
ally, this can bring the merits of both worlds: efficiency of HTM and robustness of STM.
Unfortunately, though, existing HyTM implementations [24–28] incur expensive instrumen-
tation overheads in order to synchronize concurrent transactions executing in hardware and
software [29].

Another known issue of TM, which can be seen as oblivious to its implementation and
to its optimistic nature, is that workloads with high degree of contention generate frequent
transaction aborts. This can have a detrimental impact not only on the performance of
TM applications, but also on their energy efficiency — a factor that is increasingly relevant
for a wide range of systems, from sensors and mobile devices to data centers [30]. Quite
surprisingly though, despite the abundant research on TM, the problem of how to design
energy efficient TM has been largely overlooked in the literature.

1.2 Research Questions
TM systems have managed to fulfill their first premise of being easy to use [31]. However,
they still fall behind on delivering satisfactory efficiency levels, due to several reasons such
as: the instrumentation overheads of STM, the intrinsic limitations of HTM, the high
synchronization costs incurred by HyTM systems and the overlooking of energy efficiency
in their designs as explained in the previous section. Accordingly, the problem of enhancing
the efficiency of TM systems, without compromising their ease of use, remains a relevant
and open research question. This dissertation aims to bridge the gap towards solving this
problem, by answering the following questions:

1. How to extend the effective capacity of existing HTM systems?
Unlike STM, HTM does not suffer from instrumentation overheads. However, the
performance of HTM systems can be hampered by their inability to execute transac-
tions that do not fit within their hardware limits. Due to the high cost of hardware
modifications, this limitation is not expected to be solved in the future. Therefore,
to increase the usefulness of HTM systems, it is crucial to develop novel mechanisms
that enable existing HTM implementations to accommodate larger transactions.

2. How to reduce the synchronization costs incurred by HyTM systems?
Even with novel mechanisms mitigating the intrinsic limitations of HTM, a software-
based fallback synchronization mechanism is always needed to guarantee forward
progress. HyTM systems that try to complement the best-effort HTM systems with
robust STM implementations pay high synchronization costs to ensure correct con-
current execution of HTM and STM transactions. Accordingly, reducing these costs
is crucial for enhancing the efficiency of TM systems.
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3. How to design energy-aware contention management for TM systems?
Contention Manager (CM) modules, which are typically integrated within TM sys-
tems, aim to reduce the detrimental effects of contention. With the increasing im-
portance of energy efficiency and aborted transactions being a main source of wasted
energy, a key open question is how to design CM modules aiming not only to maxi-
mize performance, but also incorporate energy efficiency as a first-order optimization
goal.

1.3 Research Methodology
To tackle the problems described above, the work of this dissertation followed an empirical
approach, which entails iterations of the following steps: (i) quantifying an identified prob-
lem; (ii) proposing a solution; (iii) ensuring its correctness; (iv) evaluating the proposed
solution; and (v) analyzing the results. Upon iterating these steps, the problems, when
feasible, were dissected into several sub-problems, each going through its own iterations,
before merging into a single solution in the end. The following few subsections overview
the approach followed in this dissertation regarding incorporating self-tuning mechanisms,
evaluation of contributions, the challenges that were met throughout the coursework and
the scope of the thesis in general.

1.3.1 Self-tuning
One aspect that is common across all the contributions of this dissertation is the extensive
use of self-tuning techniques. The use for self-tuning in TM is not new and stems from
the high dependability of the design choices on workload and architecture characteristics.
To avoid affecting the ease of use of TM, which is a cornerstone for the thesis of this
dissertation, the incorporated self-tuning mechanisms had to satisfy two critical features:
online and transparent . This is necessary to avoid the need of any change to the abstraction
provided by TM to the programmers. Furthermore, these mechanisms must be lightweight
in order not to outweigh the performance gains in favorable settings and to pay only a small
penalty in non-favorable ones.

A brute force approach was followed to configure the chosen self-tuning mechanisms.
The different design choices were identified and the search space of each was explored
systematically. Then, to combine these design choices, various policies were considered
according to the dependency relationships among the different parameters. Finally, the
best on average configuration was chosen.

1.3.2 Evaluation
The proposed contributions were evaluated against state of the art TM systems using
publicly available implementations. TM implementations were integrated within the same
framework with a collection of numerous benchmarks. All TM systems were linked with
the benchmarks using the same interface and were compiled on the same platform using
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the same compiler flags and external library for memory allocation [32]. All these imple-
mentations are open sourced in public repositories, alongside the configurations used in
the experiments [33–35], in order to ease the reproducibility of the results included in this
dissertation.

All experiments involving hardware features, such as HTM, were executed using existing
commercial systems, without relying on any simulation or emulation environments. The
experiments were executed using automated scripts to ensure their reproducibility. The
reported results are the average of at least 5 runs with a standard deviation less than
10% of the mean value. To compare performances, throughput and execution times were
measured, while for energy, data from processor registers to track energy consumption were
collected. Other than that, commits and aborts breakdowns were collected to provide a
more in-depth understanding of the results.

Experiments were conducted using microbenchmarks and real-life applications. Mi-
crobenchmarks consisted of concurrent datastructures that support operations such as
lookups, inserts and deletes. This allows for devising sensitivity studies that put focus
on different aspects of a design: impact of different components of the solution, the poten-
tial gains in ideal scenarios and overheads in the worst cases. Real-life applications that
span a breadth of diverse application domains ranging from multi-threaded servers to OLTP
systems and CAD like applications assessed the performance of the presented solutions in
complex settings. Section 2.4 describes the benchmarks used throughout the thesis in more
detail.

1.3.3 Challenges

All the contributions of this dissertation share the common feature of exploiting hardware
features available in recent processors. This requires developing hardware-aware software,
which comes with several challenges. Controlling the hardware explicitly from the userspace
may be very expensive due to the need for issuing system calls. The high cost of systems
calls may outweigh gains achievable by tweaking the hardware configuration, which re-
quired incorporating mechanisms to optimize such trade off. The approach followed in this
dissertation to avoid paying the toll of system calls is by exploiting automatic hardware
re-configuration. However, this comes with other challenges, mainly the fact that hardware
manufactures do not disclose all the details of how these automatic hardware mechanisms
operate. To overcome this obstacle, various experimental studies were conducted to under-
stand the underlying mechanisms.

Another major challenges, which is common for parallel programming in general, and
HTM in specific is debugging due to the non-deterministic nature of concurrent software.
With HTM, it is not even possible to halt the execution within a transaction and investigate
the state of the system. Moreover, upon an abort, all changes within a transaction are
discarded and the system is rolled back to state before the transaction started, leaving only
some indication of the cause of the abort. As a consequence, developing HTM programs,
with current limited debugging support, entails a very tedious process of inspecting each
piece of code in an isolation of each other.
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1.3.4 Limitations

The scope of this work is limited to parallel software that can benefit from TM as a synchro-
nization mechanism. This can be either programs built directly using the TM abstraction,
or ones that use classical synchronization mechanisms implemented using TM (e.g. lock
elision, see Section 2.2.5). In general, non-TM friendly parallel software, for example, soft-
ware with frequent activation of critical sections that execute irrevocable operations (e.g.
I/O), may not benefit from this work.

Further, each contribution presented in this thesis has its own limitations. These limi-
tations are detailed in the chapters describing these solutions and can range from workloads
where they are not beneficial to architectures that they do not support. Nevertheless, they
are augmented with self-tuning mechanisms to fall back to a baseline that perform on par
with the state of the art. Chapter 6 discusses ideas for future work that can be pursued to
achieve gains in several of these scenarios.

1.4 Thesis Contributions

These three research questions discussed in Section 1.2 are addressed via three novel con-
tributions, which are overviewed next.
POWER8-TM (P8TM) (Chapter 3) is a novel TM that aims to expand the actual ca-
pacity available in HTM systems by exploiting two micro-architectural features available
in the IBM POWER8 HTM implementation: Suspend/Resume (S/R) and Rollback-Only
Transactions (ROTs). As the name suggests, the earlier allows for suspending a trans-
action, executing non-transactional code, and then resuming the transactions execution.
ROTs are a special type of transactions supported by POWER8 HTM that are meant to
provide failure-atomicity, i.e., the ability to roll-back the execution of a code block, but
they do not track read memory accesses in hardware. As a consequence, ROTs have a
larger capacity than normal transactions, but they do not guarantee safety in presence of
concurrent executions.

P8TM relies on several complementary mechanisms. The first one consists in executing
read-only transactions without instrumentation and outside the context of hardware trans-
actions. Such design, spares read-only transactions from any capacity limitation, as well
as other HTM restrictions (e.g., spurious aborts due to context switches), hence, bring-
ing significant gains for read-dominated applications. To preserve correctness of read-only
transactions, P8TM relies on a scheme similar in spirit to the Read Copy Update (RCU)
quiescence mechanism [36–38], which ensures that update transactions, executing in hard-
ware, can only commit if there are no concurrent active read-only transactions. Second, to
accommodate large update transactions in hardware, P8TM incorporates a novel algorithm
called Touch-To-Validate (T2V). T2V enables the safe execution of concurrent ROTs, which
allows P8TM to exploit ROT’s ability of fitting larger transactions to mitigate the capacity
constraints of update transactions running in hardware.

To ensure robust performance in workloads that do not exhibit capacity aborts, i.e.,
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where plain HTM would excel, P8TM employs a light-weight, yet effective, self-tuning
mechanism to determine when to disable the quiescence and T2V mechanisms in order to
avoid unnecessary overheads. This allows P8TM to achieve up to ∼7× throughput gains
with respect to plain HTM and extend capacity of update transactions by more than one
order of magnitude, while remaining competitive even in unfavorable workloads.
Dynamic Memory Partitioning-TM (DMP-TM) (Chapter 4) is a novel HyTM algo-
rithm that exploits the idea of leveraging operating system-level memory protection mech-
anisms to detect conflicts between HTM and STM transactions. Thanks to this design
approach, DMP-TM is capable of supporting highly scalable STM implementations, whose
integration in a HyTM system would otherwise require expensive instrumentations of the
HTM path, without any instrumentation on the HTM path. The key challenge related to
DMP-TM’s design is that it relies on system calls to enforce memory partitions, which have
a non-negligible cost. Indeed, DMP-TM investigates an interesting trade-off: leveraging the
data partitionability present in applications in order to reduce the run-time overheads of
detecting conflicts among STM and HTM transactions, at the cost of a performance penalty
in case conflicts between STM and HTM transactions do materialize.

In order to maximize the gains achievable in favorable workloads, while ensuring robust
performance also with unfavorable ones, DMP-TM integrates two key self-tuning mech-
anisms that detect, in a transparent and automatic way: (i) which back-end (STM or
HTM) to employ for the different transactional blocks of a TM application; (ii) whether
the degree of partitionability of the accesses generated by the STM and HTM back-ends
is too low, being thus preferable to use exclusively the most efficient of the two back-ends.
Compared with state of the HyTM systems, DMP-TM demonstrated robust performance
in an extensive evaluation achieving gains of up to ∼20×.
Green-CM (Chapter 5) is a CM scheme explicitly designed to jointly optimize both per-
formance and energy consumption. It pursues this goal via two novel complementary mech-
anisms.

The first innovative mechanism of Green-CM consists in an energy efficient implemen-
tation of a key building block of many contention management schemes, namely the wait
primitive used to back off threads, upon a conflict, for some predetermined period of time.
The wait primitive can, in practice, be implemented using two base approaches, namely
spinning or sleeping. The former allows for a fine-tuned control on the period of backing
off, at the cost of spending energy similar to that of doing actual work, while the latter can
save energy at the cost of coarse-grained control. Green-CM employs a hybrid approach
that automates the choice between the spin-based and sleep-based implementations of the
wait primitive, on the basis of the specified back-off period and the characteristics of the
application workload.

The second contribution of Green-CM is Asymmetric Contention Management (ACM),
namely the first CM policy designed to take advantage of the ability of modern proces-
sors to dynamically adjust their frequency and voltage (a mechanism known as Dynamic
Voltage and Frequency Scaling or DVFS [39]). DVFS allows for adjusting dynamically
the frequencies at which different cores operate: this allows both for reducing the energy
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consumed by idle cores, and for increasing the frequency of active cores. ACM combines
aggressive and conservative (i.e., exponentially vs linearly increasing) back-off policies, in
order to promote the dynamic creation, at medium/high contention scenarios, of two sets
of threads: (i) threads that are likely to be backing-off, allowing the corresponding pro-
cessor to enter deep sleep states, and (ii) threads that spend most of their time executing
transactions, and which can run at higher frequencies, thanks to DVFS.

To achieve energy efficiency across different architectures and wide variety of workloads,
Green-CM employs a lightweight, on-line, hill-climbing-based, self-tuning mechanism to de-
termine when to switch between different wait implementations and the degree of asym-
metry of the ACM scheme. Compared with state of the art CMs, Green-CM was able to
achieve 2.35× higher energy-delay product.

1.5 List of Publications
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The content of Chapter 3 is based on Papers I, II and III, while the content of Chapter 4
is based Paper IV and the content of Chapter 5 is based on Paper V.

For Papers I, III, IV and V the author of the thesis is the main contributor of the work.
Specifically, he contributed to the conception and development of the idea. He was also a
major contributor to the writing of the paper. For Paper II, the author of the thesis is a
major contributor of this work. In particular, the author of this thesis has participated in
the development of the algorithm.

For all the papers, the author of the thesis led and was responsible for the prototype
implementations and carrying out the experimental evaluation using synthetic microbench-
marks and real-life complex applications.

1.6 Structure of this Document
The remainder of this document is structured as follows: Chapter 2 reviews state of the
art of TM and the background necessary to frame and understand the contributions of
this dissertation, which are detailed in the subsequent chapters. Specifically, Chapter 3
introduces POWER8-TM, then DMP-TM is explained in Chapter 4 and Green-CM in
Chapter 5. Finally, Chapter 6 summarizes the work done in this thesis and highlights
possible directions for future work.





Chapter 2

Background

The goal of this chapter is to review the state of the art of Transactional Memory (TM) sys-
tems, as well as to provide the necessary background to introduce the contributions of this
dissertation. As the main purpose of TM is to provide an easy-to-use and efficient synchro-
nization mechanism for parallel programming, the chapter starts with a brief overview of
some of the main classic, i.e., not based on TM, synchronization mechanisms in Section 2.1.
Section 2.2 focuses on TM, by first introducing the abstraction and the guarantees it of-
fers to programmers, and then reviewing state of the art on TM systems. As discussed in
the previous chapter, one common aspect of the contributions of this thesis is the use of
on-line, self-tuning mechanisms to provide robust performance across wide variety of work-
loads; Section 2.3 overviews TM systems that also adopted self-tuning techniques. Finally,
Section 2.4 describes several benchmarks that are popular within the TM community for
evaluating TM systems and that are going to be used to evaluate the solutions presented
later on in this dissertation.

2.1 Conventional Synchronization Mechanisms

2.1.1 Mutual Exclusion

The traditional technique for ensuring correct synchronization in parallel programming is
based on the notion of mutual exclusion and on the abstraction of mutex locks. As the name
suggest, the idea at the basis of mutual exclusion is to ensure that programmer-defined code
segments, referred to as critical sections, are never executed concurrently [45]. A simple,
yet powerful, extension of the mutual exclusion lock, called read-write lock, is based on
the idea of enabling concurrency between read-only critical sections, which, not modifying
shared data, can be executed concurrently in a safe way [46].

The problem of building efficient implementations of mutex and read-write locks has
been long studied in the literature. An overview of some of the most popular implementa-
tions of these synchronization mechanisms is provided in the following.
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Mutexes

The most common way of ensuring mutual exclusion is the use of locks or mutexes. When
using mutexes, in order for thread to start executing a critical section, it must acquire the
mutex before beginning to execute the critical section and then release the mutex after
it finishes. A mutex can only be acquired by one thread and while the mutex is held by
a thread, any other thread trying to acquire it will be blocked, and thus prevented from
entering a critical section.

A mutex can be implemented either using software or using atomic instructions that are
implemented in hardware (e.g.: fetch-and-increment, compare-and-swap, test-and-set, etc.).
Hardware-based mutex implementations are known to be faster and easier to prove correct,
thanks to the atomic support of the hardware [47]. The literature on lock algorithms,
possibly using hardware mechanism, is quite vast. In the following, some of the most
popular mutex lock implementations are overviewed.

The most basic implementation is the Test and Set (TS) mutex [48] where a thread
that intends to acquire the mutex repeats executing the atomic test-and-set instruction
until it successfully changes the value of the mutex from free to acquired. The thread
can release a TS mutex by simply setting its value to free. Test, Test and Set (TTS)
mutex [49] introduces a simple, yet effective, modification to the TS mutex. Instead of
blindly executing the expensive test-and-set instruction, the acquiring thread would only
issue it after a plain read operation indicating that the mutex is free. The Ticket mutex
[50] is similar to Take-a-Number systems used at butcher shops. The Ticket mutex uses
two counters, called ticket and now serving. When a threads requests to acquire the mutex,
it atomically fetches and increments ticket and waits for now serving to reach that value.
Upon releasing the lock, the thread increments the now serving counter. Compared to the
TS and TTS mutexes, the Ticket mutex has stronger fairness guarantees, as threads are
served in FIFO order. Further, since the Ticket mutex allows only one thread to enter
the critical section at a time, it avoids the “thundering herd” problem [51] that arises in
TS and TTS when multiple threads attempt to acquire the mutex simultaneously. The
MCS mutex [48] uses compare-and-swap instruction to implement a FIFO queue where
each thread requesting to acquire the mutex enqueues itself in the queue. While in the
queue, each thread keeps spinning on a local variable that changes only when the thread
becomes the head of the queue, only then it can access the critical section. When a thread
releases the mutex, it dequeues itself and changes the local variable of the next thread in
the queue. In addition to providing FIFO properties, similar to the Ticket mutex, the MCS
mutex further reduces cache traffic since each thread spins on a local variable while the
lock is held busy.

Regardless of how a mutex is implemented, the main disadvantage of using mutexes is
that they can hinder performance by restricting parallelism. If not designed carefully, pro-
grams using mutexes can, indeed, achieve worse performance than in the case of sequential
execution [52]. One key aspect that affects the efficiency of mutex-based programs is the
granularity of critical sections. To achieve higher scalability, programmers can use different
mutexes to protect different shared data, hence allowing more room for parallelism.



2.1. CONVENTIONAL SYNCHRONIZATION MECHANISMS 13

The use of fine-grained locking schemes brings both advantages and disadvantages.
The main advantage is the performance gains, the more fine grained they are the more the
parallelism they allow and thus the better the performance. However, this gain comes at
a cost, which is the complexity of designing and developing such software. Deadlocks are
one of the major difficulties programmers are faced with when using fine-grained locking
schemes. A deadlock happens when two or more threads are waiting for each other to
release a mutex that they are holding [53], thus suffer of liveness issues. Debugging and
detecting deadlocks is not trivial and is well known to be a complex and time-consuming
task [52]. For instance, attempts to solve a deadlock may result into livelocks, a state in
which threads do not mutually block but still fail to make any actual forward progress.

Read-write Locks

Read-write Lock (RWL) is a synchronization mechanism that is directed towards read
dominated workloads applications that have majority of critical sections that only read
shared data, without modifying it [46]. The idea behind RWL is to support concurrent
readers, while allowing the execution of only one critical section that modifies shared data
at a time.

Several works addressed the problem of devising efficient implementations of the RWL
abstraction. The most famous is probably the implementation provided by the pthread’s
library, which uses two counters to synchronize both readers and writers [54]. The pthread’s
implementation has an internal mutex that is used to synchronize the changes to these
counters, and the values of the counters are used to ensure fairness between readers and
writers.

Another RWL implementation is the big reader lock (BRLock) [55] which was part of the
Linux kernel at one point [56]. The key idea behind BRLock is to trade write throughput
for read throughput. A thread acquiring BRLock in read mode will only acquire one private
mutex, whereas acquiring BRLock in write mode entails acquiring all private mutexes of
all running threads.

Recently, Liu et. al [57] introduced passive reader writer lock (PRWL), a synchroniza-
tion mechanism that tries to reduce the cost imposed by most reader writer locks on the
writer mode. The idea behind PRWL is a version based consensus protocol between readers
and writers. Writers increment the lock version and wait for readers to signal they have
read the latest version. This is designed for total store order systems where an upper bound
on the memory staleness can be guaranteed, i.e., the time taken by readers to see the latest
version without a memory barrier.

2.1.2 Read-Copy-Update

Read-Copy-Update (RCU) [36] is a popular synchronization mechanism that targets read-
dominated workloads. Unlike RWL, with RCU, a read-only critical section does not need
to acquire any mutex, it just flags itself, using a memory barrier, at the beginning and end
of the critical section. To ensure correctness, a writer modifying shared data, would create
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a copy of the data and apply the updates to the copy. Readers that existed prior to the
write continue to access the older, unmodified data, while new readers get to witness the
updates. Only when all readers that existed before the writer have completed their critical
sections, the unmodified data is discarded.

Although RCU can provide significant performance gains, it comes with a high cost
in terms of usability. To support RCU, programs must be written in a way such that
creating copies of shared data is feasible. Further, duplicating and discarding the copies
must maintain correct pointers to other referenced data. This limits the applicability of
RCU and is arguably the main reason why only a relatively small number of RCU-based
data structures have been proposed in the literature [58–60].

2.2 Transactional Memory
Transactional memory (TM) is a synchronization paradigm for parallel programming that
aims at avoiding the complex problems that arise when using fine-grained locking schemes
(see Section 2.1.1), while achieving comparable, or possibly even higher, performance. The
ease of use of TM stems from the simplicity and familiarity of the key abstraction that it
provides, i.e., which hides all the complexities of handling data races from the programmer.

TM can be implemented as a software runtime, in hardware or as a hybrid combination
thereof. In all cases, it provides the same abstraction and guarantees to the programmer.

Listing 2.1: Sample C++ code using TM abstraction to checkout a shopping bag
int buy ( item i ){

i f ( s tock [ i . type ] >= i . quant i ty ){
s tock [ i . type ] −= i . quant i ty ;
return 1 ;

}
return 0 ;

}

int checkout ( shoppingBag bag ){
int r e s u l t = 1 ;
__transaction_atomic{

for (auto item : bag ){
r e s u l t &= buy ( item ) ;

}
}
return r e s u l t ;

}

2.2.1 Abstraction
The abstraction provided by TM allows programmers to devise their code into blocks or
transactions, that are to be executed atomically. The underlying TM implementation will
execute transactions concurrently, but still offer the illusion of sequential executions, hence
significantly simplifying the reasoning on correctness of concurrent programs.



2.2. TRANSACTIONAL MEMORY 15

Listing 2.1 shows a sample C++ code for a function that checks out a shopping bag.
It performs the buy operation on each item in the bag. To avoid overselling items, the buy
function will check for available inventory. As several customers may be checking out at
the same time, using a single global lock to protect access to available stock would only
allow a single customer a time. Fine-grained locking can allow more concurrent customers,
but at the cost of an increased complexity (e.g., risk of deadlocks).

With TM, programmers just need to define the block as a transaction using the
__transaction_atomic construct. The compiler will then plug in the calls to transaction
begin and commit according to the TM implementation. Further, in case the selected TM
implementation requires software instrumentation to track transactional accesses to shared
data, the compiler will automatically replace these accesses with the respective functions
from the TM API. Listing 2.2 shows the buy function with instrumented accesses to shared
data.

Listing 2.2: Code with instrumented accesses to shared data
int buy ( item i ){

i f (TM_SHARED_READ( stock [ i . type ] ) >= i . quant i ty ){
TM_SHARED_WRITE( stock [ i . type ] , \
TM_SHARED_READ( stock [ i . type ] ) − i . quant i ty ) ;
return 1 ;

}
return 0 ;

}

2.2.2 Guarantees

Guerraoui and Kapałka [61] coined the term opacity to formalize the correctness guarantee
that should be ensured by a TM implementation. Roughly speaking, opacity requires
both committed and aborted transactions to be explicable by considering an equivalent
sequential execution that respects the real-time order of the original, sequential, execution.
This is in contrast with strict serializability [62], which provides the same guarantees but
only for committed transactions, while providing no restrictions on the states (also called
snapshots) observable by aborted transactions — which could potentially be exposed to
arbitrary anomalies. Opacity ensures that changes produced by committed transactions
appear to happen atomically, while changes within aborted transactions are discarded and
hidden from concurrent transactions to avoid any side effects. Therefore, with opacity, the
read-set of a TM transaction is always consistent until it either commits or aborts. This is
necessary when using transactions in generic programs written using low-level programming
languages and directly manipulating shared memory — a non-constrained domain, unlike
databases where the detrimental effects effects of reading inconsistent values can be easily
contained using sand-boxing techniques [63].
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2.2.3 Design Choices

The large number of existing TM implementations can be coarsely classified according to
the design choices they adopt for what concerns two key aspects: when to detect conflicts
and which granularity to use to track transactional accesses.

Timing of Conflict Detection

A conflict is said to occur when concurrent transactions access the same shared data, and
at least one of them tries to update it. Conflicts can be detected either eagerly, or lazily.
When conflicts are detected eagerly, transactions are aborted and rolled back once the
conflict occurs. In contrast, in lazy conflict detection, conflicts are only detected at commit
time. Thus, lazy conflict detection is more optimistic as it allows transactions to execute
regardless of whether they conflict or not. This is beneficial in low contention workloads
where more parallelism can be achieved by doing so. It is worth noting here that the update
of active (i.e., non-committed) transactions are hidden from each other. However, in high
contention scenarios, a more pessimistic concurrency control mechanism is beneficial, hence
eager conflict detection [63]. Various works [7, 8] have shown that, in practice, no one size
fits all, and different designs are needed for different workloads.

Granularity of Conflict Detection

Data accesses within a transaction need to be tracked in order to detect conflicts between
concurrent transactions. The granularity of tracking can range from word based to object
based. This represents a trade-off between accuracy and the overheads of tracking. Similar
to conflict detection, there seems to exist no one size fits all solution [7]: fine grained
tracking allows more parallelism at the cost of increased overheads while coarse grained
tracking suffers from aliasing issues, which can lead to spurious aborts and ultimately
hinder performance.

2.2.4 Software Transactional Memory

Despite the fact that TM was originally conceived as supported via a hardware extension
of cache coherence, the first concrete implementations of TM systems were as a software
runtime. This was arguably due to the flexibility and portability that the software provides.
Software Transactional Memory (STM) provides programmers with an API to demarcate
blocks of code as transactions. Shared data access within a transaction have to be issued
via the STM API - which can be automated using compiler support. During the past
decades, STM went through a thorough research that yielded a large number of algorithms
that implement STM efficiently for different workloads. In the following, some of the most
popular STM implementations, representative of different design choices, are described.
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TL2

TL2 [6], uses a versioned write lock (also known as ownership record, or orec) for each
tracked item, whether this is a memory word or a shared object. It also uses a single global
clock to give timestamps to tracked items upon each update. When a transaction starts in
TL2, it atomically reads and caches locally the value of the global clock. Upon each read or
write, it makes sure that the value of the orec of the item, which is being read or written, is
less or equal to the value of the cached clock it read at the beginning of the transaction and
that the write lock is free. Otherwise, the transaction must abort. When the transaction
requests to commit, it has to acquire the orecs of all the items in the write-set. Next, the
transaction atomically increments the global clock using a compare-and-swap operation,
then re-validates the read set. The new values of the write-set are then buffered to memory
before releasing the orecs while updating their versions to the new value of the global clock.

TinySTM

TinySTM [7] is based on a single version, word based variant of Lazy Snapshot Algo-
rithm (LSA) [64]. Generally speaking, TinySTM is similar to TL2. One main difference
is that TinySTM uses encounter-time locking instead of commit-time locking. This makes
TinySTM avoid performing useless work, since conflicts will be detected eagerly, and enables
handling read after write conflicts without always aborting the reading transaction.

In LSA, when a transaction is performing a read, and the version of the orecs of the item
being read is higher than the clock read at the beginning of the transaction, the transaction
can try to extend its snapshot instead of aborting. This is done by checking that all items
in the read-set are still valid and are not locked by any other transaction. If this is the
case, the transaction can safely read the value and update the value of its clock to the new
clock value, hence extending its snapshot.

SwissTM

SwissTM [8] uses a mix of the techniques employed by TL2 and TinySTM, where it uses
commit-time locking for read write conflicts and encounter-time locking for write write
conflicts. It also augments the concurrency control algorithm with a contention manage-
ment scheme that tries to favor older transactions without starving newer ones. The main
intuition behind SwissTM is to minimize doing useless work, or wasting work done.

NOrec

Unlike all the previous STM algorithms, NOrec [9] does not have an orec for each tracked
item, hence its name (No + orec). In contrast, NOrec has only a single global clock that
it uses to ensure correct execution of transactions. This comes with the major benefit of
minimizing the overheads of tracking the read and write sets. However, to ensure safe
execution, the read-set must be validated whenever another transaction commits. Further,
since there are no orecs, the only way to do this is by comparing the values in the read-set
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to the values in memory. This makes NOrec very efficient at low number of threads, i.e.,
when there is not a high number of concurrently committing transactions.

When a transaction starts, it reads the global clock and upon each read it checks the
current value of the clock. In case the value of the clock has changed, it has to re-validate its
read-set. Only if all the values have not changed the transaction can continue. Otherwise,
it must abort. When the transaction wants to commit, it has to acquire a global lock, which
allows only one transaction to commit at a time. Next, it validates its read-set, applies the
write-set to memory, increments the global clock and then releases the lock.

2.2.5 Hardware Transactional Memory

As mentioned earlier, TM was initially proposed as a hardware mechanism, with an imple-
mentation based on the idea of extending the cache coherence protocol already in use by
existing parallel processors. The main advantage of implementing TM in hardware is to
address the problem of the costly tracking the read and write sets in software. Several works
were conducted on how to efficiently implement Hardware Transactional Memory (HTM)
[65–68]. However, only 20 years after its initial proposal, a hardware implementation of TM
was first available in commercial processors. Before that, there were several unsuccessful
attempts such as the Rock Processor by Sun [69], which never made it to the market, and
the AMD Advanced Synchronization Facilities (ASF) [18], which remained a proposal, but
was never really implemented in real hardware.

One major drawback of all HTM proposals, including the ones available in real life
processors nowadays, is their best effort nature. This means that transactions may never
be able to commit successfully in hardware even in absence of concurrency, due to reasons
such as the size of the transaction or execution of prohibited instructions. The following
describes two of the current realizations of HTM in commodity hardware that are provided
by the two major processor manufacturers: Intel and IBM.

HTM Implementation in Intel Processors

In 2013, Intel released the Haswell processor, which was their first commercial processor to
include support of HTM [19]. Intel’s HTM implementation was accompanied by the release
of an extension of the instruction set, named Transactional Synchronization Extensions
(TSX). TSX is a set of new instructions, which allows programmers (or, more typically,
compilers) to mark the beginning and end of transactions. The hardware then guarantees
the atomicity of the transactions while hiding their updates until they commit successfully.
Intel implemented HTM in the cache coherence protocol with conflict detection granularity
of a single cache line. Empirical studies found out that writes are tracked in L1 cache,
and it is less clear how reads are tracked, as the available read capacity is larger than L2’s
capacity but smaller than L3’s — which has led some authors to conjecture the use of some
probabilistic data structure like bloom filters [70, 71].

TSX provided two interfaces for programmers to use HTM, one is Hardware Lock Eli-
sion (HLE), which performs hardware lock elision, and the other is Restricted Transactional
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Table 2.1: List of instructions provided in Intel TSX

Command Description

xacquire acquire a lock in HLE mode
xrelease release a lock in HLE mode
xbegin start a RTM transaction
xtest check if inside RTM transaction
xabort abort RTM transaction
xend commit RTM transactions

Memory (RTM). The main difference is that HLE allows for automatically replacing critical
sections in legacy applications with speculative transactions, whose retry logic is fully man-
aged in hardware. Conversely, RTM allows programmers to specify a custom transaction
retry logic in case the transaction fails to commit successfully in hardware (e.g., a single
global lock).

When programs request to start a transaction, a started code is placed in the, so called,
status buffer. If, later, the transaction aborts, the program counter jumps back to just
after the instruction used to begin the transaction. Hence, in order to distinguish whether
a transaction has just started, or has undergone an abort, programs must test the status
code returned after beginning the transaction.

HTM Implementation in IBM POWER8 Processors

This section provides background on POWER8’s HTM system. Analogously to TSX,
POWER8 has also new instructions to mark the beginning and end of transactions. In
addition to that, it also supports Suspend/Resume (S/R) instructions, which allow pro-
grammers to execute non-transactional code within a transaction.

Table 2.2: List of instructions provided in POWER8 HTM

Command Description

TM_begin(_rot) start a HTM (ROT) transaction
TM_abort abort HTM transaction
TM_named_abort abort HTM transaction with specific code
TM_suspend escape the transactional context
TM_resume return to the transactional context
TM_end commit HTM transactions

POWER8 detects conflicts with granularity of a cache line similar to Intel’s HTM.
However, instead of relying solely on caches to track accesses from within transactions;
POWER8 HTM uses a per hardware thread buffer, called TMCAM. In practice, the trans-
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action capacity is bound by TMCAM’s 8KB size, which stores the addresses of up to 64
distinct cache lines read or written within the transaction [72].

In addition to plain HTM transactions, POWER8 also supports a special type of trans-
actions, called Rollback-Only Transactions (ROT). The main difference being that, in
ROTs, only the writes are tracked in the TMCAM, giving virtually infinite read-set ca-
pacity. As such, ROTs cannot be used to regulate concurrent execution of generic transac-
tions, but are rather conceived as a mechanism aimed at ensuring failure-atomicity in single
threaded applications [21]. Both HTM transactions and ROTs detect conflict eagerly, i.e.,
they are aborted as soon as they incur a conflict.

Table 2.3: List of abort causes in POWER8 HTM

Abort type Description

HTM/ROT trans conflict conflict with another transaction
HTM/ROT non-trans conflict conflict with non-transactional code
HTM/ROT self conflict conflict with S/R block
HTM/ROT buffer overflow capacity exception
HTM/ROT user explicit abort call

2.2.6 Hybrid Transactional Memory
As mentioned earlier, existing HTM implementations adopt a bet effort approach and,
in order to guarantee liveness and forward progress, HTM must be complemented by a
software fallback. This fallback can be as simple as a global lock or as complex as a STM.
In the latter case, the resulting system is often referred to as Hybrid Transactional Memory
(HyTM) [22, 23]. The main challenge of designing HyTM is how to ensure correctness while
executing transactions concurrently in hardware and in the fallback software path without
incurring significant overheads [29] in both the hardware and software paths — sometimes
referred to as fast path and slow path. In the following, an overview of some of the most
representative HyTM implementations is provided.

Hybrid NOrec

Hybrid NOrec [24] or HyNOrec is one of the most popular implementation of HyTM. This
is due to its simplicity and performance as compared to other HyTM proposals. As the
name suggests, HyNOrec uses the NOrec STM as a fallback. Since NOrec uses only a single
global lock and only one update transaction is allowed to commit a time, minimal changes
are required to the fast path in order to ensure correctness.

When a transaction starts in HTM, it has to read the current value of NOrec’s global
lock — an operation that is often referred to as lock subscription in the literature, e.g. [73].
This is to ensure that when STM update transactions start their commit phase (during
which they have to acquire the global lock) they abort any concurrent HTM transactions
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to prevent them from reading inconsistent states during the write back phase of the STM
transaction. Finally, before a transaction commits in hardware, it must increment the
global clock to inform the concurrent STM transactions that it has committed — and may
have possibly updated data already accessed by the STM.

Several optimizations were proposed to enhance the performance on HyNOrec. A first
optimization consists in using a per thread counter to be incremented upon HTM commit
instead of a global clock. This can avoid spurious aborts caused by the commit of concurrent
HTM transactions; however, it introduces larger overheads for STM transactions, which
need to check all the per thread counters upon each read. An alternative approach, also
aiming at avoiding spurious aborts between HTM transactions, consists in incrementing the
global clock non-transactionally [25]. However, none of the existing HTM implementations
support the execution of individual non-transactional memory accesses from within the
context of a transaction. IBM’s POWER8 is only architecture that allows to approximate
this behavior, via its mechanism to S/R transactions, which, however, has non-negligible
costs [21].

Invyswell

After the introduction of Intel Haswell, Calciu et. al [27] proposed Invyswell as a HyTM
solution for Intel’s HTM. Invyswell has five different types of transactions: 1) STM trans-
actions that are based on InvalSTM [74], 2) HTM transactions with software tracking of
read and write sets, 3) plain HTM transactions, 4) single global lock and 5) irrevocable
software transactions.

In order to ensure correctness, not all types are allowed to execute concurrently. HTM
transactions without software tracking are only allowed to execute concurrently with other
HTM transactions, preventing concurrency with any other type of transaction. Invyswell
uses some thresholds to determine when to switch from one type of transaction to another.
It also relies on heuristics to enable and disable different types according to nature of the
workloads.

Reduced HyNOrec

Reduced HyNOrec [28] or RHyNOrec was introduced as an improved version of HyNOrec.
The main idea behind RHyNOrec is to replace the slow path with a new path, called mixed
path, that tries to execute as much as possible of the slow path inside hardware transactions.

When a mixed path transaction begins, it starts a ”prefix” hardware transactions ex-
ecuting as much reads as possible until it either reaches the first write, or consumes all
the available transactional capacity. It then reads the global clock and tries to commit the
”prefix” hardware transaction. After that, it executes normally according to NOrec’s logic,
using the global clock it read at the end of the ’prefix” transaction as the starting value.
When it reaches the commit phase. In the commit phase it acquires the lock, then starts a
”postfix” hardware transaction to write back the write-set atomically.



22 CHAPTER 2. BACKGROUND

If no transaction executes in the slow path, transactions executing in fast path do not
need to read the value of the clock at the beginning of the transaction as the STM writes
are executed using a hardware transaction. This eliminates false conflicts that arise in
HyNOrec when HTM transactions are aborted upon the commit of any STM transaction.
However, there are no guarantees that the hardware transactions in the mixed path will
ever succeed, due to the best effort nature of HTM. To this end, RHyNOrec makes use of
some heuristics to when to fallback to the slow path and execute similarly to HyNOrec

Hybrid-LSA

Riegel et. al [25] proposed Hybrid LSA (HyLSA) based on AMD’s ASF (see Section 2.2.5),
to use highly scalable LSA-based STM systems, such as TinySTM, as a fallback for HTM.
Hybrid-LSA incurs high instrumentation costs in its fast path upon each read, write and
the commit phase to ensure correctness between concurrent HTM and STM. The basic
intuition of HyLSA is to instrument accesses to shared data from within the fast path
and make them orec-aware. For a successful HTM read, the orec has to be found free.
Analogously, when writing, the HTM must acquire the orec, in order to make sure that it
will be aborted if a concurrent STM transaction accesses the respective same orec. Finally,
upon commit, the HTM must update the global clock and the orecs of its write-set, similar
to TinySTM.

HyLSA relies on the availability of non-speculative and prefetchw operations, which
were defined in the ASF’s specification, but are not available on any current HTM imple-
mentation. The only approximation for the former, which is to perform non-speculative
operations between S/R calls available on the POWER8 processor. This may not be prac-
tical as these operations are to be performed upon each read access, hence incurring a high
cost with current HTM implementations. Although this operation is not directly supported
by existing HTM implementations, it can in practice be emulated by reading and writing
back the value currently stored in the target memory position.

Hybrid-TL2

Matveev and Shavit [26] proposed an algorithm to employ another orec-based STM, TL2,
as a fallback for HTM, without the need of instrumenting read accesses to shared data.
With Hybrid TL2 (HyTL2), only writes issued from within transactions in the fast path
are instrumented to increment the respective orec. This notifies concurrent slow path
transactions of updates performed in the fast path. To protect HTM transactions from
witnessing inconsistent values, STM transactions need to acquire a global lock, that HTM
subscribes to, at the commit time.

2.2.7 Contention Management and Scheduling
Most TM designs follow an optimistic design in order to favor scalability in uncontended
workloads and avoid deadlocks. The consequence of such a design choice is that TM
implementations are likely to incur high abort rates in contention prone workloads with
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detrimental effects on the efficiency of the system. The TM literature has investigated a
large number of techniques that tackle precisely this issue and that can be seen as comple-
mentary and orthogonal to concurrency control scheme employed by the TM system. The
existing solutions in this space are typically classified as either Contention Management
(CM) or scheduling techniques.

CM mechanisms adopt a reactive policy, which is responsible to determine what to do
when conflicts do arise. Basically, when a conflict is detected, the CM is consulted on which
conflicting transaction to abort and when to restart it. Conversely, scheduling techniques
act proactively and aim at avoiding conflicts by preventing the concurrent execution of
transactions that are likely to generate conflicts.

Contention Management Policies

In the TM literature, a large number of CM schemes have been proposed [75–78]. Below,
some of the most popular CM techniques are overviewed:

• The polite CM backs off aborted transactions for exponentially increasing waiting
periods after each failed attempt.

• In both the karma and the polka CMs, an attacking transaction, i.e., a transaction
that generates a conflict with some other concurrent transaction, makes a number of
attempts equal to the difference among priorities (calculated from the timestamps)
of both transactions. In karma, there is constant back-off between each attempt, this
back-off grows exponentially in polka.

• With the greedy CM, if the transaction that is targeted by the conflict, or the victim
transaction, is waiting or has lower priority than the attacking transaction, then the
attacking transaction aborts it; otherwise, the attacking transaction waits, until the
victim either commits, aborts or starts waiting.

• The timestamp CM forces the attacking transaction, in case it is not older than the
victim, to wait for a predetermined number of time intervals. After attempting half
the number of intervals, the CM flags the victim as possibly defunct. After attempting
the full number of intervals, if the victim has the defunct flag set, the victim is aborted.
Meanwhile, if the victim transaction performs any transaction-related operation, its
defunct flag is reset.

• With the eruption CM, the attacking transaction waits exponentially for the victim
transaction if it has higher priority and increases its priority; otherwise the victim
transaction is aborted.

• Both, the suicide and the aggressive CMs abort the attacking and the victim trans-
actions respectively.
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• The two-phase CM uses suicide for read only and short transactions and greedy for
more complex transactions. This is the scheme employed by SwissTM that was de-
scribed in Section 2.2.4.

As for HTM systems, the fact that existing HTM implementations automatically decide
which transaction to abort upon a conflict and does not expose information such as the read
and write-sets and which transaction caused the conflict, makes most CMs not applicable.
From the above list only, polite can be used for HTM contention management.

Schedulers

CMs react after a conflict takes place to try to minimize its effect in the future, whereas
schedulers act proactively to try to avoid conflicts in the first place. There also exists a large
amount of works that addressed the problem of scheduling in the context of TM systems.
Some of the most notable solutions in this space are briefly overviewed next:

• Seer [79] uses a probabilistic model to detect conflicts in HTM, and accordingly force
the forces serialization of transactions that are predicted as prone to conflict.

• Steal-On-Abort (SOA) [80] and CAR-STM [81] assume a queue for each core. Upon
abort of a transaction, it is rescheduled to the queue of the core that executes the
other conflicting transaction.

• ProPS [82] used abort events to calculate contention probabilities between transac-
tions. When a transaction starts it may be forced to wait if it is ought to conflict
with a running transaction with a probability higher than a certain threshold.

• The shrink scheduler [83] is similar to ProPS, but in addition to abort events it uses
the read and write-sets to calculate the conflict probability.

• Both SER [84] and TxLinux [85] modified the Linux scheduler to be transaction aware.

• ATS [86] serializes all transactions using a single global lock when a contention factor,
that is calculated as a function of commits and aborts, exceeds a certain threshold.

Similar to CMs, not all schedulers can be used with HTM. Indeed, in the above list,
only ATS and Seer can be used with HTM. SOA and TxLinux were proposed as HTM
schedulers. However, they were designed for hypothetical HTM designs that provided
features not available in current real life HTM implementations.

2.3 Self-tuning for Transactional Memory
”No size fits all” is probably the most repeated phrase when discussing the design choices
of existing TM systems. Different workloads with different characteristics require different
configurations. Indeed, several studies [70, 72, 87, 88] have shown that, given the large
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number of factors affecting the workload characteristics of TM applications, there exists
no single TM implementation that excels across all workloads. This observation has mo-
tivated several proposals that leverage self-tuning mechanisms to adapt various internal
mechanisms or configuration parameters of TM systems to best fit the workload character-
istics.

Tuner [89] tackles the problem of deciding when to revert to the fallback path in case
transactions fail repeatedly to execute in hardware. To pursue this goal, Tuner relies on two
reinforcement learning techniques: the Upper Confidence Bounds (UCB) scheme [90], which
Tuner uses to identify the optimal retry policy before activating the pessimistic fallback
path upon a capacity exception; and a (probabilistic variant of) hill-climbing [91], which is
used to determine the retry budget.

It is well known [92] that, in many TM workloads, the highest performance is achieved
at a number of threads lower than the maximum degree of parallelism allowed by the un-
derlying hardware platform. This motivated the investigation of automatic techniques aim
at identifying the optimal level of parallelism. The various works published in this area can
be classified into three categories depending on whether they rely on analytical modeling,
offline learners and on-line learners. Offline learners use machine learning techniques to
build black-box models, trained used data-sets gathered prior to deploying the actual TM
application [93, 94]. Solutions based on analytical models, conversely, tend to rely on white-
box models that depart from a (possibly approximate) knowledge of the internal dynamics
of the TM system [95, 96]. Finally, on-line learners use black box techniques, which are
designed to exploit on-line feedback on system’s performance when using different system
configurations [92, 97, 98].

Unlike the previously mentioned solutions, which focus on tuning a single aspect of TM
systems, ProteusTM [99] explores a multidimensional space including the TM implementa-
tion, the degree of parallelism and then contention manager. To achieve this, ProteusTM
relies on techniques used in recommender systems [100], which entails offline training to
build performance predictors and on-line mechanisms to detect new workloads and predict
their optimal configuration.

2.4 Benchmarks for Transactional Memory

This section describes some of the most popular benchmarks used in the literature to
evaluate TM systems. These benchmarks shall be used, in the following chapters, to assess
the efficiency of the various contributions of this dissertation.

Concurrent data structures. TM systems are often evaluated using simple benchmarks
based on concurrent data structures, like hashmap, linkedlist and redblack trees. These
benchmarks typically have three types of operations: lookup, insert and delete. The ratio
of each operation in the workloads together with the structure and size of the datastructure
allow for controlling factors such as degree of contention and size of transactions.
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STAMP. This is a popular benchmark suite for TM systems, which contains seven dif-
ferent applications that emulate real world problems [101]. The different applications have
different characteristics in terms of size of transactions and degree of contention. The input
parameters allow to further tune the behavior of applications to stress certain aspects.

STMBench7. Another popular TM benchmark that has a large number of different
transactions that operate on a datastructure of graphs and indexes, which mimic CAD
applications [102]. Input parameters allow to exert control over length of graph traversals,
whether or not to allow structural modifications and the percentage of read only operations.

TPC-C is well known benchmark in the database community [103]. It represents a
wholesale supplier benchmark for relational databases, it consists of 5 different types of
transactions, two of which are read-only. This dissertation will make use of a version of
TPC-C that was ported to operate on in-memory database [104, 105] and, straightforwardly,
adapted to support TM.

Memcached is popular in memory key-value store [106]. Ruan et. al [107] ported the
lock based code of Memcached to a transactionalized version that uses the GCC TM API
which follows the C++ TM specifications [4], and, thus, can allow for plugging in custom
algorithms easily.
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POWER8-TM

This chapter presents POWER8-TM (P8TM), a novel TM that exploits two specific fea-
tures of specific features of the HTM implementation of IBM POWER8 processors, namely
Suspend/Resume (S/R) and Rollback-Only Transactions (ROTs), in order to overcome (or
at least mitigate) one of the key limitations stemming from the best-effort nature of existing
HTM system, namely the inability to execute transactions whose working sets exceed the
capacity of CPU caches. Some passages in this chapter have been quoted verbatim from
[40, 41].

3.1 Problem

Over the last few years, hardware supports for transactional memory (TM) have been
integrated in several mainstream commercial processors employed in a variety of comput-
ing platforms, ranging from commodity systems (Intel’s Haswell [19]), to servers (IBM’s
POWER [14]) and super computers (IBM zEC12 [16]).

Existing hardware implementations share various architectural choices, although they
do come in different flavors [15, 16, 19, 108]. The key common trait of current HTM sys-
tems is their best effort nature: current implementations maintain transactional metadata
(e.g., memory addresses read/written by a transaction) in the processor’s cache or spe-
cial hardware buffers. Due to the inherently limited nature of processor caches, current
HTM implementations impose stringent limitations on the number of memory accesses
that can be performed within a transaction, hence providing no progress guarantee even
for transactions that run in absence of concurrency. As such, HTM requires a fallback
synchronization mechanism (also called fallback path), which is typically implemented via
a pessimistic scheme based on a single global lock.

An important conclusion reached by several studies [70, 72, 88] is that HTM’s perfor-
mance excels with workloads that fit the hardware capacity limitations. Unfortunately,
though, HTM’s performance and scalability can be severely hampered in workloads that
contain even a small percentage of transactions that do exceed the hardware’s capacity.
This is due to the need to execute such transactions using a sequential fallback mechanism
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based on a single global lock (SGL), which causes the immediate abort of any concurrent
hardware transactions and prevents any form of parallelism.

3.2 Overview
To tackle the capacity limitation of HTM systems, P8TM incorporates several techniques,
which operate in synergy to expand the effective capacity available for update and read-only
transactions, as well as to preserve efficiency in adverse workloads.

Uninstrumented read-only transactions (UROs). P8TM executes read-only trans-
actions outside of the scope of hardware transactions, hence sparing them from the spuri-
ous aborts and capacity limitations that affect HTM, while still allowing them to execute
concurrency with update transactions. This result is achieved by exploiting the S/R mech-
anism of POWER8 to implement a RCU-like quiescence scheme where updates are not
made visible until already active readers have committed (see Section 2.1.2). The quies-
cence shelters UROs from observing inconsistent snapshots that reflect the commit events
of concurrent update transactions. A detailed description of how UROs are managed by
P8TM is provided in Section 3.3.1

ROT-based update transactions. In typical TM workloads, the read/write ratio tends
to follow the 80/20 rule, i.e., transactified methods tend to have large read-sets and much
smaller write sets [109]. This observation led to development of a novel concurrency control
scheme based on a novel hardware-aware software design: it combines the hardware-based
ROT abstraction—which tracks only transactions’ write sets, but not their read-sets, and,
as such, does not guarantee isolation—with software based techniques aimed to preserve
correctness in presence of concurrently executing ROTs, UROs, and plain HTM transac-
tions. Specifically, P8TM relies on a novel mechanism, called Touch-To-Validate (T2V), to
execute concurrent ROTs safely. T2V relies on a lightweight software instrumentation of
reads within ROTs and a hardware aided validation mechanism of the read-set during the
commit phase. The T2V algorithm is detailed in Section 3.3.2.

HTM-friendly (software-based) read-set tracking. A key challenge that had to be
tackled while designing P8TM was developing a “HTM-friendly” software-based read-set
tracking mechanism. In fact, all the memory writes issued from within a ROT, including
those needed to track in software the ROT read-set, are transparently tracked in hardware.
As such, the read-set tracking mechanism can consume cache capacity that could be other-
wise used to accommodate application-level writes issued from within a ROT. Section 3.5
presents two read-set tracking mechanisms that explore different trade-offs between space
and time efficiency.

Self-tuning. In order to ensure robust performance in a broad range of workloads, P8TM
integrates a lightweight reinforcement learning mechanism (based on the UCB algorithm
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[110]) that automates the decision of whether: (i) to use upfront ROTs and UROs, avoiding
at all to use HTM; (ii) to first attempt transactions in HTM, and then fallback to ROT-
s/UROs in case of capacity exceptions; or (iii) to even completely switch off ROTs/UROs,
using only HTM. The self-tuning mechanisms of P8TM are detailed in Section 3.6.

Finally, Section 3.7 shows the results of an extensive evaluation study of P8TM that en-
compasses synthetic micro-benchmarks and complex real-life applications from the STAMP
suite [101] and the popular TPC-C benchmark [103]. The results of the study show that
P8TM can achieve up ∼7× throughput gains with respect to plain HTM and extend its
capacity by more than one order of magnitude, while remaining competitive even in unfa-
vorable workloads.

3.3 Description
The key challenge in designing execution paths that can run concurrently with HTM is
efficiency: it is hard to provide a software-based path that executes concurrently with the
HTM path, while preserving correctness and speed. The main problem is that the protocol
must make the hardware aware of concurrent software memory reads and writes, which
requires to introduce expensive tracking mechanisms in the HTM path.

P8TM tackles this issue by exploiting two unique features of the IBM POWER8 ar-
chitecture: (i) S/R for hardware transactions, and (ii) ROTs. P8TM combines these new
hardware features with a RCU-like quiescence scheme in a way that avoids the need to
track reads in hardware. This can in particular reduce the likelihood of capacity aborts
that would otherwise affect transactions that perform a large number of reads.

The key idea is to provide two novel execution paths alongside the HTM path: (i) a, so
called, URO path, which executes read-only transactions without any instrumentation, and
(ii) a, so called, ROT path, which executes update transactions that do not fit in HTM as
ROTs.

HTM transactions and ROTs exploit the speculative hardware support to hide writes
from concurrent reads. This allows coping with read-write conflicts that occur during
ROTs/UROs, but it does not cover read-write conflicts that occur after the commit of
an update transaction. For this purpose, before an update transaction (running either
as a HTM transaction or a ROT) commits, it first suspends itself and then executes a
quiescence mechanism that waits for the completion of currently executing ROTs/UROs.
In addition to that, in case the committing update transaction is enclosed in a ROT, it
further executes an original touch-based validation step, which is described later, before
resuming and committing. This process of “suspending and waiting” ensures that the
writes of an update transaction will be committed only if they do not target/overwrite any
memory location that was previously read by any concurrent ROT/URO.

3.3.1 Uninstrumented Read-Only Transactions
P8TM exploits the S/R mechanism to execute read-only transactions without resorting to
the use of hardware transactions or performing instrumentation of read operations on shared
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URO-begin URO-commitr(x) r(?)

w-begin w-commitw(x) w(y)

Delayed commit

T1

T2

Figure 3.1: In order to preserve consistency, the write back of shared variables updated
by an update transaction must be delayed until after any URO transaction has completed
execution.

URO-begin URO-commitr(x) r(y)

w-begin w-commit abortw(x)

suspend resume

Conflict
T1

T2

Figure 3.2: A read access to a shared variable updated by a suspended update transaction
will abort the latter (when it resumes).

data (URO path). This provides the key benefit of ensuring strong progress guarantees for
read-only transactions, which are spared by spurious (and repeated) aborts caused by the
underlying HTM implementation.

Let us assume, for simplicity, that update transactions execute only using HTM (the
case of ROT-based update transactions is analogous and will be discussed more in detail
in Section 3.4.3). HTM transactions (and ROTs) buffer memory writes until the point of
commit, hence, concurrent read-only transactions can safely execute with update transac-
tions, as long as the latter ones do not commit. In fact, any read performed by a URO after
a conflicting write of a concurrent update transaction will immediately abort the latter.

However, it is unsafe for update transactions to commit when there are concurrent
UROs. This is illustrated in Figure 3.1 where an uninstrumented read-only transaction
(T1) and an update transaction (T2) concurrently access two shared variables. As T2 fully
executes between two read accesses by T1, T2 cannot detect the concurrent execution of
T1 and, by committing, T2 would expose T1 to an inconsistent snapshot that may contain
a mix of old and new values (if r(?)6=r(y) in the figure). To overcome this problem, a
key idea in P8TM is to suspend the hardware speculation of an update transaction, and
then wait for all current UROs to complete by using an RCU-like (epoch-based) quiescence
mechanism [36–38]. This suspend-wait sequence has a two-fold effect. First, it drains all
current read-only transactions that may read a location written by a suspended update
transaction, as these may be exposed to inconsistent snapshots if the update transaction
committed before their completion (as illustrated in Figure 3.1. Second, any read issued
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w-begin(ROT) r(x) r(x)

w-begin(ROT) commitw(x)
Invalid read

T1

T2

Figure 3.3: ROTs do not track reads and may, as such, observe different values when reading
the same variable multiple times.

w-begin(ROT) r(x) w(y) v:r(x)

w-begin(ROT) abortw(x) r(y)
Conflict

T1

T2

Figure 3.4: By re-reading x during rot-rset validation at commit time (denoted by v:r), T1
forces the abort of T2 that has updated x in the meantime.

to a location previously written by a suspend hardware transaction will cause the abort of
the latter, as illustrated in Figure 3.2. As a result, after the wait is complete, it is safe to
commit the update transaction, so P8TM simply resumes hardware speculation and issues
a commit request.

3.3.2 Touch-based Validation

Touch-To-Validate (T2V) is another core mechanism of P8TM that enables safe and con-
current execution of ROT-based update transactions. As already mentioned, in fact, ROTs
do not track read accesses in hardware. As such, their concurrent execution is generally
unsafe, as illustrated by the example in Figure 3.3. Thread T1 starts a ROT and reads x.
At this time, thread T2 starts a concurrent ROT, writes a new value to x, and commits. As
ROTs do not track reads, they are unable to detect write-after-read conflicts. As such, the
ROT of T1 does not get aborted and can read inconsistent values (e.g., the new value of x).
To avoid such scenarios T2V leverages two key mechanisms that couple: (i) software-based
tracking of read accesses; and (ii) hardware- and software-based read-set validation during
the commit phase.

For the sake of clarity, assume that threads only execute ROTs — other execution
modes later will be considered later. A thread can be in one of three states: inactive,
active, and committing. A thread that executes non-transactional code is inactive. When
the thread starts a ROT, it enters the active phase and starts tracking, in software, each
read access to shared variables by logging the associated memory address in a special data
structure called rot-rset. Finally, when the thread finishes executing its transaction, it
enters the committing phase. At this point, it has to wait for concurrent threads that
are in the active phase to either enter the commit phase or become inactive (upon abort).
Thereafter, the committing thread traverses its rot-rset and re-reads each address before
eventually committing.
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The goal of this validation step is to “touch” each previously read memory location
in order to abort any concurrent ROT that might have written to the same address. For
example, in Figure 3.4, T1 re-reads x during rot-rset validation. At that time, T2 has
concurrently updated x but has not yet committed, and it will therefore abort (remember
that ROTs track and detect conflicts for writes). This allows T1 to proceed without breaking
consistency: indeed, ROTs buffer their updates until commit and hence the new value of x
written by T2 is not visible to T1. Note that adding a simple quiescence phase before commit,
without performing the rot-rset validation, cannot solve the problem in this scenario.

The originality of the T2V mechanism is that the ROT does not use read-set validation
for verifying that its read-set is consistent, as many STM algorithms do, but to trigger
hardware conflicts detection mechanisms. This also means that the values read during
rot-rset validation are irrelevant and ignored by the algorithm.

3.4 Algorithm
This section provides a detailed description of P8TM’s algorithm. For the sake of clarity,
P8TM is presented in an incremental fashion. First, describing the management of the
URO path (Section 3.4.1) and of the ROT path (Section 3.4.2), each on its own. Then,
in Section 3.4.3 provides a complete description of the algorithm, by discussing (i) how to
extend the ROT path to first attempt using HTM transactions, and (ii) how to synchronize
the URO and ROT paths with the pessimistic fallback path (based on a single global lock).

Finally, in Section 4.4.1, the correctness of the proposed solution is discussed.

3.4.1 URO Path
Let us start by considering an initial version of the P8TM algorithm (Algorithm 1) that
assumes that read-only transactions execute in the URO path, and that update transactions
execute using plain HTM transactions. For simplicity, this version of the algorithm blindly
retries failed update transactions, irrespective of the abort cause.

To ensure proper synchronization with update transactions, P8TM must keep track
of which UROs are executing. This is achieved by having every thread maintain a status
variable, that is set and unset in the BEGIN_RO() and COMMIT_RO() functions when
respectively starting and ending a read-only transaction.

Update transactions are started and committed by calling the BEGIN() and COM-
MIT() functions. They execute as plain HTM transactions, hence, throughout the exe-
cution of an update transaction, the memory writes are buffered and, thus, hidden from
UROs.

Assume there is an update transaction and a concurrent URO that, respectively, update
and read the same shared variable. If the memory access in the URO path occurs after the
update transaction has written the variable, then the update transaction will immediately
abort and restart. If however, the read occurs before the update transaction issues the write
access, then no conflict will be detected and the URO will be serialized before the update
transaction.
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Algorithm 1 P8TM: URO path only algorithm
1: Shared variables:
2: status[N ]← {⊥,⊥, . . . ,⊥} . One per thread
3: Local variables:
4: tid ∈ [0..N ] . Identifier of current thread
5: function synchronize
6: s[N ]← status . Read all statuses
7: for i← 0 to N−1 do .Wait until all threads...
8: if s[i] is ACTIVE then . ...running UROs...
9: wait until status[N ] 6= s[i] . ...end
10: end function
11: function begin_ro
12: status[tid]← ACTIVE . Update thread’s status
13: mem_fence . Ensure visibility to update txs.
14: end function
15: function commit_ro
16: status[tid]← ⊥ . Reset thread’s status
17: end function
18: function begin_w . Start update tx.
19: repeat until tx_begin = STARTED
20: end function
21: function commit_w
22: tx_suspend . Suspend transaction
23: synchronize . Let UROs drain their reads
24: tx_resume . Resume transaction
25: tx_commit .Write back updates
26: end function

When an update transaction completes its execution, it must issue a commit request
in order to write back its (speculative) updates. Yet, doing so without precaution would
break consistency, since a URO might see a mix of old and new data (prior and after the
commit of the update transaction).

Therefore, before commit, an update transaction waits for all UROs that might have
read any of the locations it has written to. Since P8TM does not keep track of which memory
locations have been accessed by UROs (which would require software instrumentation of
memory accesses), it relies on a lightweight, RCU-like, quiescence mechanism that waits
for the completion of any URO found active at the beginning of the quiescence phase. This
is implemented in the synchronize() function by reading the status of each thread once
and waiting for all active to change value. Note that this quiescence mechanism does not
prevent the start of new read-only transactions, nor forces a suspended update transaction
to wait for read-only transactions activated after the start of its quiescence phase. This is
safe, since read-after-write conflicts will be handled as described above, i.e., by aborting
the update transaction.

An additional challenge is that the quiescence barrier cannot be implemented straight-
forwardly in the context of hardware transaction. The problem is that if a URO updates its
status that is being monitored by some concurrent update transaction, this will be detected
as a read-write conflict, and lead to the abort of the update transaction.

To tackle this issue, P8TM exploits the S/R mechanism of the POWER8 processor,
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which allows to temporarily suspend the active transaction, perform non-transactional op-
erations, and later resume the transaction. P8TM relies on this feature to execute the
quiescence phase and allow update transactions to monitor the status of concurrent UROs
without incurring spurious aborts.

Note that any conflict occurring while a transaction is suspended will trigger an abort
upon its resume, hence protecting concurrent UROs from seeing inconsistent snapshots.
Indeed, consider a URO that starts after the call to synchronize(), i.e., which has not
been found active by an update transaction upon the start of its quiescence phase. This
URO will execute concurrently with the write-back phase of the update transaction. If the
URO reads any memory location that has been updated by the update transaction before
this completes its write-back phase (which is atomic), then the latter will abort; else, if
the read is issued after the completion of the write-back phase, the URO will see the new
version.

3.4.2 ROTs Path

We now present a version of the P8TM algorithm (Algorithm 2) assuming only the existence
of update transactions running in the ROT path. Also in this case, for simplicity, ROTs
blindly retry to execute failed attempts irrespective of the abort cause.

To start an update transaction, a thread first lets others know that it is active and ini-
tializes its data structures before actually starting a ROT (Lines 8–11). Then, during ROT
execution, it just keeps track of reads to shared data by adding them to the thread-local
rot-rset (Line 15). To complete the ROT, the thread first announces that it is committing
by setting its shared status variable. Note that this is performed while the ROT is sus-
pended (Lines 28–31) because otherwise the write would be buffered and invisible to other
threads.

Next, the algorithm quiesces by waiting for all threads that are in a ROT to at least reach
their commit phase (Lines 17–22). It then executes the touch-based validation mechanism,
which simply consists in re-reading all address in the rot-rset (Lines 23–26), before finally
committing the ROT (Line 34) and resetting the status.

3.4.3 Complete Algorithm

The naive approach of the basic algorithm to only use ROTs is unfortunately not practical
nor efficient in real-world settings for two main reasons: (1) ROTs only provide “best effort”
properties and thus a fallback is needed to guarantee liveness; and (2) using ROTs for short
transactions that fit in a regular HTM transaction is inefficient because of the overhead
of the software-based read tracking and validation mechanisms. Therefore, the algorithm
is extended so that if first tries to use regular transactions, then upon failure switches to
ROTs, and finally falls back to a global lock (GL) in order to guarantee progress. The
pseudo-code of the complete algorithm is shown in Algorithms 3, 4 and 5.

For HTM transactions and ROTs to execute concurrently, the former must delay their
commit until completion of all active ROTs. This is implemented using an RCU-like quies-
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Algorithm 2 P8TM: ROT path only algorithm
1: Shared variables:
2: status[N ]← {⊥,⊥, . . . ,⊥} . One per thread

3: Local variables:
4: tid ∈ [0..N ] . Identifier of current thread
5: rot-rset ← ∅ . Transaction’s read-set

6: function begin_rot
7: repeat . Blindly retry ROT
8: status[tid]← ACTIVE . Update status
9: mem_fence . Make sure others know
10: rot-rset ← ∅ . Clear read-set
11: tx← tx_begin_rot . Start ROT
12: until tx = STARTED . Repeat until success...
13: end function
14: function read(addr) . Read shared variable
15: rot-rset ← rot-rset ∪{addr} . Track ROT reads
16: end function
17: function synchronize
18: s[N ]← status . Read and copy all status variables
19: for i← 0 to N−1 do .Wait until all threads...
20: if s[i] = ACTIVE then . ...that are active...
21: wait until status[i] 6= s[i] . ...end
22: end function
23: function touch_validate
24: for addr ∈ rot-rset do . Re-read all elements...
25: read addr . ...from read-set
26: end function
27: function commit_rot
28: tx_suspend . Suspend ROT
29: status[tid]← ROT-COMMITTING . Tell others...
30: mem_fence . ...we are committing
31: tx_resume . Resume ROT
32: synchronize . Quiescence inside ROT
33: touch_validate . Touch to validate
34: tx_commit_rot . Commit ROT
35: status[tid]← ⊥
36: end function

cence mechanism as in the URO algorithm (Lines 12–17). Note that a simple quiescence,
without a validation step afterwards, is sufficient in this case.

In this version, aborted hardware transactions and ROTs are blindly retried. Conversely,
the status code returned by tx_begin/tx_begin_rot is exploited to determine which
retry policy to use. If the return code of tx_begin/tx_begin_rot is STARTED, indicating
success, the HTM transaction/ROT can start executing speculatively. If an abort happens
during execution of a HTM transaction/ROT, then controls jumps back to just after the
call to tx_begin/tx_begin_rot and the status code contains information about the
failure cause. For the sake of simplicity, assume that the status code can be STARTED,
TRANSIENT-ABORT, or CAPACITY-ABORT to respectively indicate if the transaction executes
speculatively, or has aborted due a problem that is unlikely (e.g., contention) or likely
(capacity) to be encountered again in a subsequent attempt.
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Algorithm 3 P8TM: complete algorithm
1: Shared variables:
2: status[N ]← {⊥,⊥, . . . ,⊥} . One per thread
3: glock ← FREE . Spin lock to serialize transactions
4: Local variables:
5: tid ∈ [0..N ] . Identifier of current thread
6: mode ∈ {HTM, ROT, GL} . Transaction mode
7: rot-rset ← ∅ . Transaction’s read-set
8: function read(addr) . Read shared variable
9: if mode = ROT then
10: rot-rset ← rot-rset ∪{addr} . Track ROT reads
11: end function
12: function synchronize
13: s[N ]← status . Read and copy all status variables
14: for i← 0 to N−1 do .Wait until all threads...
15: if s[i] = ACTIVE . ...that are active...

∨ (mode = GL ∧ s[i] = ROT-COMMITTING) then
16: wait until status[i] 6= s[i] . ...cross barrier
17: end function
18: function touch_validate
19: for addr ∈ rot-rset do . Re-read all elements...
20: read addr . ...from read-set
21: end function
22: function begin_w
23: wait until glock = FREE . Global lock must be free
24: begin_htm . Try HTM first
25: if mode 6= HTM then . If HTM fails...
26: begin_rot . ...fall back to ROT
27: if mode 6= ROT then . If ROT also fails...
28: begin_gl . ...default to global lock
29: end function
30: function begin_htm
31: trials← 0
32: repeat . Retry HTM a few times
33: trials← trials+1
34: tx← tx_begin . HTM begin
35: if tx = STARTED then . Success?
36: if glock 6= FREE then . Add lock to read-set
37: tx_abort . Abort if lock taken
38: mode← HTM . Run in HTM mode
39: until mode = HTM . Repeat until success...

∨ tx = CAPACITY-ABORT . ...or capacity abort...
∨ trials > MAX-HTM-TRIALS . ...or too many trial

40: end function
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Algorithm 4 P8TM: complete algorithm (2)
1: function begin_rot
2: trials← 0
3: repeat . Retry ROT a few times
4: trials← trials+1
5: status[tid]← ACTIVE . Update status
6: mem_fence . Make sure others know
7: if glock 6= FREE then . Global lock taken?
8: status[tid]← ⊥ . Yes: defer to GL...
9: wait until glock = FREE . ...wait...
10: go to 5 . ...and retry
11: rot-rset ← ∅ . Clear read-set
12: tx← tx_begin_rot . HTM ROT begin
13: if tx = STARTED then . Success?
14: mode← ROT . Run in ROT mode
15: until mode = ROT . Repeat until success...

∨ tx = CAPACITY-ABORT . ...or capacity abort...
∨ trials > MAX-HTM-TRIALS . ...or too many trial

16: end function
17: function begin_gl
18: status[tid]← ⊥ . Not using TM
19: mem_fence . Make sure others know
20: repeat . Acquire global lock
21: wait until glock = FREE . Test and...
22: until CAS(glock, FREE, LOCKED) . ...test and set
23: mode← GL . Run in GL mode
24: synchronize . Perform quiescence phase
25: end function
26: function commit_w
27: switch mode do
28: case HTM
29: tx_suspend . Suspend transaction
30: synchronize . Perform quiescence phase
31: tx_resume . Resume transaction
32: tx_commit . End transaction
33: case ROT
34: tx_suspend . Suspend transaction
35: status[tid]← ROT-COMMITTING . Tell others...
36: mem_fence . ...we are committing
37: tx_resume . Resume transaction
38: synchronize . Quiescence inside ROT
39: touch_validate . Touch to validate
40: tx_commit . End transaction
41: status[tid]← ⊥
42: case GL
43: glock ← FREE . Release global lock
44: end function
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Algorithm 5 P8TM: URO path
1: function begin_ro
2: status[tid]← ACTIVE . Update thread’s status
3: mem_fence . Ensure visibility to update txs.
4: if glock 6= FREE then . Global lock taken?
5: status[tid]← ⊥ . Yes: defer to GL...
6: wait until glock = FREE . ...wait...
7: go to 2 . ...and retry
8: end function
9: function commit_ro
10: status[tid]← ⊥ . Reset thread’s status
11: end function

Transactions try to run in HTM and ROT modes a limited number of times, switching
immediately if the cause of the failure is a capacity abort (Lines 39 and 15). The GL
fallback uses a basic spin lock, which is acquired upon transaction begin (Lines 20–21)
and released upon commit (Line 43). Observe that the quiescence mechanism must also
be called after acquiring the lock to wait for completion of ROTs that are in progress and
might otherwise see inconsistent updates (Line 24), and that the GL path must actually
wait for ROTs to fully complete, not just enter the commit phase as for the other execution
modes (Line 15). The rest of the algorithm is relatively straightforward.

To understand the intuition behind how URO path can be integrated safely with con-
current update transactions, consider first that transactions that do not modify shared data
cannot cause the abort of a HTM transaction or a ROT. Furthermore, because HTM trans-
actions and ROTs buffer their writes and quiesce before committing, they cannot propagate
inconsistent updates to UROs.

Finally, GL and UROs cannot conflict with each other as long as they do not run
concurrently. This is ensured by the quiescence phase after acquiring the global lock, and
the fact that UROs do not start executing until the lock is free (Line 6). Note that, if the
lock is taken, UROs defer to the update transaction holding the global lock by resetting
their status (Line 5) before waiting for the lock to be free and retrying the whole procedure.
Otherwise P8TM could run into a deadlock situation with a URO waiting for the lock held
by a GL transaction, while the latter is blocked in quiescence waiting for the former to
complete its execution.

3.4.4 Correctness Argument.

When the GL path is active, concurrency is disabled. This is guaranteed since: (i) transac-
tions in HTM path subscribe eagerly to the GL, and are thus aborted upon the activation
of this path; (ii) after the GL is acquired, a quiescence phase is performed to wait for active
ROTs or UROs. Atomicity of a transaction in the HTM path is provided by the hardware
against concurrent HTM transactions/ROTs and by GL subscription.

As for the UROs, the quiescence mechanism guarantees two properties:

• UROs activated after the start of an update transaction T , and before the start of T ’s
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quiescence phase, can be safely serialized before T because they are guaranteed not to
see any of T ’s updates, which are only made atomically visible when the corresponding
HTM transaction/ROT commits;

• UROs activated after the start of the quiescence phase of an update transaction T
can be safely serialized either after T because they are guaranteed to abort T in case
they read a value written by T before T commits, or after T as they will see all
the updates produced by T ’s commit. It is worth noting here though that this is
only relevant when a URO may conflict with T , in case of disjoint operation both
serialization orders are equivalent.

Now we are only left with transactions running on the ROT path. The same properties
of quiescence for UROs apply here and avoid ROTs reading inconsistent states produced
by concurrent HTM transactions. Nevertheless, since ROTs do modify the shared state,
they can still produce non-serializable histories; such as the scenario in Figure 2. Assume a
ROT, say T1, issued a read on X, developing a read-write conflict, with some concurrently
active ROT, say T2. There are two cases to consider: T1 commits before T2, or vice-versa.

If T1 commits first, then if it reads X after T2 (which is still active) wrote to it, then
T2 is aborted by the hardware conflict detection mechanism. Else, we are in presence of a
write-after-read conflict. T1 finds status[T2] := ACTIV E (because T2 issues a fence before
starting) and waits for T2 to enter its commit phase (or abort). Then T1 executes its T2V,
during which, by re-reading X, would cause T2 to abort.

Consider now the case in which T2 commits before T1. If T1 readsX, as well as any other
memory position updated by T2, before T2 writes to it, then T1 can be safely serialized before
T2 (as T1 observed none of T2’s updates). If T1 reads X, or any other memory position
updated by T2, after T2 writes to it and before T2 commits, then T2 is aborted by the
hardware conflict detection mechanism; a contradiction. Finally, it is impossible for T1
to read X after T2 commits: in fact, during T2’s commit phase, T2 must wait for T1 to
complete its execution; hence, T1 must read X after T2 writes to it and before T2 commits,
falling in the above case and yielding another contradiction.

3.5 Read-set Tracking

The T2V mechanism requires to track the read-sets of ROTs for later replaying them
at commit time. The implementation of the read-set tracking scheme is crucial for the
performance of P8TM. In fact, as discussed in Section 2.2.5, ROTs do not track loads at
the TMCAM level, but they do track stores and the read-set tracking mechanism must issue
stores in order to log the addresses read by a ROT. The challenge, hence, lies in designing
a software mechanism that can exploit the TMCAM’s capacity in a more efficient way than
the hardware would do. Two alternative mechanisms that tackle this challenge by exploring
different trade-offs between computational and space efficiency are described next.
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Time-efficient implementation uses a thread local, cache aligned array, where each
entry is used to track a 64-bit address. Since the cache lines of the POWER8 CPU are 128
bytes long, this means that 16 consecutive entries of the array, each storing an arbitrary ad-
dress, will be mapped to the same cache line and occupy a single TMCAM entry. Therefore,
this approach allows for fitting up to 16× larger read-sets within the TMCAM as compared
to the case of HTM transactions. Given that they track 64 cache lines, thread-local arrays
are statically sized to store exactly 1024 addresses. It is worth noting here that since con-
flicts are detected at the cache line level granularity, it is not necessary to store the 7 least
significant bits, as addresses point to the same cache line. However, this optimization is
omitted as this will add extra computational overhead, yielding a space saving of less than
10%.

Space-efficient implementation seeks to exploit the spatial data locality in the ap-
plication’s memory access patterns to compress the amount of information stored by the
read-set tracking mechanism. This is achieved by detecting a common prefix between the
previously tracked address and the current one, and by storing only the differing suffix and
the size (in bytes) of the common prefix. The latter can be conveniently stored using the 7
least significant bits of the suffix, which, as discussed, are unnecessary. With applications
that exhibit high spatial locality (e.g., that sequentially scan memory), this approach can
achieve significant compression factors with respect to the time-efficient implementation.
However, it introduces additional computational costs, both during the logging phase (to
identify the common prefix) and in the replay phase (as addresses need to be reconstructed).

3.6 Self-tuning

In workloads where transactions fit the HTM’s capacity limitations, P8TM still forces HTM
transactions to incur the overhead of S/R, in order to synchronize them with possible
concurrent ROTs. In these workloads, the ideal decision would be to just disable the ROT
path, so to spare the HTM path from any overhead. However, it is not trivial to determine
when it is beneficial to do so; this is workload dependent and it can be hard to determine
via static analysis, especially in applications that make intensive use of pointers.

This issue is addressed by integrating into P8TM a self-tuning mechanism based on a
lightweight reinforcement learning technique, UCB [110], which will be described shortly.
UCB determines, in an automatic fashion, which of the following modes to use: (M1) HTM
falling back to ROT, and then to GL; (M2) HTM falling back directly to the GL; (M3) start-
ing directly in ROT before falling back to the GL. Note that UROs and ROTs impose
analogous overheads to HTM transactions. Thus, in order to reduce the search space to be
explored by the self-tuning mechanism, whenever the ROT path is disabled, the URO path
is also disabled. In such cases read-only transactions are treated as update transactions.

Figure 3.5 shows the three paths and the rules for switching between them. When ROTs
are disabled (M1⇒M2), the quiescence call within transactions can be skipped only once
there are no more active ROTs. When switching from M2 to M3, instead, it is enough
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Figure 3.5: Different execution paths that can be used by transactions and rules for switch-
ing between them. Lines within rules represent necessary memory barriers.

to enable ROTs after having ensured, via a memory fence, that all threads are informed
about the need to enable quiescence. This forces any active HTM transaction to perform
the quiescence once it reaches its commit phase, while it will abort any active transaction
that has reached commit stage but has not yet committed (since the flag is already part of
the read-set). The other rules are straightforward.

UCB

Upper confidence bounds (UCB) [90] is a provably optimal solution to the multiarmed
bandit problem [111], i.e., a classical reinforcement-learning problem that embodies the
trade-off between exploration and exploitation. In the multiarmed bandit, a gambler tries
to maximize the reward obtained from playing different levers of a multiarmed slot machine,
where the levers’ rewards are random variables with a priori unknown distributions. The
use of the UCB technique is motivated by the strong theoretical guarantees1 while imposing
negligible computational overheads. After an initial phase, in which every lever is sampled
once, UCB estimates the expected reward for lever i as x̄i +

√
(2logn)/ni, where: x̄i is the

average reward for lever i; n is the number of the current trial; and ni is the number of
times the lever i has been tried.

In order to use UCB in P8TM, each execution mode is associated with a different lever,
and its reward to the throughput obtained by using that mode during a sampling interval

1Logarithmic bounds on the cumulative error, called regret, from playing non-optimal levers even in
finite time horizons [90].
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of 100 microseconds.

3.7 Evaluation
This section shows the evaluation of P8TM against state of the art TM systems using a
set of synthetic micro-benchmarks and complex, real-life applications. It first starts by
evaluating both variants of read-set tracking to show how they are affected by the size of
transactions and degree of contention. A sensitivity analysis aimed to investigate various
factors that affect the performance of P8TM is then is conducted. To this end, a micro-
benchmark that manipulates a hashmap via lookup, insert, and delete transactions was
used. Finally, P8TM is tested using two complex, realistic workloads: the popular STAMP
benchmark suite and a port to the TM domain of the TPC-C benchmark for in-memory
databases.

The following baselines were considered: (i) plain HTM with a global lock fallback
(HTM-SGL), (ii) NOrec with write back configuration, and finally (iii) the Hybrid NOrec
algorithm with three variables to synchronize transactions and NOrec fallback (HyNOrec).

Regarding the retry policy, HTM path is executed 10 times and the ROT path is
executed 5 times before falling back to the next path, except upon a capacity abort when
the next path is directly activated. These values and strategies were chosen after doing
an extensive offline experiment and selecting the best on average with different number of
retries and different capacity aborts handling policies (e.g., fallback immediately vs treating
it as a normal abort). All results presented in this section represent the mean value of at
least 5 runs. The experiments were conducted on a machine equipped with IBM POWER8
8284-22A processor that has 10 physical cores, with 8 hardware threads each. The source
code was compiled with GCC 6.2.1 using -O2 flag on top of Fedora 24 with Linux 4.5.5.
Thread pinning was use to pin a thread per core at the beginning of each run for all the
solutions, and threads were distributed evenly across the cores.

3.7.1 Read-set Tracking
The goal of this section is to understand the trade-off between the time-efficient and the
space-efficient implementations of read-set tracking that were explained earlier in Sec-
tion 3.5. Three variants of P8TM are compared: (i) time-efficient read-set tracking (TE),
(ii) a variant of space-efficient read-set tracking that only checks for prefixes of length
4 bytes, and otherwise stores the whole address (SE), and finally (iii) a more aggressive
version of space-efficient read-set tracking that looks for prefixes of either 6 or 4 bytes
(SE++).

Throughout this section, the number of threads is fixed to 10 (number of physical cores)
and the percentage of update transactions at 100%, disabled the self-tuning module, and
varied the transaction length across orders of magnitude to stress the ROT-path.

First, an almost contention-free workload to highlight the effect of capacity aborts alone
is considered. The speedup with respect to HTM-SGL, breakdown of commits and aborts
for this workload is shown in the first row of Figure 3.6. The three variants of P8TM
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Figure 3.6: Evaluation of different implementations of read-set tracking.

achieve almost the same performance as HTM-SGL with small transaction sizes that fit
inside regular HTM transactions, as seen from the commits breakdown. However, when
moving to larger transactions, the three variants start outperforming HTM-SGL by up
to 5.5× due to their ability to fit transactions within ROTs. The aborts breakdown in
this region shows that all P8TM variants suffer from almost 50% capacity aborts when
first executing in HTM, and almost no capacity aborts when using the ROT path. This
shows the clear advantage of the T2V mechanism and how it can fit more than 10× larger
transactions in hardware.

Comparing TE with SE and SE++, both space-efficient variants are able to execute even
larger transactions as ROTs. Nevertheless, they incur an extra overhead, which is reflected
as a slightly lower speedup than TE, before this starts to experience ROT capacity aborts;
only then their ability to further compress the read-set within TMCAM pays off. Again,
by looking at the commits and aborts breakdown, both space-efficient variants manage
to commit all transactions as ROTs when TE is already forced to execute using the GL.
Finally, when comparing SE and SE++, it can be concluded that trying harder to find
longer prefixes is not useful, as in this workload there is a very low probability that the
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accessed addresses share 6 bytes long prefixes.
The second row in Figure 3.6 shows the results for a workload that exhibits a higher

degree of contention. In this case, with transactions that fit inside regular HTM transac-
tions, HTM-SGL can outperform both SE and SE++ by up to 2× and TE by up to ∼30%.
Since P8TM tries to execute transactions as ROTs after failing 10 times with HTM due to
conflicts, the ROT path may be activated even in absence of capacity aborts; hence, the
overhead of synchronizing ROTs and HTM transaction becomes relevant even with small
transactions. With larger transactions, the computational costs of SE and SE++ are more
noticeable in this workload where they are always outperformed by TE, as long as this is
able to fit at least 50% of transactions inside ROTs. Furthermore, the gains of SE and
SE++ with respect to TE are much lower when compared to the contention-free workload.
From this, it can be deduced that TE is more robust to contention. This was also confirmed
with the other workloads that will be discussed next.

3.7.2 Sensitivity Analysis

The results of a sensitivity analysis aimed to assess the impact of the following factors on
P8TM’s performance: (i) the size of transactions, (ii) the degree of contention, and (iii) the
percentage of read-only transactions. Three dimensions were explored using the following
configurations: (i) high capacity, low contention, (ii) high capacity, high contention, and
(iii) low capacity, low contention, with 10%, 50%, and 90% update transactions.

The results for low capacity, high contention workload were skipped since they do not
convey any extra information with respect to the low capacity, low contention scenario
(which is actually even more favorable for HTM). These experiments compare three variants
of P8TM to highlight the breakdown of gains from the various components: (i) P8TMuro

executes read-only transactions as UROs while update transactions execute in HTM and
fallback to a sequential ROT before acquiring the global lock, this highlights gains achiev-
able through URO only, while, (ii) P8TM enables both UROs and concurrent ROTs with the
TE read-set tracking, thus benefits from both UROs and T2V, and finally, (iii) P8TMucb

augments P8TM with the self-tuning to decide upon the most efficient execution path.

High capacity, low contention. Figure 3.7 shows the throughput, commits and abort
breakdown for the high capacity, low contention configuration. For the read dominated
workload, all variants of P8TM are able to outperform all the other TM solutions by up to
7×. This can be easily explained by looking at the commits breakdown, where variants of
P8TM commit 90% of their transactions as UROs while the other 10% are committed as
ROTs. However, since P8TM and P8TMucb are capable of parallelizing ROTs, they achieve
∼2.4× higher throughput than P8TMuro.

On the contrary, HTM-SGL commits only 10% of the transactions in hardware and falls
back to GL in the rest, due to the high capacity aborts it incurs. It is worth noting that the
decrease in the percentage of capacity aborts, along with the increase of number of threads,
is due to the activation of the fallback path, which forces other concurrent transactions to
abort.
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Figure 3.7: High capacity-low contention configuration: throughput, abort rate, and break-
down of commit modes at 10%, 50% and 90% update ratios.

Another interesting point is that P8TMucb can outperform P8TM thanks to its ability to
decrease the abort rate, as shown in the aborts breakdown. This is achieved by deactivating
the HTM path, which spares P8TM from the cost of trying once in HTM before falling
back to ROT (upon a capacity abort).

Workloads with more update transactions exhibit similar trends: P8TM and P8TMucb
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outperform HTM-SGL by ∼2.2× and ∼1.4× in the 50% and 90% workloads, respectively.
They also achieve the highest throughput in all workloads among all the considered base-
lines. The breakdown of commits plot demonstrates P8TM’s ability to execute almost all
update transactions using either HTMs or ROTs up to 8 threads, unlike HTM-SGL that
only executes 10% of transactions in hardware. At high thread count, both NOrec and
HyNOrec start to outperform both P8TM and P8TMucb, especially in the 90% workload.
This can be explained by two reasons: (i) with larger numbers of threads there is higher
contention on hardware resources (note that starting from 32 threads ROT capacity aborts
start to become frequent) and (ii) the cost of quiescence becomes more significant as threads
have to wait longer.

Despite that, P8TM variants achieve 2× and ∼1.4× higher throughput than NOrec and
HyNOrec, when comparing their maximum throughputs regardless of the thread count.

High capacity, high contention. Figure 3.8 reports the results for the high capacity,
high contention configuration. Trends for read dominated workloads are similar to the case
of lower contention degree. However, scalability is much lower here due to the higher conflict
rate. When considering the workloads with 50% and 90% update transactions, P8TM
still achieves the highest throughput. Moreover, unlike in the low contention scenario,
P8TM outperforms NOrec nor HyNOrec even at high thread count. This is due to the fact
that handling contention is more efficiently done at the hardware level than in software.
Although P8TMuro uses URO path to execute read-only transactions, it was unable to scale
even in the 90% read-only workload, where its throughput is 2.5× lower than P8TM’s.
Again this is due to its inability to execute concurrent ROTs. This clearly indicates that
T2V is beneficial even in read-dominated workloads.

Low capacity, low-contention. In workloads where transactions fit in HTM, it is ex-
pected that HTM-SGL will outperform all other TM solutions and that the overheads of
P8TM will prevail. Results in Figure 3.9 confirm this expectation: HTM-SGL outperforms
all other solutions, regardless of the ratio of read-only transactions, achieving up to 2.5×
higher throughput than P8TM. However, P8TMucb, thanks to its self-tuning ability, is the,
overall, best performing solution, achieving performance comparable to HTM-SGL at low
thread count, and outperforming all other approaches at high thread count. The commits
breakdown plots show that P8TMucb does not commit any transaction using ROTs up to
8 threads, avoiding the synchronization overheads that, instead, affect P8TM.

It is worth noting, though, that P8TM, with 90% read-only transactions, does outper-
form HTM-SGL beyond 16 threads. By inspecting the breakdown of aborts and commits,
it can be noticed that when hardware multithreading is enabled the performance of HTM-
SGL deteriorates dramatically, due to the increased contention on hardware resources.
Conversely, P8TM can still execute transactions in ROTs, hence achieving higher through-
put.

Even though HyNOrec commits the same or higher percentage of HTM transactions
than HTM-SGL, it is consistently outperformed by P8TM. This can be explained by look-
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Figure 3.8: High capacity, high contention configuration: throughput, abort rate, and
breakdown of commit modes at 10%, 50% and 90% update ratios.

ing at the performance of NOrec, which fails to scale due to the high instrumentation
overheads it incurs with such short transactions. As for HyNOrec, its poor performance is
a consequence of the inefficiency inherited by its NOrec fallback.
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Figure 3.9: Low capacity, low contention configuration: throughput, abort rate, and break-
down of commit modes at 10%, 50% and 90% update ratios.

3.7.3 STAMP Benchmark Suite

All the applications of the STAMP suite (see Section 2.4) share a common trait: they do
not have any read-only transactions. Therefore, P8TM will not utilize the URO path and
any gain it can achieve stems solely from executing ROTs in parallel. The results of the
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Figure 3.10: Throughput, abort rate, and breakdown of commit modes of STAMP bench-
marks (1).

bayes application are omitted due to its high variance [112]. The labyrinth application is
also omitted, as its transactions do not fit in neither HTM nor ROT—hence, exhibiting
very similar performance trend to yada.

Both, genome and vacation are two applications with medium sized transactions and
low contention; hence, they behave similarly to the previously analyzed high capacity, low
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Figure 3.11: Throughput, abort rate, and breakdown of commit modes of STAMP bench-
marks (2).

contention workloads. When looking at Figure 3.10, very similar to the workloads with
high update ratios in Figure 3.7 can be seen. P8TM is capable of achieving the highest
throughput and outperforming HTM-SGL by up to 4.5× in case of genome and ∼3.2× in
the case of vacation. Again, P8TMucb is even able to achieve higher throughput than P8TM
due to deactivating the HTM path when capacity aborts are encountered, thus decreasing
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the abort rate. When looking at the breakdown of commits, the ability of P8TM to execute
most of transactions in either HTM or ROT at low thread counts is obvious. One difference
between genome and vacation is that, in vacation, HTM-SGL never manages to commit
transactions in hardware.

The same drawback is also noticed at high number of threads when comparing P8TM
to NOrec and HyNOrec. Nevertheless, it is worth noting that the maximum throughput
achieved by P8TM (at 16 threads) is 1.5× and 2× higher than NOrec (at 32 threads)
in genome and vacation, respectively. This is due to instrumentation overheads of these
solutions. These overheads are completely eliminated in case of write accesses within P8TM
and are much lower for read accesses.

The intruder application generates transactions with medium read/write sets and high
contention. This results in a similar performance for both P8TM and HTM-SGL: they
achieve almost the same peak throughput at 8 threads and follow the same pattern with
increasing number of threads. Although P8TMmanages to execute all transactions as either
HTM transactions or ROTs at low numbers of threads, given the low level of parallelism, the
synchronization overheads incurred by P8TM are not outweighed by its ability to run ROTs
concurrently. Nevertheless, P8TMucb manages to overcome this limitation by disabling the
ROT path and avoid these overheads. Both NOrec and HyNOrec were outperformed, which
is again simply due to their high instrumentation costs.

The ssca2 and kmeans applications generate transactions with small read/write sets
and low contention. These are HTM friendly characteristics, and by looking at the through-
put results in Figure 3.11, it can be seen that HTM-SGL is able to outperform all the other
baselines and scale up to 80 threads in case of ssca2 and up to 16 threads in case of kmeans.
Although HyNOrec was able to achieve performance similar to HTM up to 32 threads in
ssca2 and 8 threads in kmeans, it was then outperformed due to the extra overheads it
incurs to synchronize with the NOrec fallback. These overheads lead to increased capacity
aborts as seen in the aborts breakdown.

Although P8TM commits almost all transactions using HTM up to 64 threads, it per-
formed worse than both HTM-SGL and HyNOrec in ssca2 due to the costs of synchroniza-
tion. An interesting observation is that the overhead is almost constant up to 32 threads,
since up to 32 threads there are no ROTs running and the overhead of the quiescence
call is dominated by the cost of suspending and resuming the transaction. At 64 and 80
threads P8TM started to suffer also from capacity aborts similarly to HyNOrec. This led
to a degradation of performance, with HTM-SGL achieving 7× higher throughput at 80
threads. Similar trends can be seen for kmeans, however with different threads counts and
with lower adverse effects for P8TM. Again, these are workloads where P8TMucb comes in
handy as it manages to disable the ROT path and thus tends to employ HTM-SGL, which
is the most suitable solution for these workloads.

The yada application has long transactions, large read/write set and medium con-
tention. This is an example of a workload that is not hardware friendly and where hardware
solutions are expected to be outperformed by software based ones. Figure 3.11 shows the
clear advantage of NOrec over any other solution, achieving up to 3× higher throughput
than hardware based solutions. When looking at the commits and abort break down, one
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can see that up to 8 threads P8TM commits ∼80% of the transactions as either HTM or
ROTs. Moreover, unlike intruder where HTM-SGL was able to commit a smaller percent-
age of transactions in hardware, HTM-SGL is unable to scale with yada. This can be related
to the difference in the nature of workloads, where the transactions that trigger capacity
abort form the critical path of execution; hence with such workloads it is not preferable to
use hardware-based solutions.

3.7.4 TPC-C Benchmark

Figure 3.12 shows the results for workloads with 10%, 50%, and 90% update transactions
that consists of a mix of the five types of transactions of the port of TPC-C to the TM
domain (see Section 2.4).

Throughput results show clear advantage of P8TM over all the other baselines in all
workloads, regardless of the number of active threads. When compared with software
based solutions, P8TM is able to achieve up to 5× higher throughput than both NOrec and
HyNOrec at 16 threads in the 90% update workload. Although both NOrec and HyNOrec
can scale up to 16 threads, their lower performance can be explained by the much lower
instrumentation overheads that P8TM incurs when compared to software-based solutions.
When compared to HTM-SGL, P8TM achieves 5.5× higher throughput with workloads that
have a high percentage of read-only transactions, thanks to the URO path. When moving to
workloads with higher percentages of update transactions, P8TM still outperforms HTM-
SGL by 2× and 1.25× on the 50% and 90% update workloads, respectively. Again, looking
at the breakdown plots, P8TM is able to commit all update transactions either as HTM
or ROTs up to 8 threads. P8TMucb manages to achieve even further improvement in
throughput by disabling the HTM path, hence decreasing the abort rate significantly.

3.8 Related Work

Hybrid TM [22, 23] (HyTM) attempts to address the efficiency of HTM’s fallback issue
by falling back to software-based TM (STM) implementations when transactions cannot
successfully execute in hardware. However, state of the art HyTM solutions suffer from high
synchronization costs to ensure correctness while executing HTM and STM concurrently.

HyNOrec aborts all HTM transactions when a STM transaction is committing even in
absence of conflicts. RHyNOrec is only viable if the transaction’s postfix, which may poten-
tially encompass a large number of reads, does fit in hardware. Further, the technique used
to enforce atomicity between the read-only and the remaining reads relies on instrument-
ing every read within the prefix hardware transaction, this utterly limits the capacity—and
consequently the practicality—of these transactions. Unlike RHyNOrec, P8TM can execute
read-only transactions of arbitrary length in a fully uninstrumented way. Further, the T2V
mechanism employed by P8TM to validate update transactions relies on a much lighter
and efficient read-set tracking and validation schemes that can even further increase the
capacity of transactions. Other HyTM solutions such as HyTL2 and HyLSA require fulling
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Figure 3.12: Throughput, abort rate, and breakdown of commit modes of TPCC at 10%,
50% and 90% update ratios.

instrumenting the writes only or both reads and writes respectively. This instrumentation
further shrinks the capacity limitation of HTM unlike P8TM that strives to expand it.

P8TM is also related to the literature aimed to enhance HTM’s performance by op-
timizing the management of the SGL fallback path. A simple, yet effective optimization,
which is included in P8TM, is to avoid the, so called, lemming effect [69] by ensuring that
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the SGL is free before starting a hardware transaction. An alternative solution to the same
problem is the use of an auxiliary lock [113]. As these two solutions provide equivalent
performance, P8TM integrates the former, simpler, approach. Calciu et al. [73] suggested
lazy subscription of the SGL in order to decrease the vulnerability window of HTM trans-
actions. However, this approach was shown to be unsafe in subtle scenarios that are hard
to fix using automatic compiler-based techniques [114].

P8TM integrates a self-tuning approach that shares a common theoretical framework
(the UCB reinforcement learning algorithm [110]) with Tuner [89]. However, Tuner ad-
dresses an orthogonal self-tuning problem to the one tackled by P8TM: Tuner exploits
UCB to identify the optimal retry policy before falling back to the SGL path upon a ca-
pacity exception; in P8TM, conversely, UCB is to determine which synchronization to use
(e.g., ROTs/UROs vs. plain HTM).

3.9 Summary
This chapter presented P8TM, a TM system that tackles one of the key limitations of
existing HTM systems: the inability to execute transactions whose working sets that exceed
the capacity of CPU caches. This is achieved via novel techniques that exploit hardware
features available in the IBM POWER8 processor. P8TM was evaluated via an extensive
experimental study, which highlighted the robustness of its performance across a wide range
of benchmarks, ranging from simple data structures to complex applications, and achieves
remarkable speedups.

The importance of P8TM stems from the consideration that the best-effort nature of
current HTM implementations is not expected to change in the near future. Therefore,
techniques, such as P8TM, that mitigate the intrinsic limitations of HTM can broaden
its applicability to a wider range of real-life workloads. We conclude by arguing that
the performance benefits achievable by P8TM thanks to the use of the ROT and S/R
mechanisms represent a relevant motivation for integrating these features also in the future
generations of HTM-enabled processors by other manufacturers.



Chapter 4

DMP-TM

By using in synergy hardware supports for TM and software-based mechanisms, the so-
lution presented in the previous chapter, P8TM, expands the capacity limitation of HTM
systems by an order of magnitude. Even so, the maximum capacity available for an update
transaction in P8TM remains limited. In fact, as shown in the experimental evaluation of
P8TM, there exist realistic workloads that exceed P8TM’s capacity and that would benefit
from the ability to execute long running update transactions in a pure STM-based path.

In this chapter, the focus shifts to a different type of TM, i.e. HyTM, which, unlike
P8TM, use STM on the fallback path of HTM and can, as such, support the concurrent
execution of update transactions that issue a (virtually) unlimited number of memory
accesses. Unfortunately, though, as already mentioned (and confirmed in the experimental
study of Chapter 3), the performance of state of the art HyTM systems is still far from
fulfilling the promise of delivering the best of STM and HTM.

This chapter presents a novel HyTM algorithm, called Dynamic Memory Partitioning-
TM (DMP-TM), that leverages operating system-level memory protection mechanisms in
order to avoid the overheads incurred by existing HyTM systems to detect conflicts be-
tween HTM and STM transactions. Thanks to this design approach, DMP-TM is capable
of supporting highly scalable STM implementations, without any instrumentation on the
HTM path. Some passages in this chapter have been quoted verbatim from [43], ©IEEE
2018.

4.1 Problem

HyTM systems seek to obtain the best of STM and HTM by allowing HTM transactions to
use some STM implementation as its fallback path. Unfortunately, despite the number of
papers published in this area in recent years [24, 28, 115, 116], existing HyTM implementa-
tions still suffer from large synchronization overheads to ensure correctness when HTM and
STM run concurrently [29]. State of the art HyTM systems trade-off either concurrency
between HTM and STM for low instrumentation costs on HTM or efficiency of HTM for
concurrency between both back-ends. As a result, state of the art HyTM systems actually
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perform worse than HTM and STM in a wide range of workloads [70].
For example, HyTM systems that fallback to the LSA’s STM [64] require HTM transac-

tions to manipulate per-location metadata (often referred to as Ownership Records, orecs)
used by STM transactions. This extends significantly the memory footprint of HTM trans-
actions, making them prone to capacity aborts. The only HyTM solution that avoids in-
strumenting read and write memory accesses is HyNOrec (see Section 2.2.6), which uses the
NOrec STM on its fallback path. However, NOrec is optimized for running at low threads
counts and is known to be way less scalable than orec-based approaches, thus represent-
ing a suboptimal fallback path for large scale parallel systems. Further, HyNOrec induces
spurious aborts of HTM transactions in presence of concurrent commits of non-conflicting
STM transactions.

4.2 Overview
The key novel idea exploited in DMP-TM is to rely on operating system (OS) level memory
protection mechanisms to detect conflicts between HTM and STM transactions. This design
brings two important benefits, but also non-trivial challenges. A first key advantage is that
DMP-TM is agnostic to the actual STM implementation being used: this allows DMP-
TM to be used in conjunction with highly scalable and efficient orec-based STM systems,
while avoiding the harsh instrumentation overheads imposed to the HTM path by existing
HyTM systems. Another major benefit stemming from this design is that DMP-TM allows
HTM and STM transactions that access disjoint memory pages to commit concurrently,
sparing them from spurious aborts that would instead arise with state of the art HyTM
systems [24]. The main mechanisms that compose the DMP-TM system are overviewed in
the following.

Double-heap approach. Section 4.3.1 explains how DMP-TM maps the heap of a TM
application twice in the process virtual address space, one view being accessed by the HTM
path and one by the STM back-end. It then relies on OS memory protection mechanisms
to selectively prevent pages of one heap from being accessed by the opposite back-end.

Dynamic memory partitioning. Section 4.3.2 explains how DMP-TM utilizes systems
calls to enforce memory partitions during run-time. Mitigating the high cost of these
systems calls is the key challenge of DMP-TM’s design. Indeed, DMP-TM investigates an
interesting trade-off: leveraging the data partitionability present in applications in order
to reduce the runtime overheads of detecting conflicts among STM and HTM transactions,
at the cost of a performance penalty in case conflicts between STM and HTM transactions
do materialize.

Self-tuning. In order to maximize the gains achievable in favorable workloads, DMP-TM
integrates lightweight mechanisms, described in Section 4.3.3, that detect, in a transparent
and automatic way, which back-end (STM or HTM) to employ for the different transactional
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Figure 4.1: Architecture of DMP-TM.

blocks of a TM application. Moreover, DMP-TM makes use of lightweight heuristics also
to automatically detect unfavorable workloads and ensure robust performance by falling
back to use exclusively the most efficient of the two back-ends.

Section 4.5 shows an extensive evaluation study of DMP-TM based on both synthetic
and realistic benchmarks, namely STAMP and the TPC-C [103] to the TM domain, and
compared against HTM, two STM and three HyTM systems. The results of the study
show that, in ideal workloads, DMP-TM achieves up to 8.1×/19× speedups vs the best
STM/HyTM implementation and up to 37× vs HTM. DMP-TM achieves significant per-
formance gains even when faced with realistic applications: DMP-TM outperforms all the
considered baselines in two out of the three benchmarks of the STAMP suite that are
favorable for HyTM systems, achieving up to 2× speedups versus the best alternative.
Analogous speedups are obtained even with TPC-C. Overall, the study shows that DMP-
TM can achieve significant performance gains even when faced with realistic workloads that
do not exhibit perfectly partitionable access patterns, providing experimental evidence in
support of the practical viability of the proposed solution.

4.3 Description

Figure 4.1 depicts DMP-TM’s architecture, which is composed by four main components:
(i) Memory Manager, (ii) Scheduler, (iii) Signal Handler and (iv) Auto-Tuner. It should
be noted that these are 4 logical components, which, as detailed in the next sections, are
physically implemented in a scalable and decentralized fashion in DMP-TM to enhance
efficiency.
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The Memory Manager is responsible for regulating the accesses by the HTM and STM
paths to the shared transactional heap. This entails: mapping the transactional heap in
the process address space twice (via the mmap() system call), granting and revoking access
grants of the two paths to the shared heaps (via the mprotect() system call), as well as
caching in user space the state of the per-page memory protections (an optimization that
spares from executing system calls in absence of contention between HTM and STM).

The Scheduler classifies transactional blocks as either HTM-friendly or non-HTM-
friendly, and accordingly establishes the execution paths to be used to support their exe-
cution.

The Signal Handler is activated when HTM transactions access a memory page that was
last accessed in an incompatible mode by a STM transaction, triggering an access violation.
In such a case, the Memory Manager is consulted to determine when it is safe to restore
the needed protection for HTM.

Finally, the Auto-Tuner determines when it is beneficial to turn off one of the back-ends,
as the excessively high frequency of system calls’ activation outweighs the gains achievable
by using concurrently the HTM and STM paths.

As already mentioned, DMP-TM is designed to be STM agnostic, i.e., it can enable
concurrent execution of HTM with any STM algorithm. The flexibility enabled by this
feature of DMP-TM is particularly relevant given that various works have shown the lack
of a no-one-size-fits-all solution when it comes to STM systems [99]. In fact, DMP-TM’s
current prototype integrates TinySTM, which was selected due to its high scalability and to
the efficiency of its implementation [70]. However, it would be straightforward to develop
variants of DMP-TM using alternative STM implementations.

As for the HTM implementation, DMP-TM assumes a conventional/plain interface for
transaction demarcation. The only assumption that DMP-TM makes on the underlying
HTM system is that, upon a page access violation, the HTM implementation aborts the
transaction and makes available to the signal handler the information on the address that
triggered the exception. This is an information that HTM implementations by Intel do not
currently disclose, but that is instead provided by IBM POWER8’s HTM (and by other
IBM implementations, to the best of our knowledge).

4.3.1 Memory Manager: Double Heap Approach

DMP-TM manipulates the process’ virtual space in such a way that the heap is mapped
twice (see figure 4.2) — one heap being used by STM transactions (STM heap) and the
other by HTM transactions (HTM heap). Although both heaps point to the same data,
with this arrangement, it is feasible to control the access rights of specific regions in one
of the heaps, without affecting the other heap. It is worth noting here that this solution
does not restrict a transaction type to be executed by a specific thread, i.e., any thread can
execute any transaction, either using HTM or STM, at any moment of time. DMP-TM
automatically maps the access to shared data to the correct heap according to the back-end
being used to execute a given transaction.

Upon its initialization, DMP-TM creates a shared memory zone using the directive
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Figure 4.2: Mapping of the address space in the HTM Heap and in the STM Heap.

shm_open(). Then, using the Unix system call mmap() the shared memory zone is mapped
twice to the HTM heap and STM heap. To control access rights, DMP-TM uses the
mprotect() system call, which operates at the granularity of a single page. This system call
changes the protection of memory pages contained in a given range of addresses. In order
to allow an efficient way to calculate the page to be revoked in the opposite heap, both
heaps are placed at a constant offset. Thus, calculating the address in the opposite heap is
achieved by simply adding or subtracting a fixed offset. This implies basically two changes
in the way applications should be developed to be used with DMP-TM:

1. Dynamic memory should only allocate memory from the shared memory region. To
this end, DMP-TM integrates a simple, custom implementation of malloc that al-
locates memory exclusively from the range of addresses associated with the shared
region. Analogously to other memory allocators, e.g., [32], DMP-TM’s custom malloc
implementation splits the range of virtual addresses in n equally sized, disjoint, page
aligned splits, where n is the number of threads. This allows each thread to serve
malloc/free requests from its "private” split, avoiding any synchronization overheads
with other threads.

2. Two code paths need to be produced, one for STM and one for HTM transactions,
each targeting the corresponding heap. Given that the translation between the two
address spaces is simple (just a plain translation), the generation of the code paths
could be fully automated by a compiler — although the current prototype of DMP-
TM does not provide compiler support for this task.

4.3.2 Memory Manager: Enforcing Dynamic Partitions
DMP-TM spares HTM transactions from having to check or notify the STM path about
possible conflicts, placing any required instrumentation on the STM path. Throughout
the execution of an STM transaction, before any shared data access, DMP-TM checks if
that data lies on a page accessible, in an incompatible mode, by HTM and, if needed, it
accordingly removes the access permissions from the corresponding page in the HTM heap.
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The result of this design is that whenever a HTM transaction accesses a page for which it
does not own adequate access rights, the OS (which, in its turn, exploits virtual memory
hardware supports) triggers an access violation by raising a SIGSEGV signal. This causes
the immediate abort of any HTM transaction that has already accessed that page, or that
will access that page in the future. This signal is treated by the Signal Handler module,
which is in charge of restoring access rights for HTM transactions.

In order to regulate access to the HTM and STM heaps, DMP-TM stores the following
per page metadata:

• Status field, which tracks the access rights of a page in the HTM heap. Pages can be
in one of three states: (i) Read/Write: HTM can update data on this page, (ii) Read:
HTM can only read data from this page and (iii) None: HTM cannot access this page
in any form. This allows the STM to retrieve in an efficient way, i.e., without issuing
system calls, the access permissions of the pages in the HTM heap.

• Transition count, which stores how many times the write access permissions to a
page have been restored by the Signal Handler. This counter is monitored by STM
transactions to detect if the write permissions to a previously read page have, in the
meanwhile, been granted back to HTM. If this is the case, some HTM transaction
may have overwritten a value previously read by the STM transaction, which is, thus,
restarted.

• Writers Count, which tracks the number of active STM transactions that wrote to a
page. This counter is atomically incremented by an STM transaction upon its first
write to a page and atomically decremented upon its commit or abort. This variable
is used to prevent restoring access rights to a page in the HTM heap, while there are
active STM transactions that wrote to it, thus, preventing HTM transactions from
observing inconsistent states.

• Lock bit, which acts as a mutex that is acquired whenever the protection and state
of a page have to be altered, preventing transactions from concurrently altering the
state and protection (via mprotect()) of the same page.

In fact, DMP-TM strives to take advantage of the partitionability of the memory access
patterns generated by TM applications, a property that was already observed in some refer-
ence TM benchmarks in previous works [117] and that is also confirmed by the experiments
in Section 4.5. When TM applications do exhibit such a property, DMP-TM allows both
HTM and STM transactions to execute avoiding mutual interference, thus minimizing the
synchronization of STM transactions and completely removing the need of synchronization
overheads for the HTM side. With workloads that generate excessive contention between
HTM and STM transactions, the cost of migrating page protections from a heap to the
other may outweigh the performance gains stemming from the avoidance of expensive syn-
chronization mechanisms in non-contended runs.
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4.3.3 Transaction Scheduler and Auto-Tuner

As discussed earlier, the Scheduler module has the responsibility of determining the back-
end (HTM or STM) to be used by each transaction. DMP-TM utilizes simple heuristic
to accomplish this task. The Scheduler tracks the number of aborts due to the exceed-
ing of the cache capacity by HTM transactions. If the ratio (capacity aborts/number of
commits+capacity aborts) is greater than 90%, this transaction type is labeled as STM.

In workloads with high degrees of contention between the HTM and STM back-ends,
DMP-TM is likely to incur high costs due to the cost of handling access violations and
issuing system calls to restore the access rights on the HTM heap. In order to detect when
these costs outweigh the gains of executing HTM without instrumentation concurrently
with STM, the Auto-Tuner module of DMP-TM employs a bailout mechanism based on
the following heuristic: If DMP-TM is spending more than 20% of time issuing system calls,
it resorts to using either of the back-ends. The decision of upon which back-end to fallback
to is taken by sampling the throughput of both back-ends and choosing the back-end with
higher throughput.

4.4 Algorithm

Algorithms 6 and 7 show the pseudocode for the STM path and the Signal Handler’s logic
respectively. To simplify presentation, the pseudocode only presents the core functionality
that allows STM and HTM transactions to correctly execute concurrently, omitting the
logic of the Scheduler and Auto-Tuner (see Sec. 4.3.3), as well as several optimizations that
are discussed in Sec. 4.4.2.
STM reads. When a read is issued by a STM transaction, it is first checked if the
transition_count of previously read pages has changed since the last access. If any
of them has changed in the meanwhile, it means that some HTM transaction may have
updated that page (and possibly committed); thus, the STM transaction is aborted. Next,
if it is the first read access to this page by this transaction, it stores a local copy of the
transition_count to use it for future checks. Then, it checks the metadata of the page to
which it is issuing a read. If the page’s access rights are Read/Write (Line 11), which means
that a HTM transaction can perform updates on it, then the lock_bit is acquired in order
to change the protection of the page to Read, allowing concurrency with HTM transactions
that read this page. After setting the metadata of the page and releasing the lock_bit,
the transaction effectively reads the memory position, using the underlying STM’s API,
and checks again if the transition_count has changed. If so, the performed read is not
legal and consequently, the transaction is restarted. If not, the read is successful.
STM writes. Upon a write to shared data from within a STM transaction, if it is the
first time the transaction writes to a page it atomically increases the writers_count for
that page (Line 23). This blocks any attempt by concurrent Signal Handlers of changing
the HTM access rights for that page. Then it is checked if the page corresponding to the
location to be updated is accessible by HTM (Line 25). If so, after acquiring the lock_bit,
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Algorithm 6 DMP-TM: pseudocode for STM
1: Shared variables:
2: status[N ], tc[N ], wc[N ], lb[N ]← {0, 0, . . . , 0}

. per page variables for status field, transition count, writers count and lock bit
3: Local variables: . initialized upon every transaction attempt
4: private_tc[N ]← {0, 0, . . . , 0} . local version of tc
5: pages_read, pages_writter ← ∅ . set of pages accessed as read and write
6: function STM_READ(addr) . get page where this address lies
7: validate_readset()
8: if page /∈ pages_read then . First time page is read
9: pages_read← pages_read ∪ page
10: private_tc[page]← tc[page]
11: if status[page] == #READWRITE then
12: Acquire lb[page]
13: mprotect(Read) . issue mprotect with read-only
14: status[page]←#READ . set status to read
15: Release lb[page]
16: val← TX_Read(addr) . call the STM API
17: if private_tc[page] 6= tc[page] then
18: STM_RESTART()
19: return val
20: end function
21: function STM_WRITE(addr,val)
22: if page /∈ pages_written then . First time page is written
23: ATOMIC_INCREMENT(wc[page])
24: pages_written← pages_written ∪ page
25: if status[page] 6=#NONE then
26: Acquire lb[page]
27: mprotect(None) . issue mprotect with none
28: status[page]←#NONE . set status to none
29: Release lb[page]
30: TX_Write(addr, val) . call the STM API
31: end function
32: function VALIDATE_READSET
33: for page ∈ pages_read do
34: if tc[page] 6= private_tc[page] then
35: STM_RESTART()
36: end function
37: function STM_RESTART
38: for page ∈ pages_written do
39: ATOMIC_DECREMENT(wc[page])
40: TX_Abort
41: end function
42: function STM_COMMIT
43: validate_readset()
44: TX_Commit . ask the STM to commit
45: for page ∈ pages_written do
46: ATOMIC_DECREMENT(wc[page])
47: end function

the access rights for HTM are revoked. This protects HTM from witnessing inconsistent
states by observing values written by incomplete STM transactions. After changing the
page access rights via mprotect() to None and updating the status field of the page, the
lock_bit is released and the transactional update of the value is finally performed.
STM aborts. Before a STM transaction aborts, either due to data conflict or abort from
DMP-TM, the writers_count of all the pages previously written by the transaction is
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Algorithm 7 DMP-TM: pseudocode for signal handler
1: function HANDLE_AV(addr,isReadOnly)
2: wait until wc[page] = 0 . drain writing STM transactions
3: Acquire lb[page]
4: if ¬isReadOnly then
5: status[page]←#READWRITE
6: else
7: status[page]←#READ
8: mem_fence
9: if wc[page] 6= 0 then
10: status[page]←#NONE
11: Release lb[page]
12: go to 2 . wait for writers count to be 0
13: if ¬isReadOnly then
14: tc[page] + +
15: mprotect(Read/Write)
16: else
17: mprotect(Read)
18: Release lb[page]
19: end function

decreased (Lines 38-39). This allows HTM transactions to regain accesses to those pages.
STM commits. After a STM transaction finishes its execution, it enters in the commit
phase, in which it first checks if the transition_count of the pages previously read have
changed meanwhile (Line 43). In the case they have changed, the transaction restarts
as explained before. Otherwise, it continues to commit according to its implementation-
dependent logic. Then, finally, it decrements the writers_count atomically for all the
pages it has written to (Lines 45 - 46).
Signal Handler. The Signal Handler (function HANDLE_AV()) is activated whenever a
HTM transaction accesses a page for which it does not have adequate access rights. In this
case the OS generates a SIGSEGV, which is intercepted and managed in the same thread
that generated the exception. After having extracted the target address of the memory
operation that triggered the access violation1, the Signal Handler waits for the writers
count of the corresponding page to be zero. Next, it acquires the page’s lock_bit, sets the
metadata to Read/Write or Read (depending on whether the exception was generated in
an update or a read-only transaction) and checks again for the writers_count, to ensure
that it did not change in the meanwhile. Otherwise, the Signal Handler defers to any
active writing STM by resetting the access rights to None and going back to wait until
the writers_count is zero. After that, the Signal Handler can restore the HTM access
rights to the desired page and, in case the exception occurred in an update transaction,
it increments the transition_count to notify STM transactions about the occurrence of
possible conflicts with HTM transactions. It should be noted that transition_count is
increased before acquiring the Read/Write rights, in order to guarantee that if a HTM

1This information is obtained via the siginfo struct that is passed by the OS to the Signal Handler. Ex-
isting Intel implementations of HTM reset the siginfo if the access violation occurs in a hardware transaction,
which is the reason why DMP-TM does not currently support Intel’s architecture.
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transaction is granted back permission to update and commit a page (via mprotect()),
the STM path is guaranteed to detect the corresponding change of the transition count.

4.4.1 Correctness Argument

This section provides a set of (informal) arguments on the correctness of the DMP-TM. The
analysis is organized by discussing, separately, how DMP-TM enforces isolation of HTM
and STM transactions.

Isolation of HTM transactions. The key invariant enforced by DMP-TM to ensure
correctness of a HTM transaction THTM , despite the concurrent execution of any STM
transaction TSTM , is to ensure that THTM has no permission to access any of the pages
written by TSTM throughout its execution. To this end, STM transactions remove HTM’s
access rights to each page they write to, before issuing the actual write operation. As
already mentioned, the removal of the access right causes the immediate abort of any HTM
transaction that had already read/written that page, as well as future accesses by HTM
transactions to that page.

It is however necessary to carefully synchronize the concurrent execution of the Signal
Handler(s) and STM transactions that compete to restore/remove the access rights of the
same page. In particular, it is necessary to ensure that the Signal Handler can restore
HTM’s access to a page only when there are no active STM transactions updating that page,
i.e., when the page’s writers_count is set to zero. This is achieved by having the Signal
Handler check for the writers_count twice, while setting the metadata to Read/Write in
between. For the second check to be valid, there can be no concurrent STM transaction that
started a write operation on this page yet — recall that the writers_count is atomically
incremented as the first step of processing a STM write. In case of a STM transaction T
starting a write operation after the second check of the Signal Handler, then T will notice
that HTM transactions have access to the page, thanks to the memory barrier that precedes
the second check (Line 8); in this case, T will acquire the page’s lock (synchronizing with
any concurrent Signal Handler operating on the same page) and issue a mprotect that
will abort any concurrent HTM transaction.

Isolation of STM transactions. In order to ensure correctness of STM transactions,
DMP-TM guarantees that none of the pages accessed by STM transactions can be altered
by HTM transactions, since the time in which each page is first read and until the end of
the STM transaction. This is achieved via two key mechanisms: i) ensuring that a STM
transaction accesses a page after having removed any non-compatible permission to the
corresponding HTM heap’s page; ii) checking the transition count of every read page, upon
each read and before commit, letting the transaction proceed (without aborting) only if
none of them changed since the first time in which that page was read. This implies that the
page was not concurrently modified by a HTM transaction, since the transition_count
would be found different if protections had been changed in the meanwhile. It should
also be noted that the atomicity of each individual STM read is guaranteed by reading
the transition_count of a page before and after performing the read via the API of the
underlying STM implementation.
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It should be noted that, in order to reduce overheads, STM transactions check the status
of a page without first acquiring the corresponding lock. It is hence possible that a STM
transaction finds, in Line 11, a page as not writeable by the HTM path and that, before
it completes the read, a Signal Handler restores write permission to HTM for the same
page. In this case, HTM transactions may even commit and update to that page, before
the STM completes executing its read. In such a case, though, the transition count would
be found to have changed, when it is checked for the second time in Line 17 by the STM
transaction. If, instead, the values of the transition counts are not found to have changed,
then the STM read is also guaranteed to observe the permissions set by the Signal Handler
when it increased the value of transition count — as the memory fence in Line 8 ensures
that if the increase to the transition count is globally visible, so is the corresponding page’s
state. This causes the STM transaction to synchronize with concurrent Signal Handlers, by
acquiring the page’s lock, and to ensure that HTM write permissions are removed before
performing the read.

4.4.2 Optimizations
The following are a set of optimizations that can be applied to the algorithm described
above to further enhance its performance:

• instead of checking the transition_count of every accessed page upon each access,
one can use a global transition_count that is incremented atomically from within
the Signal Handler together with the increment of the page’s transition_count.
Then instead of checking each transition_count of every page upon each STM
access, it suffices to only check if the global transition_count has changed. If it
has not (the common case in workloads that exhibit good partitionability), no further
checks are required; else, the normal procedure, where the STM transaction checks
the transition_count of each page it previously read, takes place.

• instead of maintaining a single writers count per page shared by all STM threads,
which must be incremented or decremented atomically, one can use a set of, per
thread, local counters. This will spare STM transactions from the need to perform
expensive atomic operations. However, the Signal Handler will need to ensure that
all the flags are unset before it attempts to change the page’s protection.

• certain STM algorithms need to re-validate their read-set in order to ensure the safe
execution of transactions, e.g., as in the case of TinySTM in presence of concurrent
commits of update transactions. These STM implementations could be made aware of
the execution of read-set validations performed by DMP-TM (if transition_count
is found to have increased), which may allow them to spare duplicate validations.

The current implementation of DMP-TM integrates the first two optimizations, but not
the last one. Unlike the first two mechanisms, in fact, the last optimization comes at the
cost of requiring to alter the inner logic of the STM implementation employed by DMP-TM,
whereas one of the key design goals of DMP-TM is its STM-agnostic nature.
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4.5 Evaluation

This section reports the results of an extensive experimental study, in which both the
static (DMP-TM) and the dynamic version (DMP-TUNE) of the proposed solution were
evaluated. In the static version, transactions are statically assigned to either one of the
back-ends according to an exhaustive offline search for the best configuration, whereas in
the dynamic version the scheduler module decides upon the transaction assignment during
run-time. DMP-TM and DMP-TUNE were compared against: (i) HTM with a single global
lock as fallback (HTM-SGL); (ii) TinySTM with the same configuration as the one used for
DMP-TM and DMP-TUNE; (iii) HyNOrec using two counters to decouple subscribing from
signaling; (iv) NOrec with write back configuration; v) HyTinySTM, which is implemented
by adapting the original algorithm [25] to replace the prefetchw instruction, which is not
available in current HTM implementations, with a write operation (see Section 2.2.6);
(vi) HyTL2, based on the algorithm described in [26]. All hardware-based solutions try
executing each transaction 10 times in hardware before resorting to the fallback path.
DMP-TM and DMP-TUNE, however, try the transactions attributed to HTM 100 times
before acquiring the global lock. This is done since the transactions attributed to HTM
in DMP-TM and DMP-TUNE are hardware-friendly and likely to commit using HTM,
if tried long enough. Conversely, using such a high retry count with other hardware-
based solutions will dramatically degrade their performance, since the approaches try all
transactions (including non-HTM-friendly ones) first in hardware.

This section starts by using synthetic benchmarks to generate diverse workloads. in-
tended to test extreme scenarios regarding partitionability of HTM and STM access pat-
terns. Then, DMP-TM is tested using real-world complex benchmarks, namely two bench-
marks of the popular TM benchmark suite STAMP [101] and TPC-C [103]. All presented
results were obtained by executing on an 80-way IBM POWER8 8284-22A processor with
10 physical cores, where each core can execute 8 hardware threads. The OS installed is
Fedora 24 with Linux 4.7.4 with page size of 64KB and the compiler used is GCC 6.2.1
with -O2. The reported results are the average of 5 runs.

Thread pinning was used to pin a thread per core at the beginning of each run for all
the solutions until exhausting the number of available cores, and then distributing them in
round-robin fashion to minimize unbalances between cores.

4.5.1 Synthetic Benchmarks

In order to assess the effectiveness of DMP-TM in diverse, yet identifiable workload settings,
a synthetic benchmark based on two different hashmaps, storing 128, resp. 1024, elements
per bucket was used. This setting was motivated by the fact that if HTM transactions
read all the elements of a bucket from the first hashmap, the size of the read-set fits in the
cache. However, if HTM transactions read all the elements from the second hashmap, the
read-set will exceed the cache size, thus causing a capacity abort.
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Figure 4.3: Speedup and commits breakdown for disjoint data structures running 1, 10 and
80 threads.

Disjoint data structures

To demonstrate the potential of DMP-TM, a workload, composed of two transactions types
was used. One amenable for execution in hardware and one not (as it exceeds determinis-
tically HTM’s capacity). The workload generates perfectly partitionable memory accesses,
i.e., the sets of pages accessed by each transaction type are disjoint. Both hashmaps are
populated to use 64 pages in total and used a workload with 10% lookups and 90% update
transactions.

Figure 4.3 reports the throughput speedup normalized with respect to TinySTM and
the breakdown of commits for three different thread configurations: 1, 10 and 80 threads.
For each of these configurations, the percentage of small transactions executed was varied.
The x-axis reports the probability of a thread to be executing a long transaction from 1% to
100% (only long transactions). The results show remarkable gains either for DMP-TM and
DMP-TUNE, since in this experiment both data structures are disjoint and the operations
executed are so heterogeneous that HTM shines when executing short transactions, whereas
STM excels with long ones. The throughput of all the solutions is normalized according to
TinySTM (which is accordingly omitted from the plot), and use log scale on both y and
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x-axis to enhance visualization.
With one thread, the overhead that DMP-TM and DMP-TUNE incur can be assessed.

When the workload constitutes mainly small transactions, both variants of DMP-TM
achieve better performance than HTM-SGL, thanks to their ability to run HTM transac-
tions without any instrumentation and executing large transactions in STM — which spares
the cost of retrying them several times before using the fallback path. As the percentage of
large transactions in the workload increases, DMP-TM variants start to be outperformed
by TinySTM, paying a penalty of ∼20% in the 100% long transactions workload. This is
the cost of the extra instrumentation that DMP-TM adds on top of TinySTM. Note that
NOrec consistently outperforms TinySTM, thanks to its more lightweight instrumentation.

At 10 threads, DMP-TM becomes the best performing back-end, achieving speedups of
up to ∼2× compared to HTM-SGL, and more than 3× compared to TinySTM and ∼ 6×
compared to NOrec-based solutions. This can be explained by the breakdown of commits
shown in the middle row of Figure 4.3. DMP-TM is able to execute short transactions
in HTM and long transactions as STM, unlike HTM-SGL that executes large transactions
using the pessimistic single global lock. In this configuration, TinySTM starts to surpass
the throughput of HTM-SGL when the workload is running operations in the smaller data
structure with probability less than 20% but only at 50%, TinySTM’s throughput equalizes
DMP-TM. At 100% of large transactions, due to the fact that DMP-TM requires additional
instrumentation on top of STM, it suffers ∼20% performance penalty w.r.t. TinySTM.

80 Threads continue showing the same trend as 10 threads, but with even greater
speedups: more than 20× compared to HTM-SGL, ∼10× compared to HyTinySTM and
∼7× compared to TinySTM. The gains with respect to both HTM-SGL and HyTinySTM
are due to DMP-TM’s ability to execute more transactions in hardware, as shown in
the commits breakdown plot. At high number of threads, capacity aborts become non-
deterministic as more threads share hardware resources and it is, thus, beneficial to retry
more times in hardware than reverting to the fallback path. However, without differ-
entiating between deterministic and non-deterministic capacity aborts, high retry counts
becomes harmful in terms of throughput. Again, TinySTM outperforms DMP-TM when-
ever the probability of executing large transactions is greater than 30% leading to a 30%
overhead at 100% large transactions.

Throughout the entire experiment, the dynamic version of the algorithm (DMP-TUNE)
worked as expected, since whenever transactions execute operations in the smaller hashmap
the percentage of aborts due to exceeding transactions footprint is negligible. Nevertheless,
when transactions execute operations in the larger hashmap, they deterministically abort
due to exceeding the cache size. Thus, the scheduler module assigns the type of transactions
accessing large hashmap as STM transactions, matching the offline assignment used by
DMP-TM. Thanks to this assignment ability, DMP-TUNE is able to still benefit from
using high retry counts unlike other hardware-based solutions.
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Non-disjoint data structures

This experiment stresses the worst case scenario for DMP-TM, by allocating both hashmaps
in the same memory region and interleaving the buckets of each hash map. With the
granularity of DMP-TM being a single page, any access to either of the hashmaps is going
to be considered a conflict. Therefore, DMP-TM will suffer from a very large number
of system calls, as for either of the back-ends to commit a transaction, it is most likely
that some page protection has to be restored, given that a 90% update workload is being
considered.

Figure 4.4 depicts the results of running this workload with 1, 10 and 80 threads.
It is clear that DMP-TM suffers large performance penalties, up to 20× compared with
TinySTM in the worst case. This is true across all workloads except when the workload
is dominated by either short or long transactions. At those extremes, there is no need for
changing the pages access rights since DMP-TM is executing only one of the back-ends.
Other than that, DMP-TM incurs significant overheads. This can be explained by looking
at the ratio of system calls to commits, which shows that DMP-TM can pay up to more
than 0.8 system calls per commit.

This is a typical workload where the Auto-Tuner module should decide to bailout and
stick to either one of the back-ends. By inspecting the speedup plots in Figure 4.4, it
can be seen that DMP-TUNE manages to match the performance of the best performing
of both back-ends. At 1 thread, HTM-SGL performs better than TinySTM, except when
the system is running only large transactions (right side of the 1 thread figure); so, as
expected, DMP-TUNE falls back to HTM-SGL with percentage of long transaction less
than 100%. At 10 threads, by looking at the commit breakdown is possible to see that
DMP-TUNE falls back to HTM-SGL in workloads characterized by less than 50% of long
transactions. However, after this mark, TinySTM begins to be the best performing back-
end. Thus, DMP-TM falls back to TinySTM at this mark. At 80 threads mark, the best
performing back-end is TinySTM, independently of the percentage of long transactions,
and DMP-TUNE correctly adapts itself to employing TinySTM.

4.5.2 STAMP Benchmark Suite

Out of the 8 applications in the STAMP suite (see Section 2.4), genome and intruder are
the ones that typically benefit from HyTM systems as they encompass both small and large
transactions. Other applications generate either only small transactions (ssca2 and kmeans)
or large ones (labyrinth and yada). Thus, there is no room for improvement for any HyTM.
The remaining two applications are bayes and vacation. The bayes application is known to
suffer of very high variance and yields unreliable results [112]. The vacation application can
also benefit from a HyTM system, however, it has low degree of partitionability. Hence,
DMP-TUNE would perform as good as either HTM or STM.

The genome application represents the process of reconstructing the original source
genome from a pool of DNA segments. An extensive brute-force experimental study was
conducted in order to infer which of the 5 transaction types generated by genome to run with
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Figure 4.4: Speedup, commits breakdown and system calls ratio for non-disjoint data struc-
ture running 1, 10 and 80 threads.

HTM or STM. It was found that this workload indeed presents partitionability, as there are
three disjoint transactional clusters according to their data access. DMP-TM successfully
exploits this workload’s property, achieving the maximum throughput and scaling to 64
threads, yielding ∼2× higher throughput than HyTinySTM, the second best baseline at 80
threads (Figure 4.5).

This can be explained by analyzing the commits breakdown, which shows DMP-TM’s
ability to execute >90% of transactions in hardware, ∼1% using the pessimistic fallback
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path and∼5% as STM at all thread counts. Although HyTinySTMmanages to demonstrate
similar commit patterns up to 8 threads, it performed worse than DMP-TM due to the extra
instrumentation it imposes to its HTM path. Beyond 8 threads, HyTinySTM could not
commit as many transactions in hardware, since it incurs more frequent capacity aborts
that consume its retry count and lead to more frequent activations of the fallback path.

Furthermore, the workload is characterized by low contention. Therefore, up to 4
threads, NOrec and TinySTM achieve slightly better throughput than DMP-TM as they do
not impose any extra instrumentation to their STM path. Up to 2 threads, HyNOrec, shows
similar throughput as DMP-TM, since as shown in the commit breakdown plots of Figure
4.5, it still manages to commit 95% and 38% of the times in hardware, respectively for 1 and
2 threads, and uses as fallback NOrec, which as stated before achieves higher throughput
than DMP-TM in this workload for a low thread count. However, as the thread count in-
creases, abort rate starts to increase. In these contention settings, DMP-TM benefits from
executing transactions in software, which enables more concurrency than the SGL fallback
used by HTM-SGL. For the case of HyNOrec, the fallback of only one thread makes all
the threads fallback to NOrec, and this has an adverse impact on performance when the
thread count is higher than 4. After 16 threads, HyTinySTM starts to incur overheads
due to the fact that at this thread count, cores are shared by more than one hardware
thread, which reduces the effective cache capacity available for each hardware thread. As
HyTinySTM instruments hardware transactions to check for changes in the STM orecs,
it suffers from an increased abort rate compared to the solutions that do not instrument
hardware transactions, namely HTM-SGL and DMP-TM. For the case of HyTL2, unlike
the STM counterpart, TL2, not shown in the study, does not extend the snapshot used
during STM reads, which leads to an increase of the transaction’s abort rate.

The intruder application is a signature-based network intrusion detection system that
encompasses three parallel transactions. The right column of figure 4.5 shows DMP-TM
being the only back-end to scale up to 16 threads achieving ∼1.5× higher throughput
than TinySTM, the second best performing back-end. The lower speedups in intruder, as
compared with genome, can be attributed to the lower percentage of transactions (∼30%)
that DMP-TM manages to execute in hardware. Again, HyTinySTM, which even commits
more transactions in hardware, is outperformed by DMP-TM achieving 2× lower through-
put at 16 threads, due to the costly instrumentation of its HTM path. NOrec’s HyTM
counterpart follows the same trend as NOrec. However, the commit breakdown shows that
starting the execution in the HTM path and falling back to NOrec causes performance
losses in the order of 0.73× compared to NOrec. It is worth noting that NOrec achieves the
best throughput until 4 threads, thanks to its lower instrumentation costs. However, at 8
threads, its throughput deteriorates due to the increase of the contention in the workload.
Further, HTM-SGL and HyTL2 are the worst back-ends, due to the pessimistic nature of
the fallback of the former and to the inability of the STM fallback path of the latter to
perform well in high contention workloads.
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Figure 4.5: Speedup, commits breakdown and system calls ratio for genome and intruder
of STAMP benchmark suite.

4.5.3 TPC-C Benchmark

Finally, DMP-TM is evaluated using a port of the TPC-C benchmark to the TM domain (see
Section 2.4). To promote partitionability, vertical partitioning was performed according to
the TPC-C standard, by moving attributes that are points of conflict to different memory
regions to reduce false conflicts. Two different workloads that exhibit different degrees of
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Figure 4.6: Speedup, commits breakdown and system calls ratio for two workloads of TPC-
C.

partitionability between short and long transactions are considered.
The left column of Figure 4.6 reports the results of a workload composed by 95%

of payment, 1% stock level and 4% of delivery transactions. This workload has a high
degree of partitionability, reflected in a very low system calls to commits ratio. DMP-
TM achieves the best throughput showing up to 2.4× speedups compared with the second
best contender, TinySTM. At a low thread count, namely up to 4 threads, TinySTM
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achieves slightly better throughput than DMP-TM due to the fact that it has no extra
instrumentation. Although HTM-SGL and HyTinySTM execute more than 90% of the
transactions in hardware, they yield ∼3× lower throughput than DMP-TM. For HTM-SGL,
this is due to the fact that stock level and delivery operations, that do not meet HTM’s
capacity limitations, are much longer than payment operation. This hinders parallelism
and thus limits throughput gains and scalability of HTM-SGL. While for HyTinySTM,
also in this case the problem is rooted to the high instrumentation costs of the HTM
path. NOrec, HyNOrec and HyTL2 incur performance losses due to the fact that payment
operation has very high contention. After 32 threads, neither DMP-TM nor DMP-TUNE
scale. This happens despite the commit breakdown plot (and the abort rate) incurred by
these solutions do not show any significant spike. Further analysis verified, though, that,
above 32 threads, the Instruction Per Cycle drop severely, with a corresponding spike in the
number of stalled cycles — which suggests that, increasing the thread count, the bottleneck
for DMP-TM eventually becomes contention to some physical resource, probably memory
or some micro-architectural resource of the processor.

Finally, the right column of Figure 4.6 shows the throughput results for a workload with
low degree of partitionability, as reflect by the high system calls to commits ratio. Due to
the high number of system calls, DMP-TM incurs 16× lower throughput compared with
TinySTM at 80 threads. Again, thanks to its self-tuning ability, DMP-TUNE is able to fall
back to TinySTM and achieve similar throughput.

4.6 Related Work

As this work targets HyTM, it has relations with the body of literature that focused on
enhancing the efficiency of HTM systems using software mechanisms.

In this context, a first branch of works aimed to enhance the efficiency of HTM systems
that use a fallback path a single global lock (SGL). Afek et. al [113] introduced using an
auxiliary lock to minimize the avalanche effect, where cascading aborts happens when the
pessimistic lock is acquired. Calciu et. al [73] suggested lazy subscription of the global lock
to minimize the possible window of conflict between HTM transactions and the fallback
path. Diegues and Romano [89] leveraged several on-line tuning mechanisms to decide upon
when to acquire the pessimistic fallback lock. SEER [79] used probabilistic techniques to
appropriately schedule conflicting transactions and reduce the frequency of activation of the
fallback path. POWER8-TM, Chapter 3, minimizes the effect of capacity aborts by using
Rollback-Only Transactions, which are available on POWER8 processor (see Section 2.2.5
to fit larger transactions in hardware.

DMP-TM has clearly strong relations with the research in the area of HyTM systems,
which, like DMP-TM, aim to support the concurrent execution of both HTM and STM
transactions. HyNOrec relies on a simple instrumentation mechanism on HTM side (that
only requires to increase the sequence lock used by NOrec), which, although being relatively
lightweight, exposes HTM transactions to spurious aborts in presence of concurrent commits
by (non-conflicting) STM transactions. Reduced HyNOrec extended HyNOrec’s design with
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a transactional chopping mechanism to further enhance its efficiency. However, both these
solutions are limited to employing NOrec, whose design is known to be optimized for low
thread count [9].

Conversely, DMP-TM is STM agnostic and thus can be integrated with orec-based STM
implementations that were shown to achieve much higher scalability levels [7, 70]. Further,
DMP-TM does not incur any extra instrumentation on top of its HTM path and thus does
not suffer from spurious aborts. Existing HyTM algorithms that support more scalable orec-
based implementations do exist. Unfortunately, though, they either suffer from spurious
aborts (e.g., HyTL2 [26]), analogous to HyNOrec, or require instrumenting the read, write
and commit operations of HTM transactions (e.g., Invyswell [27] and Hybrid-LSA [25]),
incurring significant overheads — as quantified via the study in Section 4.5.

Ruan et. al proposed Hybrid Cohorts [116], a HyTM that spares both HTM and STM
transactions from any extra-instrumentation by only allowing HTM to commit when there
are no active STM transactions. Analogously, PhTM [115] aims to reduce synchronization
overheads between STM and HTM by executing them in alternate phases. Unlike DMP-
TM, both these solutions prohibit concurrency between HTM and STM.

The idea of using memory protection mechanisms in the context of TM was first pro-
posed by Abadi et. al [118] to ensure correct synchronization between a STM system
and non-transactional code (i.e., strong atomicity [63]). DMP-TM builds on analogous
base building blocks, i.e., OS based memory protection mechanisms, in a different context
(HyTM) and to solve a different problem: enable concurrent, yet safe, execution between
HTM and STM transactions.

Finally, DMP-TM is related with prior works that investigate the partitionability of
workloads not only for TM applications [117], but also in relational [119] and NoSQL [120]
domains. Particularly relevant for DMP-TM is the work by Riegel et al. [117], which has
first shown that, even in irregular TM applications like the ones included in the STAMP
suite, it is often possible to encounter disjoint data partitions that can benefit from the
adoption of distinct (software-based) synchronization schemes. It should be noted, though,
that DMP-TM considers different synchronization mechanisms than the ones targeted by
Riegel et al., and, hence, a different definition of "partitionability”. Also, unlike the solution
proposed by Riegel at al., DMP-TM is designed to operate (and can achieve significant
performance gains) also in presence of workloads that are not perfectly partitionable.

4.7 Summary

This chapter presented DMP-TM, a novel HyTM algorithm that exploits a key idea: lever-
aging operating system-level memory protection mechanisms to detect conflict between
HTM and STM transactions. This innovative design allows for employing highly scalable
Orec-based STM implementations, while avoiding any instrumentation on the HTM path.
DMP-TM demonstrated robust performance in an extensive evaluation achieving striking
gains of up to ∼20× compared to state of the art HyTM systems.

As a concluding remark, it is worth stressing that DMP-TM cannot operate on current
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Intel’s HTM implementations, which, unlike IBM’s, do not provide support for a simple
feature: reporting information on the address that caused an access violation from within
a transaction. Hopefully, the performance benefits achievable by DMP-TM will motivate
other CPU manufacturers, besides IBM, to integrate such features in their future CPU
generations.



Chapter 5

Green-CM

Whether TM is implemented in hardware, software or HyTM, its optimistic nature may lead
to a waste of work, i.e., a waste of energy. This chapter proposes, Green-CM, a contention
manager designed to enhance efficiency of TM systems, in terms of both performance and
energy consumption. It combines different back-off policies in order to take advantage
of Dynamic Frequency and Voltage Scaling (DVFS) and introduces an energy efficient
implementation of the wait mechanism. Some passages in this chapter have been quoted
verbatim from [44].

5.1 Problem
Most TM implementations take a speculative approach, and run transactions in a lock-free,
optimistic fashion. This makes them prone to incur high abort rates in presence of high
contention workloads, which can lead to severe degradation of both performance and energy
efficiency. It is the responsibility of the Contention Manager (CM) module to reduce the
detrimental effects of contention, by deciding which transactions should be aborted in case
of a conflict, and when to restart the aborted transaction.

Nowadays, energy efficiency is becoming an increasingly relevant factor for a wide range
of systems, from sensors or mobile nodes that run on batteries, to data centers, whose
scalability is nowadays constrained by their energy costs [30]. Quite surprisingly, though,
despite the literature on CM is quite vast, most CM systems have been designed to maximize
solely performance and have largely overlooked the problem of energy efficiency [75–78].
Only a very limited number of works have investigated CM designs aimed at maximizing
energy efficiency [121, 122], but none of them has been evaluated in a real system.

5.2 Overview
Green-CM relies heavily on Dynamic Voltage and Frequency Scaling (DVFS) [39] to enhance
energy efficiency. DVFS is an architectural feature that is widely employed in modern
processors [123, 124] in order to enhance their energy efficiency. DVFS allows various cores
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of a processor (and/or various processors in a multi-socket system) to adjust dynamically
the voltages and frequencies at which they operate: on the one hand, this allows both for
reducing the energy consumed by idle cores; on the other hand, it allows for increasing
the frequency of active cores, as long as the number of idle cores is large enough to ensure
that the global thermal envelope remains within acceptable margins. To achieve energy
efficiency, Green-CM leverages three innovative mechanisms.

Energy efficient backing off. Green-TM relies on a novel, energy efficient implementa-
tion of one fundamental building block at the basis of most existing CMs and that can have
a strong impact on energy consumption: the wait primitive that is used whenever the CM
decides to block a conflicting transaction for some period of time. The proposed solution
uses a hybrid approach that alternates between two implementations, based, respectively,
on spinning and sleeping. The latter allows for effectively reducing energy consumption,
when employed on a DVFS enabled processor, but incurs long latencies due to the need for
invoking a system call; spinning has opposite advantages and drawbacks: it is accurate also
for very short backing off periods, but suffers of high energy costs. By leveraging on both
implementations in synergy, Green-CM aims to achieve the best of both worlds, namely low
energy consumption and high accuracy. The energy efficient implementation of the back-off
mechanism integrated by Green-CM is presented in Section 5.3.1.

Energy-aware contention management policy. Green-CM introduces an innovative,
Asymmetric CM (ACM) policy, which aims to take advantage of ACM is based on the
key idea of promoting the exploitation of DVFS boosting capabilities via the usage of
asymmetric back-off policies. More in detail, ACM combines aggressive and conservative
(i.e., linearly vs exponentially increasing) back-off policies, in order to promote the dynamic
creation, at medium/high contention scenarios, of two sets of threads: 1) threads that are
likely to be backing-off, allowing the corresponding processor to enter deep sleep states,
and 2) threads that spend most of their time executing transactions, and which can run at
higher frequencies thanks to DVFS. The ACM policy is detailed in Section 5.3.2.

Self-tuning. Green-CM makes extensive use of lightweight reinforcement learning tech-
niques to dynamically adapt its internal parameters and specifically: (i) determining au-
tomatically in which scenarios spin vs timer-interrupts based implementations should be
used, and (ii) what degree of asymmetry should be used when determining the Contention
Management back-off policies. Different variants of gradient descent based controllers were
proposed and evaluated to tackle each of these two problems, both individually and in
conjunction. Self-tuning mechanism used within Green-CM are detailed in Section 5.3.3.

Finally, Section 5.4 shows the results of an extensive experimental study, based both on
complex TM benchmarks (STAMP and STMBench7) and recent TM-based implementa-
tions of real-life applications (Memcached). Green-CM was evaluated against 6 alternative
CM implementations from the perspective of performance and energy consumption. The
experimental data shows that Green-CM achieves average gains of 25% when considering
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joint energy-performance metrics, i.e., energy-delay product (EDP), with peak gains that
extend up to 2.35× lower EDP. The effectiveness of the proposed self-tuning mechanisms
was also assessed, which achieved performance that is on average within 15% from, and
sometimes even superior to, the best, manually identified, static solutions.

5.3 Description
The high level architecture of Green-CM (see Figure 5.1) is composed by three main com-
ponents can be identified: the Asymmetric Contention Manager (ACM), a hybrid imple-
mentation of the back-off primitive, and the Controller.

Upon the abort event of a transaction, the first component to be triggered is the Asym-
metric Contention Manager. This module is in charge of determining the duration of the
back-off phase for the transaction and, as discussed more in detail in Section 5.3.2, it deter-
mines whether to use an aggressive (i.e., linear) or a conservative (i.e., exponential) back-off
policy depending on two factors: (i) the CPU core on which the corresponding thread is
running, and (ii) the boosting degree (noted B in the following), i.e. a tunable parameter
(dynamically configured by the Controller) that allows for controlling how many threads
should use each of the two available back-off policies.

The duration of the back-off phase is next provided as input to a hybrid implementation
of the wait primitive, which is described in Section 5.3.1. The hybrid wait primitive uses
either a spin-based or a sleep-based implementation depending on two factors: (i) the
duration of the back-off phase, and (ii) the value of two parameters, noted α and T , which
represent, respectively, the number of spin cycles executed in a time unit, and the minimum
back-off duration for using a sleep-based approach. Analogously to the case of B, the tuning
of α and T is delegated to the Controller.

Finally, the Controller is in charge of self-tuning B, α and T . To this end, this module
gathers periodic measurements on the throughput and energy consumption over the last
time window, and uses this information to implement a lightweight, on-line self-tuning
scheme. Controller module shall be discussed in Section 5.3.3.

5.3.1 Hybrid Back-off Implementation
The main purpose of CMs is to reduce the detrimental effects of contention on the efficiency
of TM systems. This objective is pursued by reducing the likelihood that threads executing
conflicting transactions execute at the same time. One of the most common techniques to
perform this is to force threads to back-off for a certain period of time when they encounter
contention, before re-starting the aborted transaction. The duration of the wait period is
determined by the back-off policy employed by the CM (e.g., exponential back-off) and can
be expressed either in terms of processor cycles (e.g., number of iterations during which to
spin) or in time units (e.g., nanoseconds).

In principle, there exist two ways of implementing the wait primitive: (i) spinning, i.e.,
busy-waiting, in an empty loop, or possibly by invoking at each iteration “pipeline-friendly”
assembly instructions, such as pause in x86 architectures; (ii) sleeping by invoking the
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Figure 5.1: Architecture of Green-CM.

sleep system call. The two methods exhibit clear trade-offs for what concerns performance
and energy consumption. Busy waiting has very fine granularity, but, from the perspective
of energy consumption, it is strongly inefficient. Sleeping, on the other hand, achieves low
energy consumption but provides coarse granularity (various tens of micro-seconds in recent
architectures/OSs [125])), which can have a detrimental impact on the effectiveness of the
CM policy.

Since existing CMs have focused on optimizing performance, basically neglecting the
issue of energy efficiency, existing implementations rely solely on spin-based approaches
— which, do not suffer of the accuracy issues of sleep-based approaches for short back-off
periods. The drawback is that they miss the opportunity of reducing energy consumption
when back-off times are sufficiently large to be effectively supported using sleep-based
implementations.

The hybrid approach that proposed in this chapter, and whose pseudo-code is reported
in Algorithm 8, is based on a simple, yet effective idea: using a sleep-based or a spin-
based implementation depending on the duration of the back-off period. The intuition is
that spin-based implementations are ideal for “sufficiently short” back-off periods, whereas
sleep-based ones work best for “sufficiently long” back-off period.

Despite the idea may at first glance appear relatively straightforward, it does hide two
non-trivial, and closely intertwined, issues:

1. Spin-based and sleep-based implementations operate using different time scales: the
latter expresses the back-off duration in real-time units (e.g., nano-seconds), whereas
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Algorithm 8 Green-CM: hybrid back-off mechanism
1: function wait(waitCycles) . Back-off ...
2: if waitCycles

α
≤ T then . for a “short” period,

3: while waitCycles 6= 0 do . so just spin meanwhile
4: waitCycles− −
5: else . for a “long” period,
6: sleep(waitCycles

α
- min_sleep) . so sleep instead.

7: end function

the former uses spin cycles, or, equivalently, processor cycles. In order to hide both
implementations under the same interface, and use the two transparently, it is nec-
essary to reconcile their time scales, by identifying a conversion factor, note as α, in
order to map processor cycles to real-time (or vice-versa).
The issue here is that, in modern processors, the number of spin (or processor) cycles
executed within a time unit can vary significantly depending on the impact that
the workload’s characteristics have on architectural aspects like DVFS, pipeline and
caching.

2. What is the minimum value of the back-off duration, which denoted by T , for which
sleep-based implementations are more efficient (from a joint energy-performance per-
spective) than spin based ones? Ideally, the value of T should be set to the minimum
back-off duration for which the gains in terms of energy consumption achieved by
sleeping outweigh the performance losses due to its relatively lower accuracy.

One additional noteworthy aspect is that, in order to enhance the accuracy of the sleep-
based implementation, in Line 6, the requested sleep duration is adjusted before invoking
the sleep system call. More in detail, the minimum latency for executing a sleep system
call (i.e., for executing sleep(0)), which is noted as min_sleep in the pseudo-code, is
subtracted from the target back-off duration (i.e., waitCycles

α ). In fact, whenever the sleep
system call is called with x as input parameter, the actual latency for the execution of
sleep is equal to min_sleep+x+err, where err is an error factor depending on the actual
sleep accuracy (e.g., hardware timer resolution). This latency can be easily measured
experimentally, and by taking it into account, one can significantly enhance accuracy when
the back-off duration is of the same order of min_sleep.

As it will be discussed more in detail in Section 5.3.3, the identification of the cor-
rect value of the parameters α and T plays a crucial role in determining the efficiency of
the CM scheme. Green-CM addresses this problem via a light-weight, on-line self-tuning
mechanism, which is also detailed in Section 5.3.3.

5.3.2 Asymmetric Contention Management

Ideally, a CM may take advantage of the DVFS capabilities provided by modern CPUs
by scaling down the frequency of a core whenever a transaction has to be aborted and
backed-off, and scaling up the frequency of that as soon as the back-off period completes.
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If a sufficient number of transactions are in the back-off state, the CM could even request to
boost the frequency of some cores, provided that the thermal envelope of the corresponding
CPU is within the safety margin.

Unfortunately, controlling the dynamic frequency scaling mechanism requires issuing
system calls, which induce prohibitive costs [125] and would largely outweigh the gains
achievable via DVFS.

The idea at the basis of ACM is to approximate such an ideal, yet impractical CM
policy, by using a lightweight design that aims at favoring the spontaneous activation of
hardware-controlled DVFS mechanisms. Modern CPUs, in fact, identify in an automatic
fashion the opportunity to boost the frequency of subset of cores, whenever a sufficient
number of cores in the same CPU have entered a sleep state (and are hence executing
below the nominal frequency).

In order to make the contention management scheme DVFS-aware, Green-CM exploits
a simple idea, which is: adopting an asymmetric approach that divides threads into two
categories: (i) boosted threads that are active on cores to be boosted, and (ii) threads
executing on cores to be pushed towards lower operating frequencies. This can be achieved
by letting the CM treat these two categories in an asymmetric fashion; the threads to be
boosted will be backed off for linearly increasing periods, while the other category will be
backed off for exponentially increasing periods.

Under such arrangement, and considering a hybrid implementation of the back-off mech-
anism, like the one described in the previous section, boosted threads are likely to be either
executing transactions or spinning, as they will most likely back-off for short periods. The
other threads, on the other hand, will tend to back-off for longer periods. Hence, they are
more likely to use the sleep-based back-off implementation and to have their cores enter
deeper sleep states.

Note that in order to favor the activation of the hardware-controlled DVFS mechanism,
the selection of which threads should be boosted has to be made in an architecture-aware
fashion. In fact, in order to create the preconditions for DVFS to accelerate the frequency
of the core on which a boosted thread is executing, the number of boosted threads active
in each CPU should not exceed the maximum number of coresM that can simultaneously
execute at frequencies higher than the nominal ones. For instance, in AMD Opteron CPUs
such as the ones used in our experimental evaluation, at most two cores out of the 8 cores
available in each processor can enter the boosted state, when the other 6 are sleeping. This
architecture-dependent parameter is taken into account by the ACM, which scatters the B
boosted threads across the available CPUs, assigning at mostM boosted threads per CPU.

The decision of how many boosted threads to use, or boosting degree (B), which will be
further discussed in Section 5.3.3 is non-trivial, as the optimal tuning is in general workload-
dependent. As already mentioned, the task of automating the tuning of B is delegated to
the Controller module
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5.3.3 Controller

As already mentioned, the Controller relies on on-line self-tuning techniques in order to
identifying the values of the parameters α, T and B that yield maximum energy-efficiency.
The design of the self-tuning will be discussed in Section 5.3.3. After, though, an experi-
mental data aimed at highlighting the relevance of tuning each of these three parameters
will be presented. The analysis of this data will also allow us to obtain some important
insights that will drive the design of the self-tuning mechanisms employed by the Controller.

The need for self-tuning

The results reported in this section, and in the remainder of the chapter, were obtained
running with 64 threads on a machine equipped with an AMD Opteron 6272 CPU running
Linux 3.13 and equipped with 32 GB of RAM.

First, a sensitivity study is performed to evaluate the tuning of α and T . To this end,
two benchmarks of the STAMP benchmark suite, which generate workloads with distinct
characteristics are considered: intruder generates relatively long transactions that have a
high contention probability; transactions in kmeans, conversely, are relatively short and less
prone to aborts.

In Figure 5.2, the number of active threads is set to 64. The EDP obtained when varying
α from 100 to 107 with T = min_sleep (the minimum sleep granularity) is reported after
being normalized with respect to the EDP obtained when using the optimal values for α
and T , identified via an exhaustive off-line search. The rationale for setting the threshold
T = min_sleep is that this represents the minimum value for which the input argument of
the sleep system call, in line 6 of Algorithm 8, can be guaranteed to be positive, and hence
meaningful.

The plot allows to draw two interesting conclusions. On the one hand, the optimal value
of α for the two benchmarks is significantly different, being equal to 5K for intruder and to
250K for kmeans — a difference of two orders of magnitude. Also, if one uses the optimal
setting of α for kmeans, resp. intruder, with Intruder, resp. kmeans, the EDP is more than
2×, resp. 5× higher. These data intruder highlight the relevance of appropriately tuning
this parameter.

On the other hand, by setting statically T = min_sleep (and properly tuning α) the
EDP obtained is very close to (i.e., at most 5% higher than) the EDP obtained by using any
alternative value of T . This is true despite the fact that the two considered benchmarks
have radically different workload characteristics. In fact, it was experimentally verified
across the entire set of benchmarks considered in this chapter (whose full list is provided
in Section 5.4.1) that the quality of the solution obtained by using this simple heuristic is
always very close to the optimal one. In the light of these considerations, and in order to
maximize the convergence speed of the self-tuning mechanisms employed by the Controller,
the dimensionality of the optimization problem is reduced by setting T = min_sleep.

Let us now analyze the effects of using different values for the B parameter. To this
end 5 popular TM benchmarks are considered, namely intruder, kmeans from the STAMP
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suite, Memcached and STMBench7, which are run using 64 threads in total. B is treated
as the independent parameter, while setting α and T to their optimal, off-line determined,
values. In the machine used in our study, at most 16 cores can operate above the nominal
frequencies (when the remaining 48 are in sleep state). Accordingly, the maximum value of
B is set to 16. In Figure 5.3 the EDP obtained using different static values of B is reported
after being normalized to the EDP obtained using the best setting of B. From the plot, it
is obvious that the optimal setting of B varies significantly with the considered benchmark:
for intruder, for instance, EDP degrades by around 70% if B = 16, since the contention
level generated by having so many threads using an aggressive, linear back-off policy grows
unacceptably large; the opposite is true for STMBench7, for which the optimal B’s value is
16, and using lower values can yield up to 40% increase of EDP.

Design of the self-tuning scheme

As discussed in Section 5.3.3, setting T = min_sleep reduces the dimensionality of the
on-line optimization problem that the controller has to tackle, which is reduced to identify
the optimal tuning of α and B.

The Controller tackles this problem by employing a lightweight, model-free on-line
search approach [91], which identifies the optimal values of the target parameters by ex-
ploring alternative points in the α×B space. There are two main design decisions that are
the basis of any model-free on-line optimization algorithm: (i) how to explore the search
space and (ii) when to stop exploring and start exploiting the available knowledge.

In the design of the Controller, alternative policies for tackling each of these two prob-
lems were considered. Each of them is described in the following, while their evaluation is
postponed to Section 5.4.1.

How to explore the search space. The exploration policies represent variants of the
classic hill-climbing algorithm, which operates as follows: at each iteration the neighbors
of the current configuration are tested and the one that maximizes the target metric is set
as the new configuration for the next iteration. The basic hill-climbing algorithm suffers of
three main problems, which can be addressed by considering several additional mechanisms,
described in the following:

Local minima. Due to the localized nature of its search policy, hill-climbing is well
known to be prone to get stuck in local minima. A commonly employed solution to this
problem is to force random jumps with a fixed, small probability. This variant is noted
jmpX, where X is the jump probability.

Curse of dimensionality. The number of neighbors for a configuration grows exponen-
tially with the dimensionality of the search space [91]. In order to circumvent this issue,
two alternative exploration policies are considered: (i) treat the two dimensions α and B as
tunable in a completely independent fashion, and run two hill-climbing based optimizers,
each targeting a different dimension, in parallel and without any synchronization. This
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policy is noted as independent. (ii) Subdivide the exploration in phases, and during each
phase optimize along exclusively one dimension, changing the target dimension whenever
a phase ends. This policy is noted as alternate.

Slow convergence in large domains. The hill-climbing can converge after an unac-
ceptably high number of explorations if the domain that is being explored spans a broad
range of values and the granularity used to identify the neighbors of the current configu-
ration (also called, exploration step) is too small. On the other hand, using overly large
exploration steps increases convergence speed, but can have a detrimental effect on the
quality of the identified solution. In the problem at hand, as already noted, α spans a
very broad domain (from a few hundreds to about one million). To cope with this issue,
when moving along the α dimension the controller uses an adaptive exploration step: it
starts by adopting a large (125K) exploration step, which it halves whenever the direction
of exploration along the α dimension is inverted (because a sub-optimal value is found) till
a minimum value for the exploration step (1K) is reached. A fixed exploration step equal
to one is when moving along the T dimension.

Exploring vs exploiting. The hill-climbing approach never stops exploring, meaning
that even when it identifies a minima, it keeps on oscillating around it forever. This has
the advantage of making it prone to react to changes in the function being optimized (e.g.,
imputable for instance to shifts of the application’s workload). On the down side, if the
function is stable, moving away from the (local) optimum, and re-exploring a configuration
that is known to be sub-optimal, means incurring a certain penalty. A simple heuristic that
can be used to tackle this problem is to detect subsequent oscillations around the current
local minimum, and stop explorations, which is called stabilizing.

5.4 Evaluation

This section aims to quantitatively evaluate Green-CM from a twofold perspective. It
starts by assessing the effectiveness of the various self-tuning approaches considered in
Section 5.3.3. Then, evaluating the performance, energy consumption, and EDP of Green-
CM with respect to state of art CM solutions.

As already mentioned, Green-CM was designed to work with both hardware and soft-
ware based TM implementations. In this study, TinySTM (see Section 2.2.4) is selected as
reference TM implementation, as it has been shown to excel in a wide range of workloads
[70]. It also comes with different contention managers including exponential back-off with
busy waiting. A set of 4 well-known TM benchmarks is considered: the intruder and kmeans
from the STAMP benchmark suite and Memcached and STMBench7 (see Section 2.4), both
generating 50% read and 50% write transactions. All reported results are the average of at
least 5 runs.
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Figure 5.4: Normalized EDP across different benchmarks using different strategies for self-
tuning individually α.

5.4.1 Tuning Strategies
To start, the effectiveness of the self-tuning algorithms when operating on each dimension
of the search space α×B are evaluated individually. This preliminary analysis will allow to
circumscribe the combinations of self-tuning algorithms that will be evaluated to optimize
α and B in conjunction.

Individual tuning of α and B.

For the individual optimization of α and B, the number of active threads is fixed at 64
and consider four alternative self-tuning strategies: (i) nostab, a non-stabilizing policy that
does not perform probabilistic jumps; (ii) stab, a stabilizing policy that does not perform
probabilistic jumps; (iii) stab jmp1 and (iv) stab jmp10, a stabilizing policy that perform
random jumps with probability 1% and 10%. When evaluating the self-tuning of α, B is
set to 0. When self-tuning B, α is set to the corresponding optimal, off-line found value for
B.

Figure 5.4 shows the EDP across different benchmarks when using the different tuning
strategies for α, normalized to the EDP obtained when using the (per-benchmark) optimal,
off-line found value of α. By looking at the plot, it can be deduced that the stabilizing tuner
then performing random jumps with 1% probability outperforms all others approaches,
achieving an EDP that is only 8% larger than the optimal static solution (identified after
an exhaustive off-line exploration). The reason behind this is the fact that stabilization
minimizes the cost paid oscillating around a minimum. Also, a small jump probability is
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Figure 5.5: Normalized EDP across different benchmarks using different strategies for self-
tuning individually B.

sufficient to allow the tuner to escape from a local minima, without excessively hindering
performance with overly frequent random explorations.

Analogous considerations can be drawn by analyzing Figure 5.5, which shows the results
for the same study conducted on the tuner of B. The considered strategies behave similarly
to the previous case, although the relative differences between them are smaller. It can be
argued that this is a consequence of the fact that identifying the optimal tuning of B is a
relatively easier problem, given that the corresponding domain is much smaller than the
one of α.

Joint tuning of α and B.

Next, different strategies for tuning α and B in conjunction are considered: (i) independent
stab jmp1, two independent tuners, using stabilization and random jumps with 1% proba-
bility. (ii) bidim stab jmp1, same as above, except that a single learner is used that explores
all the current neighbors in the bi-dimensional α × B space; (iii) stab jmp X - stab, an
alternate policy, which starts by exploring the α space until it stabilizes. In phase 2, an
exploration in the B space is performed till stabilization. In phase 3, and in the subsequent
odd phases, it optimizes α performing random jumps with probability X% until it stabilizes
on a new optimum configuration. In phase 4, and in the subsequent even phases, it explores
the B dimension until it stabilizes.

Figure 5.6 shows the EDP normalized the best static configuration which was found
by testing all the different combinations of both T and B offline. An interesting fact that
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can be deduced from these results is that using higher probability of random jumps after
performing a stabilization yielded better results as compared to using a single learner. It can
be argued that this can depend on the fact that, in order to escape from a local minimum, a
larger number of attempts is required, on average, in a bi-dimensional space. Hence, using
a larger jump probability is more beneficial in this scenario. The 2nd best option, with
an only marginally higher EDP value with respect to stab jmp 10 - stab is represented by
the independent tuners. This suggests that, despite the lack of synchronization between
the two tuners, they can still successfully crawl the search space and quickly identify high
quality solutions.

Evaluating Green-CM

In this section Green-CM is compared, using the stab jmp 10 - stab tuner, with respect to the
following state of the art CMs (see Section 2.2.7): suicide, karma, timestamp (ts), aggressive
(agg), exponential back-off with sleep for wait implementation (sleep) and exponential
back-off with spin for wait implementation (spin).

Figure 5.7, shows the EDP, energy consumption and running time for intruder and
kmeans. Figure 5.8 shows the EDP, energy consumption and commit rate for STMbench7
and Memcached. The performances of the considered CMs is normalized with respect
to the ones of Green-CM, defining the normalization in such a way to guarantee that
values higher (resp. lower) than one mean worse (resp. better) performance than Green-CM,
independently of the considered metric. This was performed to enhance data visualization,
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Figure 5.7: EDP, energy consumption and execution time of intruder (left) and kmeans
(right), normalized with respect to Green-CM (Higher is better).

as in some cases Green-CM outperforms existing CMs by various high orders of magnitude.
Overall, Green-CM can achieve up to 2.35 × lower EDP than the best other contention

manager with an average of 65% improvement across all benchmarks at 64 threads and
83% improvements at 48 threads with an overall average gain of 25% across all benchmark
and thread configurations. Green-CM also achieves better efficiency in terms of EDP in
most thread configurations higher than 4 threads for all benchmarks except kmeans and
Memcached where it is as good as the best competitor up to 8 threads.

It can also be noted that the gains from using Green-CM are more prevalent at higher
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Figure 5.8: EDP, energy consumption and commit rate of STMbench7 (left) and Mem-
cached (right), normalized with respect to Green-CM (Higher is better).

number of threads. This is expected, since the higher the thread count, the higher the
contention level, the higher the relevance of a CM.

Finally, to demonstrate the individual impact of using ACM, Green-CM is evaluated
with and without asymmetry enabled. Figure 5.9 shows the EDP, energy consumed and
execution time for running intruder with three different configurations: exponential back-
off using a spin-based implementation (spin), tuning only α with B = 0 (no-asym), and
Green-CM with both tuners enabled (asym).

From the results, ACM yielded extra gains in terms of both energy and performance
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Figure 5.9: EDP, energy consumption and time for intruder with and without ACM en-
abled.

reaching around 25% at 64 threads. These gains can be explained by correlating the
results with the average core frequency operating distribution charts shown in Figure 5.10.
These charts show the distribution of cores according to their average operating frequency
throughout the running time of the benchmarks. Note that the considered AMD processor
support 7 different frequency levels, P0, .., P6, where P0 is the highest frequency (3.0GHz),
P6 is the lowest (1.4 GHz) and P2 is the nominal frequency (2.1GHz).

It can be seen that between 10 to 25% of the cores reach the maximum boosted state
(P0) when asymmetry is enabled, providing evidence on the effectiveness of ACM to favor
the spontaneous activation of hardware-controlled DVFS mechanisms. Another aspect that
can be noted is that, as the number of threads increase, more cores get to operate at lower
frequencies: this is a consequence of the increase of contention, which leads threads to back-
off for longer periods. This explains the gains in terms in of energy efficiency compared to
exponential back-off using spin for the back-off implementation.

5.5 Related work

Most of the literature of TM is concerned with optimizing TM performance [7–9], but the
issue of energy efficiency is much less explored. Indeed, the few existing works on TM
that tried to optimize both energy and performance were mainly revolving around energy
efficient hardware implementations of TM [126–128].

Sanyal et al. [121] tried to achieve energy efficiency in HTM by clock gating processors
upon abort of a transaction. Baldassin et al. [122] adopted a similar idea, although imple-
mented at the software level and integrated with the CM module: using DVFS to lower the
frequency of cores upon abort and during the (exponential) back-off phase. Their study
was limited to 8 threads only using a simulator that has a very low cost for entering a lower
frequency mode, which make this solution largely sub-optimal in practice.
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Figure 5.10: Frequency distribution of different thread configurations for intruder.

Two studies were performed on energy consumption of TM. Rughetti [87] studied the
performance and energy trade-offs of various algorithms; the study showed the necessity
of adaptability within TM to minimize data contention as it is the main source of energy
consumption. Diegues et al. [70] evaluated the performance and energy efficiency of a large
number of TM implementations, including real-life hardware-based (HTM), software-based
(STM) and hybrid (HyTM) across a wide range of popular benchmarks. The results of
the study highlight that the choice of the right TM implementation is strongly workload-
dependent. The Green-CM algorithm has been designed to operate both with STM and
HTM, as it does requires no information on the set of items accessed by aborting transac-
tions — an information not available when using HTM [79].

An extensive study of DVFS in latest processors by Intel and AMD was performed
in [125]. This work characterized the behavior of frequency scaling on both architectures
describing how it can be utilized either automatically (i.e. hardware triggered) or manually
(software enabled). This work showed also how to exploit DVFS in order to enhance the
performance of a STM called Fast-lane [129], which shows performance improvements at
low thread counts. This STM has a master thread whose transactions never abort, by
boosting the operating frequency of this thread at the cost of running other threads at
lower frequencies. They showed improved performance for some micro-benchmarks.

A large body of research has been aimed to devise algorithms for contention man-
agers [75–78] ranging from very simple policies, such as aggressive CM in which the victim
transaction is always aborted, to more complex algorithms that use different heuristics for
determining the back-off time upon aborts (e.g., linear vs exponential), or that take into ac-
count the amount of work done by the contending transactions (e.g., Karma) and/or when
they had been activated. None of these CM policies were evaluated from the perspective
of energy efficiency.

Finally, Green-CM is related to the studies that have analyzed the energy efficiency of
alternative implementations of locking schemes (whereas Green-CM focuses on TM). For
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instance, it was shown [130], that a hybrid combination of busy-waiting and sleeping is the
optimal solution in terms of energy-delay product to implement a mutex semaphore. This
work, however, leaves unsolved, the issue of determining when to use spinning or sleeping.
In Green-CM a similar concept is used in the implementation of the back-off: opting for
either spinning or sleeping depending on the duration of the requested backing off phase.
There are however at least two fundamental differences. Our technique is employed for a
different primitive, i.e. a wait and not a mutex, for which the duration of the backing off
time period is a priori known, hence it can be exploited to make an informed decision on
whether to use spin-based or sleep-based implementations. Further, Green-CM solves the
problem of fully automating the decision of when to use spinning or sleeping by means of
a lightweight, on-line self-tuning technique.

5.6 Summary
This chapter presented Green-CM, an energy efficient contention manager for TM systems.
The energy efficiency of alternative back-off implementations was evaluated using realistic
workloads deployed on state of the art STM systems. This study motivated the proposal of
an adaptive approach, which determines the most efficient back-off implementation to use,
on the basis of the specified back-off period. This building block was then integrated into
a novel asymmetric CM policy, which aims to favor the activation of frequency boosting
via DVFS mechanisms. The proposed solutions has been shown to achieve significant EDP
gains (by up to 2.35× ) when compared to state of the art CM policies.



Chapter 6

Final Remarks

Transactional Memory (TM) borrowed the concept of transactions from the database do-
main and applied it to parallel programming to provide an alternative synchronization
paradigm. The TM abstraction allows an easy to use interface; programmers are only
required to identify the code blocks that should execute atomically, delegating to the im-
plementation of the TM system the task of ensuring their correct synchronization in pres-
ence of concurrent executions. By relieving programmers from the burden of having to
reason on how to ensure a correct, yet efficient, synchronization of their applications, TM
allows application developers to focus on the logic of their programs, hence increasing their
productivity. Along with ease of use, TM also promises performance comparable with
complex synchronization mechanisms, such as based on fined-grained locks or on lock-free
algorithms.

TM comes in different flavors: it can be implemented as a software library, a hardware
feature or a hybrid mix of both. The past 20 years of TM research have shown that there
exists no implementation that excels in all workloads, as each implementation has its own
merits and limitations which make it a better fit for different applications. Software TM
(STM) provides robustness and flexibility but pay high instrumentation cost to track shared
data accesses. Hardware implementations of TM (HTM) are very efficient in detecting con-
flicts but suffer from intrinsic limitations, which are not ought to change in near future due
to high costs of hardware modifications, that render them unpractical in many workloads.
Hybrid TM (HyTM) systems seek to obtain the best of STM and HTM, by allowing HTM
transactions to use some STM implementation on their fallback path.

This thesis identified and tackled three relevant limitations that affect the efficiency of
state of the art TM systems, without compromising what is generally regarded as the key
feature of the TM abstraction: its ease of use.
Capacity limitations of HTM. The availability of a constrained capacity for storing
transactional meta-data is, arguably, one of the major limitations of HTM: transactions
that access locations more than what the hardware can accommodate are doomed to fail
to commit successfully, even in absence of contention.

The first contribution of this dissertation, POWER8-TM (P8TM), is a technique that
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allows for expanding the effective capacity available for HTM applications. P8TM adopts
a hardware-aware software design approach, which exploits two hardware features avail-
able in the IBM POWER8 HTM: (i) Rollback-Only Transactions and (ii) Suspend/Resume
(S/R). P8TM leverages these architectural features via novel software-based synchroniza-
tion algorithms, which relieve read-only transactions from any capacity limitation, while
expanding the effective capacity of update transactions by an order of magnitude achieving
up to ∼7× throughput speedups.
Synchronization overheads in HyTM. Despite the number of proposals in the HyTM
area, state of the art HyTM implementations still suffer from large synchronization over-
heads to ensure correctness when HTM and STM run concurrently. Indeed, existing HyTM
systems either impose expensive instrumentation on the HTM path, or achieve limited con-
currency between transactions executing in hardware and software.

The second contribution of this thesis, DMP-TM, is a novel HyTM system that tack-
les this issue by exploiting a key novel idea: leveraging operating system-level memory
protection mechanisms to detect conflicts between HTM and STM transactions. This inno-
vative design allows DMP-TM to execute HTM transactions without any extra instrumen-
tation, while enabling concurrency with highly scalable STM implementations. DMP-TM
demonstrated robust performance in an extensive evaluation achieving gains of up to ∼20×
compared to state of the art HyTM systems.
Energy efficient contention management. TM implementations tend to adopt spec-
ulative approaches, in which transactions are executed optimistically and aborted in case
contention is detected. Such a design enables high scalability in uncontended workloads,
but is known to lead to severe performance degradation in presence of high degrees of con-
tention. In order to cope with this issue, TM systems typically rely on Contention Manager
(CM) modules, which aim to minimize the detrimental effects of contention by determining
which transactions to abort and when to restart them. Despite the abundant research on
CM, state of the art CM schemes overlook the problem of energy efficiency — a factor that
is increasingly relevant nowadays.

The third contribution of this dissertation fill this gap by introducing Green-CM, the
first contention manager explicitly designed to jointly optimize both performance and en-
ergy consumption. Green-CM employs an adaptive implementation of the primitive used
to back-off threads when conflict occurs, which dynamically adopts either a spin-based or
a sleep-based policy based on their actual (workload-dependent) run-time efficiency. More-
over, Green-CM introduces a novel contention management policy, which aims to leverage
automatic boosting of core frequencies, available via Dynamic Voltage and Frequency Scal-
ing capabilities of modern processors. Thanks to the synergistic use of these two mecha-
nisms, Green-CM is able to reduce energy-delay-product by more than 2×, when compared
to various CM solutions.

A key common trait of the systems presented in this dissertation is that they all
incorporate self-tuning mechanisms that ensure robustness even when faced with non-
favorable workloads. The self-tuning mechanisms integrated in the proposed solutions rely
on lightweight reinforcement techniques that require neither prior knowledge of the target
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platform/workload, nor offline learning.

6.1 Future work

The works presented in this dissertation have not only addressed key limitations of state
of the art TM systems. They have also opened a number of intriguing research questions
that would be interesting to explore in the future.

The first research question raised by this dissertation stems from the observation that
two of the techniques proposed in this thesis, namely P8TM and DMP-TM, leverage hard-
ware features that are only available on (some) IBM processors, but are not supported by
the manufacturers of other CPUs with HTM support (in particular by Intel’s processors).
On the one hand, one may argue that the remarkable efficiency benefits provided by P8TM
and DMP-TM might motivate, in future, the ubiquitous adoption of the specific hardware
features required by these solutions. On the other hand, it is well known that introducing
hardware modifications to today’s processors is a very complex, expensive and slow process.
This consideration motivates therefore future research aimed at investigating the possibility
to adapt the software logic of P8TM and DMP-TM in order to achieve interoperability with
a broader range of commodity processors.

In the light of the above considerations, a first research question is whether it would be
possible to adapt the design of P8TM in order to lift its current dependence on the hardware
ability to suspend and resume the execution of transactions. Indeed, this is a hardware
feature that is fundamental to enable P8TM’s ability to execute read-only transactions
in an uninstrumented fashion. In particular, the ability to suspend and resume hardware
transactions is exploited by P8TM to allow update transactions to execute a quiescence
phase, during which they can monitor the state of concurrent active read-only transactions
using non-transactional reads — thus avoiding spurious aborts that would otherwise arise.
Thus, in order to enhance P8TM’s portability it would be necessary to revisit its current
quiescence mechanism, and use alternative mechanisms to let update transactions determine
whether it is safe for them to commit.

A possible approach to cope with this problem could consist in forcing update transac-
tions to abort deterministically whenever they find an active read-only transaction (rather
than waiting for the latter to complete execution, as in P8TM). Such an approach would
preserve safety, but may also severely compromise the efficiency of update transactions,
which would become prone to suffer from frequent spurious aborts, especially in read-
dominated workloads, even in absence of contention. This is a problem that may be miti-
gated using scheduling techniques aimed at minimizing the odds for an update transaction
to encounter active read-only transactions when trying to commit. Clearly, the vast lit-
erature on transaction scheduling [79, 81, 83] can serve as an inspiration to pursue this
goal. However, classic scheduling techniques prevent any concurrency between potentially
conflicting transactions, whereas, in this case, it is only necessary to prevent concurrency
between read-only transactions and the commit phase of update transactions.

Another limiting feature of Intel’s HTM implementation, which prevents the use of
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DMP-TM on these processors, is the lack of information about the address that triggered
an access violation from within a HTM transaction. To overcome this obstacle, we foresee
two possible directions: (i) the first consists in obtaining the address of the instruction that
caused the exception via the Last Branch Records (LBRs), which in recent Intel processors
store the last branches executed by the CPU and can be used to pinpoint the address
of the instruction that caused an access violation [20] and (ii) a second approach is to
investigate the use of Processor Tracing (PT), namely a recent ISA extension that supports
inbuilt tracing mechanism for Intel TSX, and provides extensive control not only on the
control flow within transactions, but also precise timing analysis on asynchronous events
(like interrupts and signals).

The use of these techniques implies tackling non-trivial problems. The first approach
rises the challenge of determining which memory address was targeted by the offending
instruction (and not only the address of the offending instruction), based on the program
control flow information stored in the LBRs. While for the second approach, although it
appears that the information available using PT could be used to accurately estimate the
memory addresses that triggered an access violation by a HTM transaction, the overheads
incurred by tracing and analyzing this information in run-time are still unclear.
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