
Speculative Read-Write Locks

Tiago João dos Santos Lopes

Mestrado em Engenharia Informática e Computadores

Information Systems and Computer Engineering

Supervisor: Dr. Paolo Romano

Draft

May, 2018

Resumo

Memória Transacional (TM) é uma abstração para programação paralela promis-

sora, que tem sido recentemente implementada em hardware por produtores princi-

pais como a Intel e IBM. Hardware Transactional Memory (HTM) expõe aos pro-

gramadores, através de uma extensão dedicada das suas instruções de processador,

uma implementação assistida por hardware, e altamente eficiente, da abstração de

transações atómicas.

Vários trabalhos recentes têm mostrado que HTM consegue reduzir significati-

vamente o custo de sincronização sofrido por aplicações paralelas em várias áreas.

Infelizmente, também já foi identificado por vários estudos que implementações

HTM atuais sofre de graves limitações, em grande parte devido á natureza restrita

de mecanismo best-effort que o hardware utiliza.

Estas restrições do design limitam a aplicabilidade de HTM de várias formas:

não só restringe o número de posições de memória acessíveis pela transação, tam-

bém faz com que as transações de hardware incapazes de de suportar eventos tais

como chamadas de sistema, perdas de processador context switching e pedidos de

interrupção. Desta forma as restrições mencionadas tornam os sistemas HTM atu-

ais incapazes de servir como mecanismos de sincronização polivalentes, o que limita

a sua utilização.

Este trabalho tenta combater exatamente este problema apresentando Specula-

tive Read Write Lock (SpRWLock), um novo mecanismo de sincronização baseado

em HTM com um ponto-chave: permite blocos atómicos de leitura executa fora

do sistema de transações em hardware, effectivamente poupando-as das limitações

iv

existentes nas atuais implementações HTM.

Speculative Read Write Lock (SpRWLock) combina duas técnicas novas com o

objetivo de asseguras a safety e maximizar eficiência.

SpRWLock preserva a safety de blocos atómicos de leitura, correndo fora do

alcance de transações de hardware, através de uma simples, mas supreendentemente

eficiente, técnica: obrigas as transações de escrita, que executam em HTM, que

verifiquem, no momento de submissão, verificar se existem blocos atómicos de leitura

ativos, e permitindo a submissão dos escritores apenas se nenhum for encontrado;

caso contrário abortam a transação HTM.

Esta técnica consegue obter impressionantes (até 6×) ganhos de processamento

comparado ao sistema base HTM em cargas de trabalho (workload) que contenham

grandes blocos atómicos de leitores. No entanto esses ganhos de processamento são

obtido á custa de um aumento no periodo de latência de blocos de escritura atómicos,

que chegam a abortar diversas ver (e teóricamente ser privados de executar) em

workloads onde leitores grandes são predominantes.

SpRWLock foca neste problemas complementando o algoritmo base acima de-

scrito com dois esquemas ad-hod de calendarização, as quais referimos de sincroniza-

ção de leitores e sincronização de escritores.

Avaliamos SpRWLock através de um estudo experimental extensivo utilizando

as implementações HTM disponíveis nos CPUs Broadwell da Intel e Power8 da

IBM e abrangendo micro-benchmarks destinadas a avaliar a sensibilidade da solução

proposta a um spectro de workloads, bem como benchmarks padrão (TPC-C, STM-

Bench7) e aplicações reais (KyotoDB). Os resultados do nosso estudo mostram que

SpRWLock consegue ganhos de desempenho até 15× em relação tanto a soluções

HTM base, como também ao estado de arte atual, Implementações de trincos em

leitores-escritores de forma não especulativa non-speculative read-write lock imple-

mentations.

Palavras-Chave

memória transacional, sincronização, leitores-escritores, elisão de trincos, hardware

Abstract

Transactional Memory (TM) is a promising abstraction for parallel programming,

which has recently been implemented in hardware by mainstream like Intel and

IBM. Hardware Transactional Memory (HTM) provides a highly-efficient, hardware-

assisted implementation of the abstraction of atomic transaction, long used in the

context of database systems, and now exposed to programmers/compilers via a

dedicated extension of the processor instruction set.

A number of recent works have shown that HTM can reduce significantly the

synchronization overheads incurred by parallel applications in various application

domains. Unfortunately, though, several studies have also highlighted that existing

HTM implementations suffer of severe limitations, stemming from the inherently

restricted nature of the best-effort hardware mechanisms that they employ.

Such a design approach limits the applicability of HTM in a number of ways: not

only it explicitly restricts the maximum amount of memory positions that can be

accessed by transaction, but also makes hardware transactions unable to withstand

events that lead to scratching the processor’s cache, which includes, notably, system

calls, context switches and interrupt requests (including periodic timer interrupts

raised for OS scheduling purposes). Overall, these restrictions make current HTM

systems unfit to serve as a general-purpose synchronization mechanism, significantly

limiting the scope of their applicability.

This work aims at tackling precisely this issue by introducing Speculative Read

Write Lock (SpRWLock), a novel HTM-based synchronization primitive that pro-

vides a key benefit: allowing read-only atomic blocks to execute outside the scope

viii

of any hardware transaction, thus, effectively sparing them from the inherent limi-

tations affecting existing HTM implementations.

SpRWLock combines two key novel techniques aimed, respectively, at ensuring

safety and at maximizing efficiency.

SpRWLock preserves safety of read-only atomic blocks, which run outside the

scope of hardware transactions, by using a simple, yet surprisingly effective, tech-

nique: it requires update transactions, which execute using HTM, to check, at

commit time, whether there are any active read-only atomic blocks, and allows

them to commit only if none is found; forcing them to abort otherwise.

This technique can yield remarkable (up to 6×) throughput gains over plain

HTM in workloads that have long read-only atomic blocks. However, these through-

put gains are achieved at the cost of an increased latency of update atomic blocks,

which can suffer from frequent aborts (and theoretically from starvation) in read-

dominated workloads.

SpRWLock addresses these shortcomings by complementing the above base al-

gorithm with two ad-hoc scheduling schemes, which we refer to as reader synchro-

nization and writer synchronization.

We evaluated SpRWLock via an extensive experimental study conducted using

the HTM implementations available on Intel’s Broadwell and IBM’s Power8 CPUs

and encompassing synthetic micro-benchmarks aimed at assessing the sensitivity

of the proposed solution to a broad spectrum of workloads, as well as standard

benchmarks (TPC-C, STMBench7) and real applications (KyotoDB). The results

of our study shows SpRWLock can yield throughput gains of up 15× with respect

to both plain HTM -based solutions, as well as state of the art, non-speculative

read-write lock implementations.

Keywords

transactional memory, concurrency control, read-write lock, lock elision, hardware

Contents

Contents x

List of Figures xiii

1 Introduction 1

2 Related Work 7

2.1 Read Write Lock Implementations 8

2.1.1 Big Reader Lock . 9

2.1.2 PRWL . 9

2.1.3 RCU . 9

2.2 Transactional Memory . 10

2.3 Software Transactional Memory . 12

2.3.1 Transactional Locking II . 13

2.3.2 TinySTM . 13

2.3.3 NOrec . 14

2.4 Hardware Transactional Memory . 15

2.4.1 zEC12 . 16

2.4.2 POWER8 . 16

2.4.3 TSX . 17

2.4.4 HRWLE . 17

2.5 Lock Elision . 19

CONTENTS xi

2.5.1 Legacy Code . 19

2.6 Hybrid Transactional Memory . 20

2.6.1 HyNOrec . 20

2.6.2 Invyswell . 20

2.6.3 PhaseTM and Split Hardware 22

2.7 Self Tuning . 23

2.7.1 TinySTM . 23

2.7.2 TSX Tuning . 24

2.7.3 Green-CM . 24

2.7.4 Proteus TM . 25

3 Algorithm 27

3.1 Base Algorithm . 28

3.2 Scheduling Techniques . 32

3.2.1 Reader Synchronization . 32

3.2.2 Writer Synchronization . 34

3.3 Correctness and Fairness . 36

3.4 Optimizations . 38

4 Evaluation 41

4.1 Sensitivity Analysis . 42

4.1.1 Impact of scheduling . 49

4.1.2 Reader tracking scheme . 51

4.2 STMBench7 . 53

4.3 TPC-C . 57

4.4 Kyoto Cabinet . 60

5 Conclusions and Future Work 63

5.1 Future Work . 64

Bibliography 65

List of Figures

1.1 Allowing a writer to commit while there is an active reader may lead to

inconsistent snapshots . 4

3.1 A read access during an active update transaction will abort the latter. 30

3.2 A read access which commits before an active update transaction writes

on shared values or verifies the state allows it to successfully commit. . 30

4.1 Hashmap: reader’s size = 10 × writer’s size configuration: throughput,

abort rate, and breakdown of commit modes at 10%, 50% and 90%

update ratios on Intel. 43

4.2 Hashmap: reader’s size = 10 × writer’s size configuration: throughput,

abort rate, and breakdown of commit modes at 10%, 50% and 90%

update ratios on POWER8. 44

4.3 Hashmap: reader’s size = 1 × writer’s size configuration: throughput,

abort rate, and breakdown of commit modes at 10%, 50% and 90%

update ratios on Intel. 45

4.4 Hashmap: reader’s size = 1 × writer’s size configuration: throughput,

abort rate, and breakdown of commit modes at 10%, 50% and 90%

update ratios onPOWER8. 46

4.5 SpRWLock variants: readers execute 10 lookups, writers execute 1 in-

sert/delete. 50% update operations on Intel. 49

xiv List of Figures

4.6 SpRWLock variants: readers execute 10 lookups, writers execute 1 in-

sert/delete. 50% update operations on POWER8. 50

4.7 Reader tracking scheme: Hashmap, 10% update operations, while vary-

ing the size of readers at 80 threads on POWER8. 52

4.8 STMBench7: throughput, abort rate, and breakdown of commit modes

at 1%, 10% and 50% update ratios on Intel. 54

4.9 STMBench7: throughput, abort rate, and breakdown of commit modes

at 1%, 10% and 50% update ratios on POWER8. 55

4.10 TPC-C. 1%, 10%, and 50% update operations. Stock-level (read-only)

and Payment (update) transaction profiles on Intel. 56

4.11 TPC-C. 1%, 10%, and 50% update operations. Stock-level (read-only)

and Payment (update) transaction profiles on POWER8. 57

4.12 TPC-C. Mix comprising the following transaction profiles: Stock-level,

31%, Delivery, 4%, Order Status, 4%, Payment, 43%, and New Order,

18% on Intel . 58

4.13 TPC-C. Mix comprising the following transaction profiles: Stock-level,

31%, Delivery, 4%, Order Status, 4%, Payment, 43%, and New Order,

18% on Power8. 59

4.14 Kyoto: throughput, abort rate, and breakdown of commit modes for the

wicked benchmark on Intel. 60

4.15 Kyoto: throughput, abort rate, and breakdown of commit modes for the

wicked benchmark on Power8. 61

List of Algorithms

1 — Reader basic algorithm(thread tid) 28

2 — Writer basic algorithm(thread tid) 29

3 — Reader synchronization algorithm (thread tid) 33

4 — Writer synchronization algorithm (thread tid) 35

Glossary

BFHW bloom filter-based hardware. 1, 21, 22

BRLock Big Reader Lock. 1, 9, 48, 50, 51, 53, 55, 56

CAM Content Addressable Memory. 1, 16

CF Collaborative Filtering. 1, 25

CPU Computer Processing Unit. 1

HLE Hardware Lock Elision. 1, 17

HRWLE Hardware Read-Write Lock Elision. iii, vii, 1, 17–19, 27, 41, 48, 50, 51

HTM Hardware Transactional Memory. iii, vii, 1, 2, 15–20, 22, 23, 27, 60

HyNOrec Hybrid No Ownership records. 1, 20

HyTM Hybrid Transactional Memory. 1, 20, 22

IPI Inter-Processor Interrupts. 1, 9

IrrevSW irrevocable software. 1, 21, 22

KPI Key Performance Indicator . 1, 25

LE Lock Elision. 1

LiteHW lightweight hardware. 1, 21, 22

xviii GLOSSARY

NOrec No Ownership records. 1, 14, 20

P8 POWER8 . 1, 16–18

PhTM Phased Transactional Memory. 1, 22

PRWL Passive Reader-Writer Locks. 1, 9

RAM Random Access Memory. 1

ROT Rollback-Only Transactions. 1, 18, 19

RTM Restricted Transactional Memory. 1, 17

RWL Read/Writer Lock. 1, 8, 9, 17, 19, 41, 48, 50

SGL Single Global Lock. 1, 2, 18, 19, 22

SglSW single global lock software. 1, 21, 22

SLE Speculative Lock Elision. 1, 17, 19

SpecSW speculative Software. 1, 21, 22

SpRWLock Speculative Read Write Lock. iii, vii, xi, xiii, 1, 3–5, 27–31, 33–35,

41–56, 59, 60

STM Software Transactional Memory. 1, 2, 12–14, 20, 22, 23

TL2 Transactional Locking II . 1, 13

TLE Transactional Lock Elision. 1, 46, 47, 49, 50

TM Transactional Memory. iii, vii, 1, 2, 10–12, 15, 19, 20, 23, 24, 27, 60

TML Transactional Mutex Lock. 1, 14, 15, 20

TSC Time Stamp Counter . 1

GLOSSARY xix

TSX Transactional Synchronization Extensions. 1, 17

UCB Upper Confidence Bound. 1, 24, 25

zEC12 IBMs zEnterprise EC12 . 1, 16

Chapter 1

Introduction

During various decades processors frequencies have been enjoying an exponential

increase. Since early 2000, though, this trend stopped as manufacturers hit the so

called "Power Wall": due to thermal issues, it is nowadays economically infeasible

to further increase the operational frequencies of single core processors. This has

brought a paradigm shift not only in the way hardware is designed, turning multi-

core processors into a mainstream technology, but also in the way software is built

- bringing parallel computing to the forefront of software development.

Unfortunately, developing parallel applications is well known to be a challenging

task. One major source of parallel applications complexity is the implementation of

a synchronized access to shared resources. Indeed, the classic approach to synchro-

nization problems is to rely on a lock-based scheme, which are known as susceptible

to several problems such as deadlocks, livelocks, priority inversions, etc. Given the

increased relevance of parallel computing, over the last decade a large research effort

has been devoted to identifying simpler, yet highly efficient, alternative synchroniza-

tion paradigms.

Transactional Memory (TM) is probably one of the alternative synchroniza-

tion methods to have been most intensively investigated as of late. Making use

of Database Systems concept of Transactions, TM is an Automatic Mutual Exclu-

sion method, where Programmers no longer need to worry with the synchroniza-

2 CHAPTER 1. INTRODUCTION

tion, needing only to code which operations to execute concurrently. TM system

would then ensure atomicity by detecting and resolving any conflict arising between

concurrent transactions. The TM abstraction can be implemented in software,

known as Software Transactional Memory (STM), hardware (Hardware Transac-

tional Memory (HTM)) or combinations thereof.

Compared to other synchronization methods, HTM focuses on minimizing trans-

action overhead through hardware support, reducing or even removing the need of

programming instrumentation on read and write accesses to shared resources. Var-

ious studies [1–6] have clearly shown that HTM can achieve, at least in certain

workloads, impressive performance gains when compared to software based imple-

mentations. Unfortunately, though, existing HTM implementations also suffer of

several relevant restrictions that can severely hamper its performance.

Indeed, even though existing HTM implementations come in different flavors

[4, 7–9], they all share a key common treat: they all support transactions that

perform a limited number of memory accesses. Whenever a transaction exceeds the

maximum HTM capacity, it needs to be executed using a fall-back synchronization

method, namely a Single Global Lock (SGL) that executes pessimistically and whose

activation causes the immediate abort of any concurrent HTM transaction.

Such a design approach limits the applicability of HTM in a number of ways: not

only it explicitly restricts the maximum amount of memory positions that can be

accessed by transaction, but also makes hardware transactions unable to withstand

events that lead to scratching the processor’s cache, which includes, notably, system

calls, context switches and interrupt requests (including periodic timer interrupts

raised for OS scheduling purposes). Overall, these restrictions make current HTM

systems unfit to serve as a general-purpose synchronization mechanism, significantly

limiting the scope of their applicability.

This work aims at tackling precisely this issue by introducing Speculative Read

Write Lock (SpRWLock), a novel HTM-based synchronization primitive that pro-

vides a key benefit: allowing read-only atomic blocks to execute outside the scope

3

of any hardware transaction, thus, effectively sparing them from the inherent limi-

tations affecting existing HTM implementations. SpRWLocks name stems from the

fact that it exposes to programmers the familiar interface of a classic read-write

lock and can, therefore, be seen as a specialized HTM-based technique for eliding

this type of locks in legacy applications. However, SpRWLock can also be straight-

forwardly employed in applications that assume a transactional API by mapping

the beginning of a read-only or an update transaction to a request for acquiring a

read or write lock, respectively.

SpRWLock combines two key novel techniques aimed, respectively, at ensuring

safety and at maximizing efficiency.

SpRWLock preserves safety of read-only atomic blocks, which run outside the

scope of hardware transactions, by using a simple, yet surprisingly effective, tech-

nique: it requires update transactions, which execute using HTM, to check, at com-

mit time, whether there are any active read-only atomic blocks, and allows them to

commit only if none is found; forcing them to abort otherwise. The correctness of

this approach hinges on two key properties of HTM:

• HTM externalizes the memory writes produced by an update transaction only

if it successfully commits, making them visible to both transactional and non-

transactional code atomically. This ensures that read-only atomic blocks never

observe uncommitted (e.g., intermediate) writes of a concurrent update trans-

action.

• HTM detects conflicts between transactional and non-transactional code in an

eager fashion, triggering the immediate abort of the former — a property that

is known as strong isolation in the literature [10]. This property avoids data

races, which might otherwise occur if a read-only atomic block started, after

its state was checked (and found inactive) by a concurrent update transaction.

As illustrated in Fig. 1.1, if the update transaction was to be allowed to com-

mit the read-only atomic block could observe an inconsistent snapshot, e.g.,

by returning different values upon two subsequent reads of the same memory

4 CHAPTER 1. INTRODUCTION

R-begin R-commitr(x)=0 r(x)=1

W-begin W-commitw(x=1)

Inconsistent Read

Figure 1.1: Allowing a writer to commit while there is an active reader may lead to
inconsistent snapshots

position. SpRWLock prevents such a scenario by leveraging the strong iso-

lation property of HTM, which ensures that if a read-atomic block alters its

own state after it has been checked by a concurrent update transaction, then

the latter will be immediately aborted.

As we will show, the technique described above can yield remarkable (up to 6×)

throughput gains over plain HTM in workloads that have long read-only atomic

blocks. However, these throughput gains are achieved at the cost of an increased

latency of update atomic blocks, which can suffer from frequent aborts (and theo-

retically from starvation) in read-dominated workloads.

SpRWLock addresses these shortcomings by complementing the above base al-

gorithm with two ad-hoc scheduling schemes, which we refer to as reader synchro-

nization and writer synchronization.

The reader synchronization scheme requires that read-only atomic blocks, before

starting, wait for the completion of active concurrent update atomic blocks, if any.

This technique not only reduces the likelihood for an update transaction to abort due

to the existence of a concurrent read atomic block; it also guarantees an important

fairness property for write atomic blocks, i.e., it ensures that if a write atomic block

is activated before a read atomic block, then the former cannot be aborted by the

latter. The reader synchronization scheme of SpRWLock is further enhanced by

allowing read-only atomic blocks to shortcut their initial waiting phase in case they

find some other read-only atomic block already waiting: in such a case, the last

5

activated read-only atomic block joins the one already waiting and starts as one

the latter does. This brings two advantages: reducing the average duration of the

readers’ waiting phase — and, hence, their latency — and striving to minimize the

duration of time windows during which some reader is active by aligning their start

time — which increases the chance for update atomic blocks to commit successfully.

The writer synchronization scheme aims, instead, at optimizing the scheduling

decision on when to activate an update atomic block by pursuing a twofold goal: on

one hand, postponing the activation of update atomic blocks in order to reduce the

chances that they have to abort, eventually, due to a concurrent read atomic block;

on the other hand, activating update atomic blocks as early as possible, to maximize

concurrency already active read atomic blocks. This is achieved by estimating,

at run-time, the average duration of atomic blocks, and accordingly delaying the

activation of an update atomic block in order to maximize the chances that it

requests to commit shortly after the last concurrent read atomic block completed.

We evaluated SpRWLock via an extensive experimental study conducted using

the HTM implementations available on Intel’s Broadwell [11] and IBM’s Power8 [12]

CPUs and encompassing synthetic micro-benchmarks aimed at assessing the sensi-

tivity of the proposed solution to a broad spectrum of workloads, as well as standard

benchmarks (TPC-C [13], STMBench7 [14]) and real applications (KyotoDB [15]).

The results of our study shows SpRWLocks throughput can reach 15× typical TM

systems in some of the standard benchmarks, at the cost of reader latency.

Chapter 2

Related Work

With the emergence of multi-core architectures, the need for a synchronization

method between parallel threads accessing shared resources has been a critical pri-

ority. In fact, the conventional synchronization approach based on locking is well

known to suffer from several problems.

Coarse-grained locking, although easy to implement, is far too pessimistic as it

can overly restrict parallelism, failing to take full advantage of modern multi-core

systems. Fine-grained locking, although enabling good performance, is complex to

implement correctly, debug and reason about [16]. Furthermore, it compromises a

key desirable property of software: composability [16]. Using Locks as a synchro-

nization method not only disables concurrent access to such values, but also delays

the threads themselves with its additional overhead during its normal workloads.

A transaction, as a concept, was first developed for databases, as a set of opera-

tions that manipulate data atomically. The main purpose was to keep the database

consistent, while allowing the concurrent access to the database. In order to achieve

this, transactions have to be Atomic, Consistent, Isolated and Durable (ACID).

These features are also essential for parallel programming. Atomicity requires

that changes done within a transaction appear as all or none to other code. Consis-

tency demands that as data changes the database always remains in a valid state.

Isolation ensures that all changes done from within a transaction must remain in-

8 CHAPTER 2. RELATED WORK

visible to all other transactions. Durable as in case of failure the system can either

recover entirely or discard the changes committed by the failing transactions.

2.1 Read Write Lock Implementations

First described by Courtois et al. [17], the Read/Writer Lock (RWL) abstraction

allows multiple readers to access the same value simultaneously, but locking the

object from both readers and writers when a writer requests access to the value.

Classic implementations of the RWL abstraction rely internally on mutex locks and

semaphores.

The basic algorithm consists of two semaphores, one for active readers and

one for writers. The reader, upon start, increments a waiting list to inform it is

currently waiting to activate. It then verifies there are no writers active by checking

the writer lock. If a writer is active, the reader will wait until the writer finishes.

The reader then increments the semaphore and removes itself from the waiting list.

After performing the critical section, the reader removes itself from the semaphore

allowing writers to run again.

The writer begins by also publishing itself in a waiting list to inform it is ready

to begin. It then verifies no reader is active and, if so, attempts to acquire the

writer lock. If successful it removes itself from the waiting list. Upon conclusion

it removes itself from the writing lock, first signaling readers they may begin and

afterwards writers.

The overall concurrent accesses allowed by this typical RWL can be seen in 2.1.

In order to ensure a thread-safe access to the waiting lists a mutex lock is used.

The key challenge of RWLs design is how to minimize the additional overheads

incurred with respect to plain mutex locks, while ensuring fair access to the lock to

both readers and writers.

The main drawback of RWL is their poor scalability as they only have concur-

rency in reader-reader interactions as shown in table 2.1.

2.1. READ WRITE LOCK IMPLEMENTATIONS 9

Table 2.1: Concurrent accesses allowed by typical RWL

Reader Writer
Reader Yes No
Writer No No

2.1.1 Big Reader Lock

Big Reader Lock (BRLock)s [18] objective is to allow read-only transactions to

function as fast as possible by locking a CPU-local spinlock. This implies a array of

locks is created, one for each CPU. This algorithm was developed for read intensive

workloads, as its objective is to increase reader throughput, resulting however in

the reduction of writers throughput. The loss of writer throughput is due to the

need of writers acquiring the full lock array to function.

2.1.2 PRWL

Passive Reader-Writer Locks (PRWL) developed by Liu et al. [19], focuses in several

points:

1. Readers do not need to share data between them, as such there is no shared

state or the need of memory barriers if no writer exists.

2. In typical RWL writer use memory barriers to ensure version updates are

visible to all readers/writers. To solve this situation without costly memory

barriers PRWL uses Inter-Processor Interrupts (IPI) a special type of interrupt

where one processor interrupts another, to force staggered readers to check

the snapshot update.

2.1.3 RCU

Read-Copy-Update (RCU) [20] is an alternative synchronization mechanism that

targets read-dominated workloads. Unlike RWLs, with RCU, a read-only critical

section does not need to acquire any mutex, it just flags itself, using a memory

barrier, at the beginning and end of critical section. To ensure correctness, a writer

10 CHAPTER 2. RELATED WORK

modifying shared data, would create a copy of the data and apply the modifications

to the copy. Readers that existed prior to the write would continue to access the

older, unmodified data, while new readers get to witness the updates. Only when

all readers that existed before the writer have completed their critical sections, the

unmodified data is replaced by the copy.

2.2 Transactional Memory

TM borrows the abstraction of transactions from databases to the parallel program-

ming domain. It provides programmers with the ability to execute transactions on

shared memory data. These transactions are either committed by TM (i.e., the

changes of the transaction are applied atomically to the data) or aborted (i.e., the

changes are discarded as if they never happened) complying with ACID.

TM is a parallel programming paradigm that avoids the pitfalls of traditional

locking techniques while promising the performance of fine-grained locking [16].

Programmers using TM need only to worry on their applications logic, not on how to

implement synchronization, thus easing the development of concurrent applications

that are both scalable and thread-safe in parallel computing.

TM algorithms can be classified according to data versioning, conflict detection,

granularity and read visibility.

• Data versioning has the objective of guaranteeing consistency among all reads

and writes. It is implemented in several different methods with its objective

being to guarantee all transactions work on a consistent snapshot of the sys-

tems memory. TM are mainly divided into eager versioning and lazy version-

ing.

– lazy versioning stores all memory changes the transaction implements in

a buffer to insert in the shared memory on commit. If the transaction is

successful the new values are copied to the memory, which results in a

2.2. TRANSACTIONAL MEMORY 11

small delay as all values are copied. If however the transaction is aborted

no further operations are necessary as the values were never written in

the system.

– In eager versioning however the transaction writes its new values directly

in memory, storing the old value in a log for its possible abort. This al-

lows its commit to be much faster, however if the transaction is aborted

it must recover all overwritten values causing some additional delay in

conflicting transactions.

• Conflict Detection is needed when two of more transactions access the same

value and at least one of them changes the value before all other transactions

sharing access commit. To resolve these situations all reads and writes are

tracked and checked for collisions in one of two ways: pessimistic conflict de-

tection and optimistic conflict detection.

– With pessimistic conflict detection the system eagerly checks the trans-

actions accessed values. This allows for a quick conflict detection at the

cost of performance due to its constant checks.

– optimistic conflict detection assumes a conflict will not occur in a trans-

action, checking all values before commit, thus avoiding the performance

loss that pessimistic conflict detection has due to constant conflict check-

ing. However this detection has the downside that conflicts are only de-

tected at the very end, possibly delaying the abortion for a long time

and wasting resources in an aborting transaction.

• Granularity is the level at which the TM detects conflicts. Granularity is gen-

erally either word-based, object-based, value-based or cache-line based. Word-

based granularity means that the TM system detects conflicts between 4 or

12 CHAPTER 2. RELATED WORK

8 bytes. Object-based, as the name implies, means the system only checks

each objects atomicity, leading to possible false conflicts of different variables

inside an object.Value-based the system locally stores read addresses and val-

ues, allowing the transaction to later confirm the new and previous value are

the same. Finally cache-line based is a hardware specific granularity explained

further on.

• Read Visibility can be divided in visible, where reader inform which memories

they have accessed increasing memory checks and invisible, where readers do

not inform other active transactions of which shared memories they read,

forcing writers to check if reads and writes are complete and a consistent

snapshot of the system is maintained on commit.

2.3 Software Transactional Memory

Due to the difficulty of manufacturing and testing hardware based TM solutions,

STM was developed to implement TM only as a software framework, enabling porta-

bility across different hardwares.

STM relies on instrumented read and write accesses to shared memory locations

from transactional blocks. This instrumentation then allows the software to detect

conflicts through data versioning and conflict detection as previously mentioned.

This generates a higher overhead compared to the hardware-based alternative. On

the other hand one of its main advantages is the transaction size it can support,

unlike hardware-based solutions.

Due to the low cost and high flexibility of software implementations, many differ-

ent designs of STM were developed. STM can be divided according to the previous

categories. Table 2.2 shows some popular and efficient STM implementations.

2.3. SOFTWARE TRANSACTIONAL MEMORY 13

Table 2.2: Popular STM characteristics

Data Versioning Conflict Detection Granularity
TL2 [21] Lazy Optimistic Word/Object
TinySTM [22] Lazy/Eager Pessimistic Word
NORec [23] Lazy Pessimistic Value

2.3.1 Transactional Locking II

Transactional Locking II (TL2), proposed by Dave Dice et al. [21], works as a two-

phase locking scheme, maintaining a global version clock, which is incremented by all

writing transactions, and versioned write-locks for every shared memory location.

It works with optimistic conflict detection and lazy versioning.

On start all transactions read and store the current global version clock in a

local variable to identify its read-version number. The transaction then runs the

user transactional code locally, maintaining a list of versioned write-locks of all read

values (read-set) and written values (write-set). The transaction also verifies in each

read value that its current version is ≤ read-version number and the read values

lock is free to guarantee that the value has not been modified since the transaction

began. When it finishes the writer acquires the write-set locks using a bounded

spinning (aborting after a fixed period of unsuccessfully acquiring a lock). It then

performs a increment-and-fetch operation of the global version clock recording its

value in a local write-version variable. Finally it re-validates the read-set ≤ read-

version number to guarantee no accessed memory locations were modified during

the transaction. If in both checks a value is locked or its value does not comply to

the rules above then the transaction aborts.

2.3.2 TinySTM

Pascal et al. later proposed TinySTM [22], a word-based variant of LSA [24].

TinySTM, like TL2 uses both global version clock for snapshot consistency and

versioned write-locks for shared memory addresses. However, instead of locking all

needed writes just before commit the algorithm acquires locks on read. TinySTM

14 CHAPTER 2. RELATED WORK

works with pessimistic conflict detection and is presented as able to use both ver-

sioning methods.

Read-only transactions are benefited in this algorithm, the reader verifies the

shared memories lock is free, reads the corresponding value and then checks the lock

again to confirm that no changes occurred in the meantime. A reader may need to

extend its snapshot in case it is reading a value that has a version number greater

than the transactions. This is done by validating the read-set and making sure they

have not been updated meanwhile.

Write transactions acquire the lock to guarantee that there are no concurrent

writers. If the lock bit is set the writer verifies its the current lock owner, otherwise

waits or aborts. In the presented TinySTM transactions are set to abort immedi-

ately. This is useful in workloads with high contention as it minimizes the amount

of useless work done.

TinySTM, as mentioned above, can use both eager versioning, with write-

through, resulting in a smaller overhead and delay for other transactions on suc-

cessful commit, or lazy versioning with write-back, resulting in a larger overhead in

all transactions but smaller delay on abort.

It also presents the concept of Hierarchical locking, a strategy to reduce the

validation cost of read-sets by reducing the number of read locks while avoiding the

increase of aborts due to shared memory with the same lock. Hierarchical locking

is specially useful if transactions read many memory locations and there are few

competing write transactions.

2.3.3 NOrec

No Ownership records (NOrec) presented by Luke Dalessandro et al. [23] is a

highly scalable STM on read-mostly workloads, allowing any reader to promote

into a writer at anytime limiting however the algorithm to a single write transaction

system-wide. NOrec uses lazy versioning and pessimistic conflict detection.

NOrec minimizes its overhead by using Transactional Mutex Lock (TML), a

2.4. HARDWARE TRANSACTIONAL MEMORY 15

global clock counter, which allows writers to be serialized. By using TML readers

only store a snapshot of the TML and a read-set, consisting of both read values and

their addresses. On commit the reader checks its stored TML value and current

TML value. If the value is the same then it finishes committing successfully. If the

value is different, the reader needs to perform a validation of its read-set, checking

its stored reads and current values to confirm its read-set is consistent.

Writer transactions buffer all their writes into a log, attempting to acquire the

lock only on commit. This reduces the time TML is held by a transaction, allowing

read-only transactions to commit more easily.

2.4 Hardware Transactional Memory

TM was initially proposed as a hardware based solution with the goal of "a new

multiprocessor architecture intended to make lock-free synchronization as efficient

(and easy to use) as conventional techniques based on mutual exclusion." [25].

After two decades of thorough TM research, it finally made to commercial hard-

ware under the name Hardware Transactional Memory (HTM). All HTM systems

provide the following machine instructions: begin, end and abort transactions.

• Begin instruction is used by the programmer to inform the HTM that a trans-

action has begun and all following reads and writes must be executed with

atomicity and isolation guarantees.

• End instruction is called by the transaction to inform the TM that it is ready

to commit.

• Abort instruction is used to abort a running transaction and call the abort

handler, which is also activated upon a hardware triggered abort.

HTM detects conflicts with the granularity of a cache line, this differs from

one processor to another. Table 2.3 shows the values for different processors that

support HTM.

16 CHAPTER 2. RELATED WORK

Table 2.3: HTM implementations of zEC12, Intel Core i7-4770 and POWER8.
Adapted from [5]

Processor Type zEC12 Intel Core i7-4770 POWER8
Conflict-detection granularity 256 bytes 64 bytes 128 bytes
Transactional-Load Capacity 1 MB 4 MB 8 KB
Transactional-Store Capacity 8 KB 22 KB 8 KB

Although there exist different implementations of HTM, Nakaike et al. [5] show

that no HTM outperforms all other for all workloads.

2.4.1 zEC12

IBMs zEnterprise EC12 (zEC12) [7] was the first commercial server to implement

HTM. zEC12 uses L1 cache for conflict detection [26]. It provides constrained

transactions, which are transactions guaranteed to eventually commit, avoiding the

need of abort handlers. This characteristic allows zEC12 to perform well in highly

contended scenarios [26].

2.4.2 POWER8

POWER8 (P8), also developed by IBM [27] uses Content Addressable Memory

(CAM), a special type of memory, which keeps track of the address of cache lines

accessed from within a transaction. CAM records all reads and writes, allowing for

a quick search of all transactions using the searched word. Another characteristic

of P8 is its suspend and resume transactions. These allow the programmer a higher

layer of liberty compared to other HTM since it allows the system to suspend the

transaction. During suspend no data accesses are recorded by the HTM allowing

the user to access clocks and counters outside its isolation ie. updating values visible

to other transactions. The main downside of P8 is its low capacity compared to

other HTM, as shown in the table 2.3.

2.4. HARDWARE TRANSACTIONAL MEMORY 17

2.4.3 TSX

Intels Transactional Synchronization Extensions (TSX) [28] provides two program-

ming interfaces: Hardware Lock Elision (HLE) and Restricted Transactional Mem-

ory (RTM).

RTM is a simple HTM interface which allows programmers to specify a fall-back

code if the HTM cannot successfully execute.

HLE Hardware Lock Elision (HLE) is an interface that implements Speculative

Lock Elision (SLE). Basically, it provides the ability of transparently replacing the

legacy lock acquire and release instructions with XACQUIRE and XRELEASE in-

structions. This transforms critical sections protected by locks into transactions

that are executed speculatively. HLE is backward compatible, i.e., code developed

with HLE will work on hardware without TSX support by falling back to pessimistic

execution. HLEs drawback is its incapability of setting a custom fall-back code, us-

ing the original locks in case of failure.

Another drawback both Intel interfaces suffer of is the possibility of spurious-aborts

due to data-conflict caused by pre-fetching cache-lines [5]. Although Intels pre-

fetching feature can be disabled, doing so can degrade performance of other appli-

cations.

2.4.4 HRWLE

Proposed by Felber et al. [29], Hardware Read-Write Lock Elision (HRWLE) is

an algorithm, optimized for heavy-read workloads, which makes use of HTM con-

currency capability to allow multiple writers to work concurrently via hardware

speculation, enabling a different approach to the typical RWL system which only

allows readers to run concurrently. For this HRWLE makes use of P8s previously

presented characteristic, suspend and resume transactions.

HRWLE works by treating readers and writers in distinct ways: writers are

18 CHAPTER 2. RELATED WORK

executed in HTM, allowing the system to automatically track conflicts between

them. Conversely readers execute without any hardware instrumentation, hence

avoiding the capacity limitations, which writers, by running in HTM, are subject

to. Analogously to BRLock, in HRWLE readers announce their presence by flagging

their presence in a thread-local variable (and ensuring the visibility of this update

via a memory barrier).

To ensure correctness, no readers can be active during a writer commit. HTM

however is known for its strong isolation, forcing the abortion in case of any data

conflicts, such as flag verifications.

Because of this isolation, in order to allow writers to commit more easily the

algorithm makes use of P8s suspend and resume feature to suspend their transaction

right before commit. The writer can then access each readers flag to wait for

each active reader to commit without aborting, maintaining a consistent snapshot

and avoiding the writers abort due to flag value changes. After confirming each

previously active reader has finished, the writer commits.

As mentioned before, previously active readers are given priority in order to

avoid starvation. Unfortunately, due to the HTMs strong isolation, writers can-

not be given priority as any readers that access their data force an abort of the

conflicting writer. HRWLE presents two methods of avoiding writer starvation:

Non-Speculative Transactions and Rollback-Only Transactions (ROT).

If a writer has not successfully committed after a defined number of attempts,

the algorithm tries to run it in ROT, a special HTM with minimized overhead. In

this type of transaction the writer acquires SGL in ROT-lock mode, allowing only

writers to execute concurrently. As it uses a minimized overhead, ROT transactions

perform faster then HTM.

Non-Speculative Transactions is used by HRWLE when a transaction exceeds

HTMs capacity or exceeds its maximum amount of tries defined in the configuration.

In this case the writer acquires the SGL, waits for previous transactions to finish,

performs its critical section and frees the lock afterwards. As the name implies, no

2.5. LOCK ELISION 19

other transaction may run during its execution.

Overall, HRWLE excels in workloads with high-capacity compared to the base

HTM due to its fall-back paths. It also performs very well in high-contention work-

loads, compared to other RWL and HTM, as readers are un-instrumented and, in

case of fall-back, ROT forces writer serialization, reducing SGL contention.

2.5 Lock Elision

Speculative Lock Elision(SLE), proposed by Rajwar et al. [30] is a novel technique

which intends to dynamically spot and remove unnecessary serialization through

locks, allowing previously locked critical sections to run concurrently. The concept

of this paper is that frequent serialization lowers the performance of multi-threaded

application, even if fine tuned. The main idea is that Hardware will dynamically

identify synchronization operations, namely locks, and elide them, that is, instead

of acquiring the lock the critical operation is executed as is. In the situation that

two critical sections develop a conflict, the algorithm will fall-back to acquiring the

lock pessimistically.

2.5.1 Legacy Code

Ruan et al. in their paper [31] make use of SLE as a way to allow legacy programs,

previously implemented with lock-based synchronization, to elide the locks and

implement the corresponding critical section as a transaction. They tested this

implementation by changing the Compilers cache_lock and stats_lock instructions

for atomic operations in TM. This allows legacy programs with limited performance

in concurrency to be able to run in HTM without the programmers having to

consider the new complexity of perform changes to their code.

20 CHAPTER 2. RELATED WORK

2.6 Hybrid Transactional Memory

Given the restrictions of existing HTM implementations, researchers have investi-

gated an alternative approach, which goes under the name of Hybrid Transactional

Memory (HyTM). In HyTM systems, transactions are first executed using HTM,

yet fall-back to a STM if necessary, in an attempt to make the best use of both im-

plementations. Unfortunately the simultaneous execution of HTM and STM induce

high overheads to assure their correct synchronization [1].

2.6.1 HyNOrec

Hybrid No Ownership records (HyNOrec), developed by Luke Dalessandro et al.

[32], was created with the purpose of supporting concurrent hardware and software

transactions while avoiding heavy instrumentation in hardware transactions. It uses

lazy subscription and eager conflict detection.

As its name suggests, HyNOrec uses NOrec as its STM fall-back [23] which only

requires a global clock, called TML. This allows for both HTM and STM to operate

concurrently since both TM access and update this clock when writing.

Hardware Write transactions begin by reading TML to ensure they are sub-

scribed to STM commit notifications, and increment it upon commit to signal soft-

ware transactions. To avoid hardware-hardware conflicts due to TML changes, each

processor core has its own local counter which each hardware transaction locally in-

crements. This ensures a consistent snapshot, however it requires STM to increase

its overhead as it must check the TML and each counter to guarantee its consistency

with the HTM.

2.6.2 Invyswell

Proposed by Irina Calciu et al. [33], Invyswell Invyswell is a HyTM that relies on a

modified Inval-STM as the fall-back path of HTM. Invyswell uses lazy subscription

and commit-time invalidation.

2.6. HYBRID TRANSACTIONAL MEMORY 21

Inval-STM uses a novel method of validation called commit-time invalidation

an optimistic conflict detection where each transaction stores its read and write-

sets. During commit, the writer invalidates all conflicting transactions, giving itself

priority. After finishing its validation it commits its changes to memory.

This simplifies the validation of other transactions, as they are immediately

invalidated as if using pessimistic conflict detection without the regular conflict

verification associated to this method.

To ensure its guarantees and increase the set of workloads where Invyswell per-

forms well, five types of transaction were developed: lightweight hardware (LiteHW),

bloom filter-based hardware (BFHW), irrevocable software (IrrevSW), speculative

Software (SpecSW) and single global lock software (SglSW).

• LiteHW is a simple hardware transaction with no read or write software in-

strumentation. This allows for a faster execution. This benefit of LiteHW

is also its downside as it is incapable of executing concurrently with software

transactions.

• BFHW records its reads and writes, storing their memory location in Bloom

filters. When finished, BFHW checks if the commit lock is free. If so, it

increments the hardware post commit lock and commits. This lock prevents

SpecSW from performing operations until it is free, allowing the BFHW to

perform commit-time invalidation, with its recorded reads and writes, success-

fully.

• SpecSW is identical to Inval-STM. As with BFHW, SpecSW keeps track of

accessed memory locations, both reads and writes, through Bloom filters. At

commit time SpecSW performs commit-time invalidation with other SpecSW.

Its main difference from Inval-STM is that it commits changes to memory be-

22 CHAPTER 2. RELATED WORK

fore invalidating conflicting transactions.

• SglSW is a final transaction type used for small transactions the HTM does

not support. Due to its small overhead SglSW is fast but does not allow for

concurrent software executions as it acquires the SGL. It can however run in

concurrency with HTM if it commits before BFHW and LiteHW check the

SGL, as the HTM strong isolation detects and aborts if a data conflict occurs.

• IrrevSW is implemented for transactions that repeatedly could not commit in

BFHW. As with SglSW it acquires the lock on start. All of its operations are

immediately written to memory. During the execution of an IrrevSW, Spec-

SWs are disallowed to commit and BFHWs must check if they are conflicting

and abort if needed.

Invyswell first tries transactions using HTM, running either in LiteHW or BFHW

depending on other active transactions and the expected size of the transaction. If

a transaction is not supported in HTM, it is immediately executed in SglSW. If

the number of attempts a hardware transaction tries exceeds the defined retry pol-

icy, the transaction is tried in SpecSW. Finally if SpecSW continues to abort it is

escalated to IrrevSW.

2.6.3 PhaseTM and Split Hardware

Although not HyTM, Phased Transactional Memory (PhTM) [34] and Split Hard-

ware(SplitTM) [35] use both HTM and STM. PhTM focuses on supporting several

phases of the system, in which different TM-based synchronization schemes are used.

It was presented with the following modes: Hardware, Software, Hybrid, Sequential

and Sequential-NoAbort. This allows for adapting the employed TM implementa-

tion to the characteristics of the current workload. However, phase transitions take

2.7. SELF TUNING 23

a stop the world approach: all threads must complete executing using the current

synchronization mechanism, before they are allowed to start the new phase and use

a different synchronization scheme.

SplitTM uses both STM and HTM by splitting an STM into multiple HTM

segments, overcoming current HTM nesting issues. SplitTMs HTM sub-transactions

write to a thread-local log allowing the HTM to commit at any point of the parent

transaction while ensuring isolation. HTMs also log their reads, allowing the parent

transaction to maintain consistency as it can detect conflicts after the hardware

transactions, where the reads occurred, have committed. Finally, on commit the

parent transaction runs a hardware sub-transaction which writes all changes from

the local write log to the main memory. Although allowing bigger transactions to

be implemented in HTM, this implementations comes at the cost of instrumenting

HTM transactions, tracking both reads and writes each HTM performs.

2.7 Self Tuning

As seen through the previous topics, TMs can be implemented in a variety of ways,

each with their own set of parameters. These parameters are generally tuned man-

ually, a time consuming and error prone task. Furthermore, it is not possible to

implement a perfectly optimal configuration through a static manual tuning as work-

loads can vary over time. This motivated the investigation of self-tuning techniques

for TM, of which I overview the following.

2.7.1 TinySTM

When proposing TinySTM [22] Felber et al. noticed that some parameters of their

algorithm, such as hierarchical locking, had to be fine tuned to each workload. In

order to allow their algorithm to perform well in a larger set of workloads, they devel-

oped a hill-climbing tuning algorithm. Starting with a certain number of locks, the

tuner periodically adapted these parameters attempting to acquire a more optimal

24 CHAPTER 2. RELATED WORK

value. This tuning algorithm proved capable of autonomously reaching throughput

values close to those obtained by the team through static testing, optimized to the

workload.

2.7.2 TSX Tuning

Diegues and Romano [8] tackled the problem of automatically identifying the op-

timal number of times a transaction should be attempted in hardware, and how

to react to capacity aborts, by activating the fall-back immediately or treating it

as a conflict induced abort. The two sub-problems are tackled using different self-

tuning algorithms, namely hill-climbing (with probabilistic jumps to avoid being

trapped in local minimums) and Upper Confidence Bound (UCB) [36], a reinforce-

ment learning algorithm that seeks an optimal trade-off between exploration of new

configuration and exploitation of available knowledge. Its results showed that, as

in TinySTM, self-tuning can reach results very close to those obtained through ex-

tensive off-line testing.

2.7.3 Green-CM

Proposed by Shady et al. Green-CM [37] focuses on a Contention Manager directed

mostly to optimize energy consumption, that is, avoiding aborts and implementing

low consumption sleeps so as to reduce the energy consumption of the TM. For this

Green-CM proposes an energy efficient alternative for longer waits when blocked

by a conflicting transaction. It separates waiting transactions into two types, long

waits where they apply a time-based sleep, lowering consumption but also wait

accuracy, and short waits were the algorithm applies a spin-based wait, a high

energy consumption wait with high accuracy. To decide which back-off policy it

should use, Green-CM makes use of both UCB and hill-climbing. Like TSX Tun-

ing, Green-CM makes use of hill-climbing to explore the parameters searching for

2.7. SELF TUNING 25

optimal configurations to the current workload. A problem of this method is that

hill climbing continues to search for a better value even after arriving at the optimal

configuration. In order to avoid changing to a less ideal configuration in subsequent

oscillations, Green-CM uses a variant named stabilizing which functions as an UCB

for the algorithm to avoid oscillating unnecessarily.

2.7.4 Proteus TM

Didona et al. proposed Proteus TM [38], a self-tuning algorithm that focuses on

adapting multiple parameters for optimal configurations. Proteus TM makes use

of Collaborative Filtering (CF), a prominent technique in Recommender Systems,

which attempts to obtain the best value for a user-defined Key Performance Indi-

cator (KPI) and Bayesian optimization to profile the current workload to use CF

with. KPI infers the ideal configuration of new workloads based on previously dis-

covered optimal configurations for other workloads, as such, the algorithm is first

implemented with an off-line profile of optimal configurations for a set of workloads.

It then builds a matrix with the parameters to optimize in order to apply CF. Fi-

nally whenever a new workload appears, Proteus TM first attempts to profile the

workload based on stored optimal configurations, using Bayesian optimization, and

recommending the resulting KPI maxed configuration for the workload.

Chapter 3

Algorithm

This chapter presents Speculative Read Write Lock (SpRWLock), a novel HTM-

based techniques for eliding read-write lock, which, analogously to HRWLE, sup-

ports the concurrent execution of un-instrumented readers âĂŤ hence sparing them

from HTMâĂŹs capacity limitations âĂŤ as well of writers using HTM. The key

novelty of SpRWLock is that, unlike HRWLE, it does not rely on special hardware

features (e.g., suspend-resume) available only on POWER8 processors by IBM, but

assume that the underlying HTM implementation assumes a basic/conventional

API for transaction demarcation and, as such, is a generic solution that can be

adopted on any HTM system.

As already mentioned, SpRWLock exposes a classic read-write lock interface. As

such, SpRWLock can be used as a drop-in, speculative replacement for conventional

read-write locks in applications that already use this synchronization primitive;

however, it is straightforward to adapt SpRWLock’s algorithm to be employed also

by TM-based applications, by mapping the begin and commit of read-only and

update transactions to lock and unlock requests to a single global lock implemented

using SpRWLock.

For the sake of clarity, we present SpRWLock in an incremental fashion. We

start by presenting, in Section 3.1 a simple, base algorithm that embodies one

of the key ideas at the basis of SpRWLock: enabling safe concurrency between un-

28 CHAPTER 3. ALGORITHM

Algorithm 1 — Reader basic algorithm(thread tid)
1: Gobal variables:
2: state[N]← {⊥,⊥, . . . ,⊥} . One status per thread
3: gl . global lock for HTM fallback
4: function SpRWL_read_lock
5: state[tid]← #READER . Flag active reader
6: mem_fence . Make sure writers see reader
7: reader_gl_sync()
8: end function
9: function SpRWL_read_unlock

10: state[tid]← ⊥ . Exit critical section
11: end function
12: function reader_gl_sync
13: if locked(gl) then
14: state[tid]← ⊥ . Defer to gl writer
15: repeat until !locked(gl) . wait until lock is free
16: go to 5
17: end function

instrumented readers and HTM-backed writers. We then extend this base algorithm

in Section 3.2, by introducing two scheduling techniques that aim both at enhancing

performance and ensuring fairness. We conclude by discussing the correctness of

the proposed solution (Section 3.3) and presenting a set of relevant optimizations

(Section 3.4).

3.1 Base Algorithm

The pseudo-code of SpRWLock base algorithm SpRWLock is reported in two parts:

(i) the reader part 1 and (ii) the writer part 2. In the following, for brevity, we

will refer to the threads that request to acquire the lock in read/write mode as

readers/writers, respectively.

As already mentioned, write critical sections are executed speculatively, using

HTM: a write lock acquisition request triggers the activation of a HTM transaction

and the corresponding unlock request triggers the commit of its associated hard-

ware transaction. Readers, conversely, are executed un-instrumented, i.e., without

recurring to HTM, and are therefore spared from HTM’s inherent limitations.

In order to ensure the safety of readers, in presence of concurrent writers exe-

3.1. BASE ALGORITHM 29

Algorithm 2 — Writer basic algorithm(thread tid)
1: Gobal variables:
2: state[N]← {⊥,⊥, . . . ,⊥} . One status per thread
3: gl . global lock for HTM fallback
4: function SpRWL_write_lock
5: attempts← 0
6: state[tid]← #HTM_WRITER
7: begin_htm() . Start transaction
8: end function
9: function SpRWL_write_unlock

10: if state[tid] is #HTM_WRITER then
11: check_for_readers() . Abort if there are active readers
12: tx_commit .Write back updates
13: else
14: release_gl()
15: end function
16: function begin_htm
17: repeat until !locked(gl) . wait until lock is free
18: attempts+ +
19: status← tx_begin() . Begin HTM transaction
20: if status is SUCCESS then
21: if locked(gl) then . Add lock to read-set and...
22: tx_abort() . abort Tx if lock is busy
23: else
24: abort_handler()
25: end function
26: function abort_handler
27: if attempts > MAX_RETRIES then . is budget over?
28: state[tid]← #GL_WRITER
29: acquire_gl() . activate fallback
30: wait_for_readers()
31: else
32: go to 2
33: end function
34: function check_for_readers
35: for i← 0 to N−1 do . Abort if any thread...
36: if state[i] is #READER thenis an active reader...
37: tx_abort()
38: end function
39: function wait_for_readers
40: for i← 0 to N−1 do . For every thread...
41: repeat until state[i] 6= #READER . wait until it is not an active reader
42: end function

cuting in HTM, SpRWLock uses the following mechanism. Before a reader tid is

granted access to the read critical section, it first advertises its existence to concur-

rent writers in the tid-th entry of the state shared array. The update of the state

array is followed by a memory fence, which, as we will discuss, is key for correctness,

30 CHAPTER 3. ALGORITHM

R-begin
flag
active R-commitr(x)=0 r(x)=0

W-begin W-checkR

Abort writer

w(x=1)

Detect active reader

Figure 3.1: A read access during an active update transaction will abort the latter.

W-begin W-commitW-checkRw(x=5) w(y=7)

R-begin R-endr(x)=0 r(y)=0

Figure 3.2: A read access which commits before an active update transaction writes
on shared values or verifies the state allows it to successfully commit.

as it ensures that the state of readers is globally visible before they enter the read

critical section. Upon releasing the read lock, the reader’s state is accordingly reset

— this time without recurring to memory barriers, though.

Writers, in their turn, check for the existence of concurrent active readers, by

inspecting the state array, upon requesting to release the write lock, i.e., before

attempting to commit the corresponding HTM transaction. Only in case no reader

is found active, the HTM transaction can be committed; else, the writer is forcibly

aborted and restarted (see Fig.3.1).

This mechanism ensures that no writer can commit and materialize any changes

to memory if there is any concurrent, active readers. This, in turn, guarantees that

readers execute on isolated snapshots of memory, despite they can run concurrently

with HTM-backed writers, as illustrated in Fig. 3.2, as well as with other readers.

In the above description, we have, for simplicity, omitted discussing the manage-

ment of the fall-back execution path, which, we recall, is required in HTM systems

to ensure termination of transactions that cannot be successfully executed in hard-

ware. As in typical HTM systems, SpRWLock uses a single_global_lock (SGL)

3.1. BASE ALGORITHM 31

as fall-back synchronization method: in case a transaction cannot complete suc-

cessfully in HTM after some predetermined number of attempts, the transaction is

executed pessimistically, after having acquired the SGL. SGL is also subscribed right

after a hardware transaction begins, i.e., the lock’s state is read and the transaction

is aborted if the lock is not found free. This guarantees that if a thread activates

the fall-back path and acquires the SGL, any concurrent hardware transaction is

immediately aborted.

In order to ensure the correct interplay between un-instrumented readers and

writers active using the SGL, readers check the SGL after flagging their own state to

active, and are allowed proceed only if the SGL is found free (see line 13). The writ-

ers that execute in the fall-back path, in their turn, have to wait for the completion

of any active reader after acquiring the SGL and before executing the write criti-

cal section (see line 2). Overall, this mechanism ensures safety by precluding any

concurrency between un-instrumented readers and writers executing in the SGL.

As we will show, despite its simplicity, this base algorithm is surprisingly effective

in boosting system’s throughput in workloads dominated by long readers that do

not fit HTM’s capacity. Indeed, if one attempted to use plain HTM to elide a read

critical section that does not meet the hardware capacity limitations, the reader

would eventually exhaust its budget of retries using HTM and acquire the SGL

fallback. This would prevent any concurrency with other readers and/or writers.

Conversely, with SpRWLock, readers that exceed HTM’s capacity can still execute

concurrently not only with other readers, but also with other writers executing in

HTM, as exemplified by Fig. 3.2.

However, since writers are only allowed to commit using HTM in absence of

concurrent readers, in read intensive workloads, this base algorithm exposes writers

to the risk of starvation. More precisely, this approach can expose writers to the

risk of exhausting their budget of retries in HTM, leading to frequent activations of

the pessimistic fall-back path that can hinder not only the latency of writers, but

also the global degree of concurrency in the system.

32 CHAPTER 3. ALGORITHM

3.2 Scheduling Techniques

In order to address the above discussed shortcomings, SpRWLock integrates two

additional scheduling techniques, which we refer to as reader and writer synchro-

nization schemes. The former imposes delays on the readers’ side, in case they

detect active writers, whereas the latter imposes delays to writers, if they detect

active readers. The two synchronization schemes operate in a synergistic fashion,

ultimately aimed to enhance SpRWLock’s efficiency, but they do pursue different

goals.

Specifically, the reader synchronization scheme pursues a twofold goal: i) provid-

ing fairness guarantees for the writers, by ensuring that newly readers cannot cause

the abort of already active writers, and ii) reducing the. The writer synchronization

scheme, conversely, stalls writers to prevent them from uselessly consuming their

budget of attempts using HTM, while striving to achieve maximum concurrency

with any active reader.

Also, in this case, we present the two techniques in an incremental fashion, intro-

ducing first the reader synchronization scheme and then the writer synchronization

mechanism.

3.2.1 Reader Synchronization

The pseudo-code of the reader synchronization scheme is reported in Alg. 3. Note

that the pseudo-code illustrates only the differences with respect to the base al-

gorithm, omitting the parts in common. This variant uses two additional shared

arrays, also having one entry per each thread in the system: clockw, which stores

the expected end time of any currently active writer, and waiting_for, which is

used by readers to advertise the identity of any writer they are currently waiting

for.

In order to estimate the expected end time of (write) critical sections in a

lightweight, yet accurate, fashion, SpRWLock relies on the hardware time stamp

counter, which in modern CPUs provides a low-overhead, cycle-accurate time source.

3.2. SCHEDULING TECHNIQUES 33

Algorithm 3 — Reader synchronization algorithm (thread tid)
1: Shared variables:
2: Similar to Alg. 1
3: clock_w[N]← {⊥,⊥, . . . ,⊥} . per thread
4: waiting_for[N]← {⊥,⊥, . . . ,⊥} . per thread
5: function SpRWL_write_lock
6: attempts← 0
7: state[tid]← #HTM_WRITER
8: clock_w[N]← expected_end . Publish expected end time
9: begin_htm() . Start transaction

10: end function
11: function SpRWL_read_lock
12: readers_wait_function() . Sync with active writers
13: state[tid]← #READER . Enter critical section
14: mem_fence . Make sure writers see reader
15: reader_gl_sync() . Enter critical section
16: end function
17: function readers_wait_function
18: wait← false
19: max_wait← 0
20: for i← 0 to N−1 do .Wait if there are...
21: if state[i] is #WRITER and clock_w[i] > max_wait thenactive writers...
22: max_wait← clock_w[i] rdtsc()for the most lasting ...
23: wait← i
24: else if waiting_for[i] 6= ⊥ thenor wait with a...
25: wait← waiting_for[i]waiting reader.
26: break
27: waiting_for[tid]← wait
28: repeat until state[wait] 6= #WRITER nop .Wait until most lasting writer finishes.
29: waiting_for[tid] ← ⊥
30: end function

Further, in order to cope with programs having critical section of heterogeneous

duration, SpRWLock gathers independent statistics for different critical sections1.

More in detail, SpRWLock samples the execution time of critical sections on a single

thread2 — so as to reduce measurement overhead — and computes an exponential

moving average — which can be efficiently computed in an on-line fashion and
1In order to identify different critical sections, the current prototype of SpRWLock requires

programmers to specify a unique identifier to the APIs used to enter/exit a critical section. This
task could, however, be delegated to the compiler and made fully automatic and transparent for
programmers, using, e.g., the stack trace as unique identifier of different critical sections

2This approach assumes that the sampling thread eventually executes all the critical sections
that can ever be acquired by any thread. It also assumes that the measurements gathered by
the sampling thread are representative for every other thread. These assumptions hold for all the
applications that we have tested in our experimental study, but may not be true for applications
where threads play specialized/heterogeneous roles. These scenarios could be accommodated by
sampling the duration of critical sections at multiple threads, and periodically merging the statistics
gathered at each thread, as, e.g., in [39].

34 CHAPTER 3. ALGORITHM

allows for quickly reflecting changes in the workload characteristics. To simplify

presentation, we omit describing explicitly these mechanisms in the pseudo-code

and encapsulate them in the estimateEndTime() primitive.

The reader synchronization mechanism introduces two main changes to the base

algorithm presented in Section 3.1.

First, upon requesting a write critical section, writers advertise their existence

and expected end time in the state and clockw arrays, respectively.

Second, before entering a read critical section (via the SpRWLbasic_read_lock()

function), readers check whether they have to first execute a wait phase (Readers_Wait()

function). More in detail, a reader inspects the state and waiting_for arrays’ en-

tries of the other threads in the system and starts a waiting phase in case i) it finds

any active writer, or ii) any reader already waiting for an active writer.

If there are no readers already waiting, the newly arrived reader waits for the

writer that is expected to complete last. It is easy to see that this ensures that

newly arrived readers do not prevent already active writers from committing using

HTM.

If, instead, a newly arrived reader r detects the existence of another reader r′

waiting for some writer w, r joins r′ in the wait for w. As we will show experi-

mentally, this policy has a relevant beneficial impact on performance at high thread

counts, since it tends to synchronize the starting time of readers. If readers are

likely to begin simultaneously, the time window there is any active reader in the

system is globally reduced, increasing the chances for writers to be able to execute

using HTM. Further, it tends to reduce the average reader latency, by allowing them

to start sooner.

3.2.2 Writer Synchronization

The writer synchronization scheme, whose pseudo-code is reported in Alg. 4, aims

at sheltering writers from the risk of incurring repeated aborts due to already active

readers, while striving to jointly maximize the concurrency achievable by writers

3.2. SCHEDULING TECHNIQUES 35

Algorithm 4 — Writer synchronization algorithm (thread tid)
1: Shared variables:
2: Similar to the Alg. 3
3: clock_r[N]← {⊥,⊥, . . . ,⊥} . per thread
4: function SpRWL_read_lock
5: reader_wait_function() . Sync with active writers
6: clock[tid] ← expected_end
7: state[tid]← #READER . Enter critical section
8: mem_fence . Make sure writers see reader
9: reader_gl_sync() . Enter critical section

10: end function
11: function abort_handler
12: attempts+ +
13: if attempts > budget then . Ran out of budget?...
14: Similar to the Alg. 2
15: else
16: if abort_cause is reader_abort then
17: writer_wait_function() . Sync with active readers
18: Similar to the Alg. 2
19: end function
20: function writer_wait_function
21: wait← 0
22: for i← 0 to N−1 do . For each thread...
23: if state[i] is #READER thencheck for the...
24: if clock_r[i] > wait thenmost lasting reader.
25: wait← clock[i]
26: wait −= length+ overlapping_offset

. Start the writer as soon as possible, while overlapping with readers
27: repeat until rdtsc() ≥ wait
28: end function

and readers.

In a nutshell, these goals are pursued by delaying the starting time of a writer

that executes in HTM, in case it encounters any active reader, by the shortest

time possible that still allows the writer to commit successfully. This is achieved

by timing the start of the writer so that the execution of the corresponding write

critical section completes “shortly after” the last reader. This way, not only writers

are guaranteed (or at least is more likely) not to have to abort due to a concurrent

reader, they can also maximize the period of time during which their execution

overlaps with concurrent readers.

More in detail, a writer first attempts, optimistically, to execute in HTM imme-

diately, i.e., avoiding the writer synchronization phase. Note that the pseudo-code

36 CHAPTER 3. ALGORITHM

in Alg. 4 only reports the parts that differ with respect to Alg. 3 and, as such,

omit specifying the pseudo-code for entering a write critical section, which is not

modified by the writer synchronization scheme.

If a writer, executing in a HTM transaction, incurs an abort, it determines the

maximum end time of any active reader. To this end, with the writer synchro-

nization scheme, also readers advertise their expected end time, right after having

completed the reader synchronization and before starting execution (see function

SpRWLwSync_read_lock) using a dedicated global array (clock_r). In order to

overlap its execution with that of already active readers, a writer adjusts its waiting

phase so that it is expected to complete δ cycles after the last active reader. δ is

a parameter, whose tuning allows to trade-off the degree of concurrency between

writers and readers (which can be increased by setting δ close to 0) for the likelihood

that writers can commit successfully (which can be increased by setting δ close to

the expected duration of the writer). In SpRWLock, we use half the expected du-

ration of the writers as default value for δ, which we have observed to provide the

best over-all performance based on preliminary experimentations.

It should be noted that, to preserve fairness, writers maintain their writer flag

active while waiting for a reader: this guarantees that writers have a chance to

commit successfully, as new coming readers will wait for them thanks to the reader

synchronization scheme.

3.3 Correctness and Fairness

This section elaborates on the correctness and fairness guarantees ensured by SpRWLock.

As in typical HTM systems, the correctness (more precisely safety) criterion

ensured by SpRWLock is opacity [40]. We analyze separately the case of readers

and writers.

The correctness of readers is ensured by two mechanisms: (i) the check per-

formed by writers using HTM before committing, (ii) the wait performed by writers

executing in the SGL path before they begin. Recall that HTM guarantees that

3.3. CORRECTNESS AND FAIRNESS 37

memory writes issued in a HTM transaction are hidden from concurrent threads

during transaction’s execution and will appear atomically only upon a successful

commit. Therefore, for a HTM writer to break the consistency of a reader, it must

commit throughout the course of the reader’s execution (Fig. 1.1). However, this

is impossible, since readers advertise their presence using a memory barrier be-

fore starting, which guarantees that any writer using HTM will detect the reader’s

presence before committing and abort.

For analogous reasons, writers that activate the fallback path are guaranteed

to detect and wait for any active reader before starting executing (line 2, Alg. 2).

Further, readers start after a writer has acquired the SGL are guaranteed to detect

the writer’s presence and are forced to wait for its completion (line 13, Alg. 1).

Overall, these two synchronization mechanisms prevent any concurrency between

an un-instrumented reader and writers executing in the fallback path.

Let us now discuss the liveness and fairness properties of SpRWLock. We note

that the synchronization scheme employed by SpRWLock to avoid concurrency be-

tween un-instrumented readers and writers executing in the SGL cannot lead to

deadlocks. In fact, in order for a writer to wait for a reader (line 2, Alg. 1), the

reader must be advertising its state as active. However, before starting waiting for

any writer (line 14, Alg. 1), readers first reset their state flag (line 15, Alg. 1). This

precludes the possibility of mutual waits/deadlocks between writers and readers.

Further, since writers wait for readers only after having acquired the SGL, and

they wait for a given reader at most once, SpRWLock guarantees that a writer

that activates the fallback path cannot wait indefinitely (line 2, Alg. 2), even in

presence of a constant stream of readers. We note that SpRWLock algorithm may,

theoretically, cause readers to wait indefinitely in presence of a constant stream

of writers executing in the SGL. This issue can be avoided by implementing the

SGL via a versioned lock that is incremented each time writers acquire it. The

first time a reader finds the SGL busy, it registers and advertise in a per-thread

variable the current lock’s version number and only waits for writers if the value is

38 CHAPTER 3. ALGORITHM

not larger than the one the reader first observed. Writers, in their turn, acquire the

SGL and increase the lock’s version, but start executing only if there are no readers

waiting with a smaller version number. We omitted this optimization since in read-

dominated workloads, i.e., the ones targeted by read-write locks and SpRWLock, the

probability for a reader to starve due to a continuous stream of writers is expected

to be quite low.

Finally, as already mentioned, the base version of SpRWLock algorithm can

cause writers that execute in HTM to be overrun by newly arrived readers. This

leads to a violation of fairness for HTM-backed writers, which can lead to frequent

and unnecessary activations of the fallback path. This issue is tackled by the reader

synchronization scheme, which guarantees that if a reader r starts after a writer w,

r will only start after w completes executing.

3.4 Optimizations

This section describes a set of relevant performance-oriented optimizations that we

integrated in SpRWLock, but omitted while presenting its pseudo-code, to simplify

presentation.

A second optimization consists in employing the Scalable NonZero Indicators

(SNZI) [41] to allow writers to detect the existence of concurrent readers, at commit

time. The previously presented pseudo-code, in fact, forces the writers to incur a

cost linear in the number of threads in the system, given that it requires writers to

scan the entire state array. Since the reading of the state array takes place from

within the scope of a HTM transaction, this results in an increase of the memory

footprint of the encompassing hardware transaction and in a reduction of the cache

capacity effectively available for writers. Also, the longer it takes for a writer to scan

the state array, the more it is exposed to the risk of aborting due to a conflict with a

concurrent reader that changes its own entry. The two issues above can be avoided

by having readers advertise their existence via SNZI, since SNZI can execute queries

in constant time, by reading a single counter. This comes, though, at the cost of

3.4. OPTIMIZATIONS 39

an increase in the overhead incurred by readers to advertise the start/end of their

execution, as updates to SNZI have, roughly, logarithmic complexity in the number

of threads.

Chapter 4

Evaluation

In this chapter we evaluate SpRWLock against a number of RWL implementations

that use either speculative or pessimistic techniques. The experimental study is

conducted on two HTM-enabled processor (by Intel and IBM) characterized by

different capacity limitations, and encompasses a large set of synthetic and complex

benchmarks/real-life applications.

More in detail, we consider the following baseline solutions: SpRWLock is evalu-

ated against: (i) pthread’s RWL (rwl), (ii) Big Reader Lock [42] (brlock), (iii) plain

transactional lock elision (tle) and (iv) hardware read-write lock elision (herwl) [43],

which, unlike SpRWLock, relies on specific features of IBM POWER8 processor (see

Section 2.4.2) and, as such, cannot be tested on Intel platforms.

For all HTM based solutions, including SpRWLock, we used a retry policy that

attempts a transaction 10 times in hardware before activating the fallback path

except in case of capacity aborts, where a transactions is directly executed using

the fallback path. The only exception is HRWLE, where we used a budget of

attempts equal to 10 for update transactions executing using ROTs — the same

policy used by the authors of HRWLE in their evaluation. Previous works have

shown that dynamically tuning the budget of HTM retries can lead to performance

gains in some workloads [44], but in our study we use a common, static retry policy

to simplify the analysis of the results.

42 CHAPTER 4. EVALUATION

The evaluation is performed using two different architectures that provide sup-

port for HTM, namely Intel Broadwell and IBM POWER8. For Intel, we used a

dual socket Intel Xeon E5-2648L v4 processors with 28 cores and up to 56 hardware

threads running Ubuntu 16.04 with Linux 4.4. For IBM, we used a POWER8 8284-

22A processor that has 10 physical cores, with 8 hardware threads each running

Fedora 24 with Linux 4.7.4. It should be noted that, due to their architectural

differences, these Intel’s and IBM’s processors are faced with very different capacity

limitations. Specifically, POWER8 processors have a 8KB capacity for both mem-

ory reads and writes, whereas the capacity of Broadwell is 22KB for writes and

4MB for reads [45].

The source code, which will be made public [46], was compiled with -O2 flag

using GCC 5.4.0 and 6.2.1 for the Intel and IBM platforms, respectively. Thread

pinning was use to pin a thread per core at the beginning of each run for all the

solutions, and threads were distributed evenly across the available CPUs. All the

results reported in the following are obtained as the average of at least 5 runs.

The remainder of this section is structured as follows.

First, we conduct as sensitivity analysis aimed to stress different aspects of

SpRWLocks design and optimizations, such as: the relevance of the reader and

writer synchronization schemes and using SNZI vs per thread flags to track the

status of active readers. To this end, we rely on a micro-benchmark, based on a

concurrent hashmap, which allows us to control in a precise way the workload’s

characteristics.

Finally, we test SpRWLock using two complex benchmarks and a real-life ap-

plication: STMbench7 [47], a port of TPC-C [13] for in-memory databases [48, 49]

and KyotoCabinet [15].

4.1 Sensitivity Analysis

In this section we describe the results of a sensitivity analysis based on a micro

benchmark consisting of a hashmap that offers three operations: lookup, insert

4.1. SENSITIVITY ANALYSIS 43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2 4 8 14 28 56

10% update
T

h
ro

u
g
h
p
u
t
(1

0
6
 T

x
/s

)

TLE

RWL

BRLock

 2 4 8 14 28 56

50% update

Number of threads

SpRWL

 2 4 8 14 28 56

90% update

 0

 20

 40

 60

 80

 100

10% update

A
b

o
rt

s
 (

%
)

SpRWLTLE

50% update

Number of threads (2,4,8,16,32,64,80)

conflictshtm capacityhtm explicit reader

SpRWLTLE

90% update

SpRWLTLE
 0

 20

 40

 60

 80

 100

10% update

C
o

m
m

it
s
 (

%
)

SpRWLTLE

50% update

Number of threads (2,4,8,16,32,64,80)

HTM GL Unins

SpRWLTLE

90% update

SpRWLTLE

 1

 10

 100

 1000

 2 4 8 16 32

10% update

L
a

te
n

c
y

re
a

d
e

r
(1

0
4
 c

y
c
le

s
)

 2 4 8 16 32

50% update

Number of threads

TLE

RWL

BRLock

 2 4 8 16 32

90% update

SpRWL

 0.01

 0.1

 1

 10

 100

 1000

 2 4 8 16 32

10% update

L
a

te
n

c
y

w
ri
te

r
(1

0
5
 c

y
c
le

s
)

 2 4 8 16 32

50% update

Number of threads

TLE

RWL

BRLock

 2 4 8 16 32

90% update

SpRWL

Figure 4.1: Hashmap: reader’s size = 10 × writer’s size configuration: throughput,
abort rate, and breakdown of commit modes at 10%, 50% and 90% update ratios
on Intel.

and delete. The ratio of lookups to inserts and deletes controls the percentage of

update transactions performed. We protect each insert and delete operation in a

write lock and pre-populate the hashmap so that update operations fit the capacity

limitations of the underlying HTM implementation. To this end, we set the number

of hashtable’s buckets to 5000 and populate the data structure with 8 million and

3 million items for the Broadwell and Power8 processor, respectively.

We control the size of readers by performing either 1 or 10 lookups within a

single read critical section. In the latter case, lookups exceed in the HTM capacity,

which allows for quantifying the gains that SpRWLock can achieve with respect

to both HTM-based solutions as well as pessimistic ones. In the former case, in-

44 CHAPTER 4. EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 8 16 32 64

10% update
T

h
ro

u
g
h
p
u
t
(1

0
6
 T

x
/s

)

 2 4 8 16 32 64

50% update

Number of threads

TLE
herwl
RWL

BRLock
SpRWL

 2 4 8 16 32 64

90% update

 0

 20

 40

 60

 80

 100

10% update

A
b

o
rt

s
 (

%
)

conflictshtm

SpRWLherwlTLE

50% update

Number of threads (1,2,4,8,16,32,64,80)

capacityhtm
explicit

SpRWLherwlTLE

90% update
conflictsrot
capactyrot

reader

SpRWLherwlTLE
 0

 20

 40

 60

 80

 100

10% update

C
o

m
m

it
s
 (

%
)

SpRWLherwlTLE

50% update

Number of threads (1,2,4,8,16,32,64,80)

HTM ROT GL Unins

SpRWLherwlTLE

90% update

SpRWLherwlTLE

 0.1

 1

 10

 100

 1000

 2 4 8 16 32 64

10% update

L
a

te
n

c
y

re
a

d
e

r
(1

0
4
 c

y
c
le

s
)

 2 4 8 16 32 64

50% update

Number of threads

TLE
herwl
RWL

BRLock

 2 4 8 16 32 64

90% update

SpRWL

 0.01

 0.1

 1

 10

 100

 1000

 2 4 8 16 32 64

10% update

L
a

te
n

c
y

w
ri
te

r
(1

0
4
 c

y
c
le

s
)

 2 4 8 16 32 64

50% update

Number of threads

TLE
herwl

 2 4 8 16 32 64

90% update

RWL
BRLock
SpRWL

Figure 4.2: Hashmap: reader’s size = 10 × writer’s size configuration: throughput,
abort rate, and breakdown of commit modes at 10%, 50% and 90% update ratios
on POWER8.

stead, lookups can be successfully executed in HTM, which nullifies the benefits of

SpRWLock with respect to plain HTM-based lock-elision — thus, allowing us to

evaluate SpRWLock’s overhead in an unfavorable workload.

In this section, when running SpRWLock, we enable all the scheduling techniques

and optimizations presented in Section 3, with the exception of the SNZI-based

readers’ tracking mechanism, which will be investigated in detail in Section 4.1.2.

In Figures 4.1 and 4.2 and , we show the results for executing readers that

perform ten lookup operations within a single read critical section. On the left

we report data for Broadwell and on the right for Power8. From top to bottom,

for each architecture, we report the throughput, abort rate, breakdown of commit

4.1. SENSITIVITY ANALYSIS 45

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 8 14 28 56

10% update

T
h
ro

u
g
h
p
u
t
(1

0
6
 T

x
/s

)

 2 4 8 14 28 56

50% update

Number of threads

TLE

RWL

BRLock

 2 4 8 14 28 56

90% update

SpRWL

 0

 20

 40

 60

 80

 100

10% update

A
b

o
rt

s
 (

%
)

SpRWLTLE

50% update

Number of threads (2,4,8,16,32,64,80)

conflictshtm capacityhtm explicit reader

SpRWLTLE

90% update

SpRWLTLE
 0

 20

 40

 60

 80

 100

10% update

C
o

m
m

it
s
 (

%
)

SpRWLTLE

50% update

Number of threads (2,4,8,16,32,64,80)

HTM GL Unins

SpRWLTLE

90% update

SpRWLTLE

 1

 10

 100

 1000

 2 4 8 16 32

10% update

L
a

te
n

c
y

re
a

d
e

r
(1

0
3
 c

y
c
le

s
)

 2 4 8 16 32

50% update

Number of threads

TLE

RWL

BRLock

 2 4 8 16 32

90% update

SpRWL

 0.1

 1

 10

 100

 1000

 2 4 8 16 32

10% update

L
a

te
n

c
y

w
ri
te

r
(1

0
4
 c

y
c
le

s
)

 2 4 8 16 32

50% update

Number of threads

TLE

RWL

BRLock

 2 4 8 16 32

90% update

SpRWL

Figure 4.3: Hashmap: reader’s size = 1 × writer’s size configuration: throughput,
abort rate, and breakdown of commit modes at 10%, 50% and 90% update ratios
on Intel.

modes, as well as the readers’ and writers’ latency. From left to right, we increase

the percentage of update operations/critical sections from 10% to 50% and 90

As mentioned, in this workload, readers do not normally fit in HTM transac-

tions, as confirmed by the aborts breakdown which shows almost 50% capacity abort

rate with a single thread on both Broadwell and POWER8. The high percentage

of capacity aborts due to large readers leads to the frequent activation of the pes-

simistic fallback path, as reflected in the commit breakdown plot. Consequently,

Transactional Lock Elision (TLE) achieves modest scalability in both the 10% and

50% update workloads.

Thanks to its ability to execute readers without instrumentation (see com-

46 CHAPTER 4. EVALUATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2 4 8 16 32 64

10% update
T

h
ro

u
g
h
p
u
t
(1

0
6
 T

x
/s

)

 2 4 8 16 32 64

50% update

Number of threads

TLE
herwl
RWL

 2 4 8 16 32 64

90% update

BRLock
SpRWL

 0

 20

 40

 60

 80

 100

10% update

A
b

o
rt

s
 (

%
)

conflictshtm

SpRWLherwlTLE

50% update

Number of threads (1,2,4,8,16,32,64,80)

capacityhtm
explicit

SpRWLherwlTLE

90% update
conflictsrot
capactyrot

reader

SpRWLherwlTLE
 0

 20

 40

 60

 80

 100

10% update

C
o

m
m

it
s
 (

%
)

SpRWLherwlTLE

50% update

Number of threads (1,2,4,8,16,32,64,80)

HTM ROT GL Unins

SpRWLherwlTLE

90% update

SpRWLherwlTLE

 0.01

 0.1

 1

 10

 100

 1000

 2 4 8 16 32 64

10% update

L
a

te
n

c
y

re
a

d
e

r
(1

0
4
 c

y
c
le

s
)

 2 4 8 16 32 64

50% update

Number of threads

TLE
herwl
RWL

BRLock

 2 4 8 16 32 64

90% update

SpRWL

 0.1

 1

 10

 100

 1000

 2 4 8 16 32 64

10% update

L
a

te
n

c
y

w
ri
te

r
(1

0
3
 c

y
c
le

s
)

 2 4 8 16 32 64

50% update

Number of threads

TLE
herwl
RWL

 2 4 8 16 32 64

90% update

BRLock
SpRWL

Figure 4.4: Hashmap: reader’s size = 1 × writer’s size configuration: throughput,
abort rate, and breakdown of commit modes at 10%, 50% and 90% update ratios
onPOWER8.

mit breakdown plot), instead, SpRWLock exhibits a much better scalability level,

achieving, in the 10% updates workloads, speedups versus TLE up to 16×/8×

on Broadwell/POWER8, respectively. When moving to workloads with higher

percentage of update operations — which fit HTM’s capacity — we notice that

SpRWLock still outperforms TLE by up to 5×/2× on Broadwell/POWER8 in the

50% workload. Even in a 90% workloads, SpRWLock is still capable of yielding

2× higher throughput than TLE on Broadwell and marginally higher throughput

on POWER8. The ability of SpRWLock to scale more on Broadwell as compared

with POWER8 is related to the fact that our Broadwell machine supports up to

28 threads without hyperthreading; conversely, when using more than 10 threads,

4.1. SENSITIVITY ANALYSIS 47

on POWER8, multiple (up to 8) hardware threads start sharing the same physical

cores, reducing their effective capacity, and, accordingly, their ability to execute

write critical sections concurrently, using HTM.

When compared with pessimistic solutions, namely BRLock and RWL, similar

trends are observe: SpRWLock achieves up to 4×/2.5× throughput gains compared

to the best performing of the two (BRLock) on Broadwell/POWER8 in the 10%

update workloads. Furthermore, in workloads with higher percentage of update

operations, specially the 90% workload, we can see that SpRWLock achieves higher

gains, due to its ability to execute writers concurrently using HTM.

HRWLE, which also executes readers without instrumentation on top POWER8,

is able to achieve similar performance to SpRWLock up to 8/4 threads in the 10/50%

updates workloads. However, it does not scale beyond that point. This behavior

can be explained by the commits breakdown, which shows that HRWLE execute

all update transactions as ROTs from that point on. Although ROTs allow concur-

rent readers, unlike the pessimistic lock used by SpRWLock, before ROTs can be

committed writers need to execute a quiescence phase to wait for the completion of

any active reader. In a workload with long readers, this leads writers to incur sig-

nificant overheads, as highlighted by the writers’ latency plot. By executing writers

in the SGL, SpRWLock avoids this issue, reducing the average writers’ latency by

more than 2 orders of magnitude lower latency at 32 threads — the point where

SpRWLock achieves the highest throughput gains with respect to HRWLE — at the

cost of a (relatively) much smaller increase of the readers’ latency (approximately

3×).

Figures 4.3 and 4.4 show the throughput and breakdown of aborts and commits

when readers perform a single lookup operation in the read lock, thus fitting in

HTM transactions. As expected, since also update operations can be successfully

executed using hardware transactions, TLE is the overall best performing variant,

achieving the highest throughput across all workloads and architectures. Indeed, by

looking at the commits breakdown, we can not notice the ability of TLE to commit

48 CHAPTER 4. EVALUATION

almost all transactions using HTM, except for very high thread counts (due to the

coexistence of multiple hardware threads on the same physical core).

Nevertheless, even in this unfavourable workload, SpRWLock achieves perfor-

mance comparable with TLE. TLE does attain highest peak throughputs, up to

30% higher than SpRWLock (on Intel 50% update), as it avoids the overheads of the

additional, software-based, synchronization mechanisms that SpRWLock employs.

However, the average throughput across all thread counts of the two solutions is,

on average, 36% higher for SpRWLock. At high thread counts and read-dominated

workloads, in fact, readers using TLE start incurring capacity exceptions, which

increases the frequency of acquisition of the pessimistic fall-back path and cripples

performance. A problem that SpRWLock avoids by allowing readers to execute

concurrently and uninstrumented. Further, at low thread counts, SpRWLock can

commit a percentage of HTM transactions similar to the one achieved by TLE,

avoiding most of the overheads it incurs to support the safe execution of unin-

strumented readers. This is possible thank to SpRWLock’s policy, presented in

Section 3.4, which first attempts, in an optimistic fashion, to execute readers using

HTM.

HRWLE, which is the other hardware-based system that executes readers with-

out instrumentation, follows trends similar to SpRWLock. However, it pays a higher

penalty in terms of performance when compared with either SpRWLock or TLE.

Even though HRWLE always commits update critical sections either as HTM or

ROTs, the fact that ROTs are serialized and both HTM and ROT have to wait for

active readers (that can fit in HTM) limit its scalability.

When comparing with the pessimistic variants, RWL and BRLock, we can

clearly see their inability to scale. This can be mainly related to the high cost

they impose relative to the small size of the critical sections they protect.

4.1. SENSITIVITY ANALYSIS 49

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 4 8 14 28 56

Throughput (10
5
 Tx/s)

TLE

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 4 8 14 28 56

Readers

L
a
te

n
c
y
 (

1
0

5
 c

y
c
le

s
)

NoSched
RWait
RSync

RWWait
SpRWL

 0

 0.5

 1

 1.5

 2

 2.5

 4 8 14 28 56

Writers

Number of threads

 0

 20

 40

 60

 80

 100

Commits (%)

Number of threads (1,2,4,8,14,28,42,56)

HTM GL Unins

SpRWL
RWWait

RSync
RWait

NoSched
TLE

Aborts (%)
conflictshtm
capacityhtm

explicit
reader

SpRWL
RWWait

RSync
RWait

NoSched
TLE

Figure 4.5: SpRWLock variants: readers execute 10 lookups, writers execute 1
insert/delete. 50% update operations on Intel.

4.1.1 Impact of scheduling

In this section we aim at assess the impact on performance of the different schedul-

ing techniques employed by SpRWLock. To this end we developed several variants

of SpRWLock, which we obtained by selectively disabling different scheduling mech-

anisms:

• NoSched : the base version of SpRWLock, which does not employ any schedul-

ing technique, described in Section 3.1.

• RSync : the version of SpRWLock presented in Section 3.2.1, in which readers

wait for the active writer that is predicted to complete last, if no readers are

already waiting for a writer, and that otherwise makes newly arrived readers

50 CHAPTER 4. EVALUATION

 0

 1

 2

 3

 4

 5

 6

 7

 8

 4 16 32 64 80

Throughput (10
5
 Tx/s)

TLE

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 4 16 32 64 80

Readers

L
a
te

n
c
y
 (

1
0

4
 c

y
c
le

s
)

NoSched
RWait
RSync

RWWait
SpRWL

 0

 1

 2

 3

 4

 5

 6

 7

 8

 4 16 32 64 80

Writers

Number of threads

 0

 20

 40

 60

 80

 100

Commits (%)

Number of threads (1,2,4,8,16,32,64,80)

HTM GL Unins

SpRWL
RWWait

RSync
RWait

NoSched
TLE

Aborts (%)
conflictshtm
capacityhtm

explicit
reader

SpRWL
RWWait

RSync
RWait

NoSched
TLE

Figure 4.6: SpRWLock variants: readers execute 10 lookups, writers execute 1
insert/delete. 50% update operations on POWER8.

join already waiting ones.

• RWait : A variant of Rsync, in which readers simply wait for the active writer

that is predicted to complete last, but do not join other awaiting readers;

For this evaluation we used the hashmap microbenchmark, with the same geom-

etry and initial population as in the previous study.The workload requests with 50%

probability write critical section, which execute an individual update operation. 10

lookup operations are instead executed in the read critical sections.

The results obtained (Figs.4.5 and 4.6) show that even the base version of

SpRWLock shows significant throughput gains with respect to HTM. However, at

high thread counts, the amount of concurrent read transactions increases, reducing

4.1. SENSITIVITY ANALYSIS 51

the time window during which updates can commit. As this happens, update trans-

actions fall-back more frequently, which not only hinders their latency but also the

overall system’s throughput.

The RWait policy brings some noticeable gains, both in terms of throughput

and writer latency, at high thread counts. This is due to the fact that update

transactions, executed in HTM, are no longer overrun by newly arriving readers,

which now wait for already active updates to commit before starting.

RSync shows improvements compared to RWait since, as mentioned in 3.2, it

allows read transactions to begin sooner, reducing reader latency, and to synchronize

their start time, narrowing the time window during which update transactions are

forced to abort (due to the existence of some active reader). This reflects into a

reduction of the abort rates and a decrease of the writer latency compared to RWait,

and, ultimately, into up to 30% throughput gains.

Finally, the comparison of RSync and SpRWLock allows us to appreciate the

additional gains of the writer synchronization scheme, which, especially on Intel,

reduces significantly the aborts incurred by writers due to concurrent readers, en-

hancing the likelihood that they commit successfully in HTM and yielding a further

improvement of the peak throughput by an additional 30%. Overall, this study

provides quantitative evidence on the synergistic contribution and actual relevance

of the scheduling techniques that SpRWLock employs.

4.1.2 Reader tracking scheme

We now evaluate the effects of employing the SNZI-based reader tracking mecha-

nism, described in Section 3.4. The use of SNZI allows writers to determine in a

much more efficient way (a single memory lookup) whether there is any concur-

rent active reader, sparing them from inspecting the state array, whose size grows

linearly with the number of threads in the system. This comes, however, at the

cost of an increased overhead for readers to advertise their presence, which grows

logarithmically with the number of threads in the system.

52 CHAPTER 4. EVALUATION

 0.1

 1

 10

 1 10 100 1000 10000

Speedup w.r.t snzi

SpRWL
SNZI

 0

 20

 40

 60

 80

 100

Commits (%)

size of reader / size of writer

HTM
GL

Unins

SNZISpRWL

Aborts (%)
conflictshtm
capacityhtm

explicit
reader

SNZISpRWL

 0.1

 1

 10

 100

 1 10 100 1000 10000

Readers

L
a
te

n
c
y
 (

1
0

5
 c

y
c
le

s
)

SpRWL
SNZI

 0.1

 1

 10

 100

 1 10 100 1000 10000

Writers

size of reader / size of writer

Figure 4.7: Reader tracking scheme: Hashmap, 10% update operations, while vary-
ing the size of readers at 80 threads on POWER8.

In order to evaluate this trade-off, we vary the size of the read critical sections by

increasing the number of lookup operations they encompass, generating a workload

with 50% updates. Figure 4.7 reports the results obtained using 80 threads on

POWER8. The experimental data shows that, indeed, the use of SNZI can yield

significant throughput gains, up to 6̃×, with long readers, but it also imposes large

overheads, up to 6× with short readers. This is a direct consequence of the larger

overhead that SNZI imposes to readers, which gets effectively amortized by long

readers, but plays a dominant role with short readers.

It is interesting to observe also that, for large readers, not only is the writer

latency reduced (as expected, since writers incur less overhead to verify the existence

of readers), but also the reader latency is smaller, despite reader incur higher costs

4.2. STMBENCH7 53

with SNZI. This is explicable considering that the reader synchronization forces

readers to wait for active writers. Thus, the reduction of the writer latency enabled

by SNZI benefits, indirectly, also the readers’ latency, by reducing the average time

readers spend waiting for writers.

Overall, these experimental data suggests that the effectiveness of the SNZI-

based reader tracking scheme is strongly workload dependent, and that there seems

to exist a strong correlation with the size of the readers. We argue that this finding

could be leveraged to build self-tuning mechanisms aimed at automatically identi-

fying whether to activate or not this mechanism.

4.2 STMBench7

STMBench7 [14] simulates a CAD-like complex applications, composed of several

different and large datastructures, such as indexes and graphs. It is one of the most

complex TM benchmarks, allowing flexible customization of the generated workload

and extensively testing the proposed algorithms in heterogeneous settings. We con-

figured STMBench7 to generate a mix of 10 operations: 5 read-only operations that

normally exceed HTM capacity, and 5 update operations that normally fit HTM

capacity on Intel, at least at low thread counts, but never do in POWER8. We con-

sider three workloads comprising 1%, 10% and 50% update operations. We report

the results obtained with this benchmark in Figures 4.8 and 4.9, which includes

the performance of glsSYS both without and with the SNZI-based reader tracking

scheme, denoted as glsSYS and SNZI, respectively.

Overall, the workload where the two glsSYS variants shine most is the one

with 1% of updates, where they achieve throughput gains of 3×/4× on Broad-

well/POWER8, respectively, with respect to the best performing baseline, i.e., BR-

Lock. Latency wise, the largest benefits of SpRWLock with respect to BRLock

are for writers, whose latency is more than 2 orders of magnitude lower for writers

on both architectures. 2×/1.5×, lower on Broadwell and POWER8. Interestingly,

the reader latency of glsSYS on Broadwell is on par with the best baseline (BR-

54 CHAPTER 4. EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 8 14 28 56

1% update
T

h
ro

u
g
h
p
u
t
(1

0
4
 T

x
/s

)

 0

 5

 10

 15

 20

 2 4 8 14 28 56

10% update

Number of threads

TLE

RWL

BRLock

SpRWL

SNZI

 2 4 8 14 28 56

50% update

 0

 20

 40

 60

 80

 100

1% update

A
b

o
rt

s
 (

%
)

SNZISpRWLTLE

10% update

Number of threads (2,4,8,16,32,64,80)

conflictshtm capacityhtm explicit reader

SNZISpRWLTLE

50% update

SNZISpRWLTLE
 0

 20

 40

 60

 80

 100

1% update

C
o

m
m

it
s
 (

%
)

SNZISpRWLTLE

10% update

Number of threads (2,4,8,16,32,64,80)

HTM GL Unins

SNZISpRWLTLE

50% update

SNZISpRWLTLE

 1

 10

 100

 1000

 2 4 8 16 32

1% update

L
a

te
n

c
y

re
a

d
e

r
(1

0
4
 c

y
c
le

s
)

 2 4 8 16 32

10% update

Number of threads

TLE

RWL

BRLock

 2 4 8 16 32

50% update

SpRWL

SNZI

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 8 16 32

1% update

L
a

te
n

c
y

w
ri
te

r
(1

0
5
 c

y
c
le

s
)

 2 4 8 16 32

10% update

Number of threads

TLE

RWL

BRLock

 2 4 8 16 32

50% update

SpRWL

SNZI

Figure 4.8: STMBench7: throughput, abort rate, and breakdown of commit modes
at 1%, 10% and 50% update ratios on Intel.

Lock), but is 10× higher on POWER8. This can explained by considering that in

POWER8, which has a smaller capacity than Broadwell, writers never successfully

execute in HTM (see the commit breakdown plot). This leads writers to execute

sequentially in the fallback path, which translates into an increase of their execu-

tion time and, consequently, into an increase of the average wait time imposed to

readers due to the reader synchronization scheme. The relatively larger capacity of

the Broadwell processors explains also why SpRWLock scales up to 56 threads, but

only up to 32 threads on POWER8. The second best alternative,BRLock, instead,

only scales up to around 14 threads on both architectures.

As the percentage of update operations grows to 10% and 50%, especially at

4.2. STMBENCH7 55

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 8 16 32 64

1% update

T
h
ro

u
g
h
p
u
t
(1

0
4
 T

x
/s

)

TLE
herwl
RWL

 0

 5

 10

 15

 20

 2 4 8 16 32 64

10% update

Number of threads

BRLock
SpRWL

SNZI

 2 4 8 16 32 64

50% update

 0

 20

 40

 60

 80

 100

1% update

A
b

o
rt

s
 (

%
)

conflictshtm

SNZISpRWLherwlTLE

10% update

Number of threads (1,2,4,8,16,32,64,80)

capacityhtm
explicit

SNZISpRWLherwlTLE

50% update
conflictsrot
capactyrot

reader

SNZISpRWLherwlTLE
 0

 20

 40

 60

 80

 100

1% update

C
o

m
m

it
s
 (

%
)

SNZISpRWLherwlTLE

10% update

Number of threads (1,2,4,8,16,32,64,80)

HTM ROT GL Unins

SNZISpRWLherwlTLE

50% update

SNZISpRWLherwlTLE

 1

 10

 100

 1000

 2 4 8 16 32 64

1% update

L
a

te
n

c
y

re
a

d
e

r
(1

0
4
 c

y
c
le

s
)

 2 4 8 16 32 64

10% update

Number of threads

TLE
herwl
RWL

BRLock

 2 4 8 16 32 64

50% update

SpRWL
SNZI

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2 4 8 16 32 64

1% update

L
a

te
n

c
y

w
ri
te

r
(1

0
5
 c

y
c
le

s
)

 2 4 8 16 32 64

10% update

Number of threads

TLE
herwl
RWL

 2 4 8 16 32 64

50% update

BRLock
SpRWL

SNZI

Figure 4.9: STMBench7: throughput, abort rate, and breakdown of commit modes
at 1%, 10% and 50% update ratios on POWER8.

high thread counts, also on the Broadwell CPU, we observe a relevant (i.e., up to

7×) increase of the readers’ latency — as already noticed on POWER8 with 1% of

update operations. Again, this can be explained by the commit breakdown plot,

which shows that only a small percentage of update transactions can actually be

committed in HTM with this workload. However, glsSYS’s gains in terms of writer

latency’s reduction latency are still sufficiently large to outweigh the increase of

readers’ latency (still, in comparison, to BRLock).

POWER8 shows trends similar to Broadwell at 10% and 50% of update opera-

tions. One noteworthy difference, though, is related to the use of SNZI for tracking

readers, which had negligible, or even adverse, impact on throughput on Broadwell,

56 CHAPTER 4. EVALUATION

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 8 14 28 56

1% update
T

h
ro

u
g
h
p
u
t
(1

0
3
 T

x
/s

)

TLE

RWL

BRLock

 2 4 8 14 28 56

10% update

Number of threads

SpRWL

SNZI

 2 4 8 14 28 56

50% update

 0

 20

 40

 60

 80

 100

1% update

A
b
o
rt

s
 (

%
)

SNZISpRWLTLE

10% update

Number of threads (2,4,8,16,32,64,80)

conflictshtm capacityhtm explicit reader

SNZISpRWLTLE

50% update

SNZISpRWLTLE
 0

 20

 40

 60

 80

 100

1% update

C
o

m
m

it
s
 (

%
)

SNZISpRWLTLE

10% update

Number of threads (2,4,8,16,32,64,80)

HTM GL Unins

SNZISpRWLTLE

50% update

SNZISpRWLTLE

 0.1

 1

 10

 100

 2 4 8 16 32

1% update

L
a

te
n

c
y

re
a
d
e
r
(1

0
6
 c

y
c
le

s
)

 2 4 8 16 32

10% update

Number of threads

TLE

RWL

BRLock

 2 4 8 16 32

50% update

SpRWL

SNZI

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2 4 8 14 28 56

1% update

L
a

te
n

c
y

w
ri
te

r
(1

0
6
 c

y
c
le

s
)

 2 4 8 14 28 56

10% update

Number of threads

 2 4 8 14 28 56

50% update

TLE

RWL

BRLock

SpRWL

SNZI

Figure 4.10: TPC-C. 1%, 10%, and 50% update operations. Stock-level (read-only)
and Payment (update) transaction profiles on Intel.

brings instead relevant performance gains on POWER8, at least for the 10% update

workload. As for the comparison with HRWLE, glsSYS achieves on par performance

with 1% of update operations, but outperforms it by up to 1̃.5× in both the 10%

and 50% update operations’ workloads. The reason of these gains is, also in this

case, rooted back to the large overheads caused by the quiescence phase HRWLE

requires ROTs to perform, in workloads, like this one, characterized by very long

readers.

4.3. TPC-C 57

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 8 16 32 64

1% update
T

h
ro

u
g
h
p
u
t
(1

0
3
 T

x
/s

)

TLE
herwl
RWL

BRLock

 2 4 8 16 32 64

10% update

Number of threads

SpRWL
SNZI

 2 4 8 16 32 64

50% update

 0

 20

 40

 60

 80

 100

1% update

A
b

o
rt

s
 (

%
)

conflictshtm

SNZISpRWLherwlTLE

10% update

Number of threads (1,2,4,8,16,32,64,80)

capacityhtm
explicit

SNZISpRWLherwlTLE

50% update
conflictsrot
capactyrot

reader

SNZISpRWLherwlTLE
 0

 20

 40

 60

 80

 100

1% update

C
o

m
m

it
s
 (

%
)

SNZISpRWLherwlTLE

10% update

Number of threads (1,2,4,8,16,32,64,80)

HTM ROT GL Unins

SNZISpRWLherwlTLE

50% update

SNZISpRWLherwlTLE

 0.1

 1

 10

 100

 2 4 8 16 32 64

1% update

L
a

te
n

c
y

re
a

d
e

r
(1

0
6
 c

y
c
le

s
)

 2 4 8 16 32 64

10% update

Number of threads

TLE
herwl
RWL

BRLock

 2 4 8 16 32 64

50% update

SpRWL
SNZI

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 8 16 32 64

1% update

L
a

te
n

c
y

w
ri
te

r
(1

0
5
 c

y
c
le

s
)

TLE
herwl
RWL

BRLock

 2 4 8 16 32 64

10% update

Number of threads

 2 4 8 16 32 64

50% update

SpRWL
SNZI

Figure 4.11: TPC-C. 1%, 10%, and 50% update operations. Stock-level (read-only)
and Payment (update) transaction profiles on POWER8.

4.3 TPC-C

TPC-C is a well-known OLTP benchmark that simulates the workloads generated

by a warehouse supplier application. TPC-C uses five different types of trans-

actions, with very diverse profiles, such as long read-only transactions, long and

contention-prone vs short and almost contention-free update transactions. We use

this benchmark in two different tests: (i) a simple workload mix, which we denote as

TPCC-1, composed by only two transactions profiles, Stock-Level, a long read-only

transaction, and Payment, a short update transaction; (ii) a more complex trans-

actional mix, noted TPCC-2, encompassing the whole set of transaction profiles

defined by the benchmark in the following proportions: Stock-level, 31%, Delivery,

58 CHAPTER 4. EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 8 14 28 56

Throughput (10
3
 Tx/s)

TLE

RWL

BRLock

SpRWL

SNZI

 0

 20

 40

 60

 80

 100

Commits (%)

Number of threads

HTM
GL

Unins

SNZISpRWLTLE

Aborts (%)
conflictshtm
capacityhtm

explicit
reader

SNZISpRWLTLE

 1

 10

 100

 1000

 2 4 8 16 32

Readers

L
a
te

n
c
y
 (

1
0

5
 c

y
c
le

s
)

 0.01

 0.1

 1

 10

 100

 1000

 2 4 8 16 32

Writers

Number of threads

Figure 4.12: TPC-C. Mix comprising the following transaction profiles: Stock-level,
31%, Delivery, 4%, Order Status, 4%, Payment, 43%, and New Order, 18% on Intel

4%, Order Status, 4%, Payment, 43%, and New Order, 18%.

For the TPCC-1 workload mix, whose results we plot in Figure 4.10 and 4.11, we

also vary the ratio of update operations in the set {1%, 10% and 50%}. With this

workload mix, the scenario where SpRWLock achieves the largest gains is 10% up-

dates, where it can generate throughputs up to 14×/15× times larger than BRLock

in Broadwell/POWER8, respectively. In these settings, both SpRWLock variants

achieve better or equal reader latency values as the most competitive baselines (BR-

Lock on Broadwell and HRWLE on POWER8), while reducing writer latency by

over 500×. Results also show that SpRWLock can scale to a much higher thread

count than other backends, scaling up to 80 threads in u1%, in POWER8, both

with SNZI and State Array variants.

4.3. TPC-C 59

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32 64

Throughput (10
3
 Tx/s)

TLE
herwl
RWL

BRLock
SpRWL

SNZI

 0

 20

 40

 60

 80

 100

Commits (%)

Number of threads

HTM
ROT

GL
Unins

SNZISpRWLherwlTLE

Aborts (%)
conflictshtm
capacityhtm
explicit

conflictsrot
capacityrot
reader

SNZISpRWLherwlTLE

 1

 10

 100

 2 4 8 16 32 64

Readers

L
a
te

n
c
y
 (

1
0

5
 c

y
c
le

s
)

TLE
herwl
RWL

BRLock

 0.01

 0.1

 1

 10

 100

 1000

 2 4 8 16 32 64

Writers

Number of threads

SpRWL
SNZI

Figure 4.13: TPC-C. Mix comprising the following transaction profiles: Stock-level,
31%, Delivery, 4%, Order Status, 4%, Payment, 43%, and New Order, 18% on
Power8.

Similar trends are observed also at 10% of updates, where we see, again on

POWER8, that SNZI can play an important role in optimizing SpRWLock’s perfor-

mance. At 50% update operations, the workload scalability is significantly reduced,

as, especially at high thread counts, the fraction of update operations that acti-

vate the fallback path increases significantly in this high contention workload. Yet,

SpRWLock can still deliverable significant relative gains with respect to all the other

baselines on both architectures.

Even when considering the much more complex TPCC-2 workload mix, see

Fig.4.12 and 4.13, SpRWLock achieves remarkable throughput gains — up to 4.5×/2×

on Broadwell and POWER8, respectively — and shows similar trends.

60 CHAPTER 4. EVALUATION

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 2 4 8 14 28 56

Throughput (10
6
 Tx/s)

TLE

RWL

BRLock

SpRWL

SNZI

 0

 20

 40

 60

 80

 100

Commits (%)

Number of threads

HTM
GL

Unins

SNZISpRWLTLE

Aborts (%)
conflictshtm
capacityhtm
explicit

reader

SNZISpRWLTLE

 1

 10

 100

 1000

 2 4 8 16 32

Readers

L
a
te

n
c
y
 (

1
0

3
 c

y
c
le

s
)

TLE

RWL

BRLock

 0.1

 1

 10

 100

 1000

 2 4 8 16 32

Writers

Number of threads

SpRWL

SNZI

Figure 4.14: Kyoto: throughput, abort rate, and breakdown of commit modes for
the wicked benchmark on Intel.

4.4 Kyoto Cabinet

We consider Kyoto Cabine [50] on its in-memory variant KyotoCacheDB. Internally,

it breaks the database into slots, where each slot is composed of buckets and each

bucket is a search tree. To synchronize database operations, KyotoCacheDB uses

a single global read-write lock. As such, this is an ideal use case for lock elision

techniques specialized to deal with read-write locks.

In order to work as close to our ideal workload as possible, Kyoto was tweaked

to run its Wicked tests with bulk operations only. Overall, many of Kyotos read

transactions seem to fit in HTM, avoiding the need for snzi or the state array, which

reduces the difference in throughput seen between these two variants, it also allows

us to see how our algorithm works in a realistic database management simulation.

4.4. KYOTO CABINET 61

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

 2 4 8 16 32 64

Throughput (10
6
 Tx/s)

TLE
herwl
RWL

BRLock
SpRWL

SNZI

 0

 20

 40

 60

 80

 100

Commits (%)

Number of threads

HTM
ROT

GL
Unins

SNZISpRWLherwlTLE

Aborts (%)
conflictshtm
capacityhtm
explicit

conflictsrot
capacityrot
reader

SNZISpRWLherwlTLE

 0.1

 1

 10

 100

 1000

 2 4 8 16 32 64

Readers

L
a
te

n
c
y
 (

1
0

3
 c

y
c
le

s
)

TLE
RWL

BRLock

 0.01

 0.1

 1

 10

 100

 1000

 2 4 8 16 32 64

Writers

Number of threads

SpRWL
SNZI

Figure 4.15: Kyoto: throughput, abort rate, and breakdown of commit modes for
the wicked benchmark on Power8.

Throughput wise, SpRWLock achieves values up to 30% higher than typical

backends, both on Intel and P8. As seen in previous benchmarks, SpRWLock

continues to benefit writers, as their latency is 60%/30%, Intel and POWER8 re-

spectively, lower than other backends (Figs. 4.14 and 4.15). In terms of scaling,

SpRWLock scales up to 14 threads on Intel and 4 threads on POWER8, maintain-

ing however a better throughput than other backends as threads count increases.

SpRWLock out-scales BRLock as thread count increases and although it does

not achieve as good results as in previous benchmarks, having a lower throughput

than BRLock at lower thread count, it still manages to outperform typical backends

at higher thread count. As for latency, SpRWLock continues to show a higher reader

latency throughout the whole plot, 20×/3.5× in Intel and POWER8 respectively,

62 CHAPTER 4. EVALUATION

and lower writer latency, achieving values up to 2× lower on Intel.

Chapter 5

Conclusions and Future Work

This thesis has designed, implemented and evaluated a novel synchronization mech-

anism, called SpRWLock (Speculative Read Write Lock), which allows to overcome,

at least partially, a key limitation of current HTM implementations: its inability to

accommodate the execution of transactions whose working set exceeds the capacity

of the processor’s cache.

SpRWLock is the first solution that allows for executing update transactions

in HTM, while supporting the concurrent execution of uninstrumented read-only

transactions (and hence spared from the capacity limitations of HTM), without

requesting any special architectural feature from the underlying HTM implementa-

tion, i.e., by assuming a generic API for transaction demarcation.

SpRWLock was evaluated via an extensive experimental study conducted using

the HTM implementations available on Intel’s Broadwell and IBM’s Power8 CPUs

and encompassing synthetic micro-benchmarks aimed at assessing the sensitivity

of the proposed solution to a broad spectrum of workloads, as well as standard

benchmarks (TPC-C, STMBench7) and real applications (KyotoDB). The results

of our study shows SpRWLock can yield throughput gains of up 15× with respect

to both plain HTM -based solutions, as well as state of the art, non-speculative

read-write lock implementations.

64 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1 Future Work

During this work, a number of interesting ideas were identified, which can pave the

way for future research:

• Dynamic Wait Value (Alpha): Before settling for the current SpRWLock im-

plementation, when deciding how to implement the reader synchronization

scheme, one of the options considered was to back-off readers for some pre-

defined value, α. This value was initially set after offline testing, and, by

carefully optimizing the value of α, we observer that it was possible to achieve

perfomance similar to SpRWLock. The next step suggested would be to im-

plement a sellf-tuning mechanism, e.g., based on gradient descent, aimed at

identifying the optimal, workload-dependant, value of α.

• Predicting Reader in HTM (PRHTM): Another possibility enabled by the

online statistics currently gathered by SpRWLock would be to implement a

self-tuning scheme, which would automatically disable the use of hardware

transactions for long readers that are likely to exceed the HTM’s capacity

limitations and execute them directly as uninstrumented readers.

• Reader Wait N: Another approach we have thought of is to allow small readers

to start without waiting for active writers, if readers estimate to be able

tocommit before writers do. This might, theoretically, increase throughput by

reducing the average readers’ wait. However, since we first attempt readers in

HTM, readers that are small enough to finish before writers typically already

fit in HTM. Nonetheless it is an interesting concept to explore outside HTM

systems.

Bibliography

[1] Nuno Diegues, Paolo Romano, and Luís Rodrigues. Virtues and limitations

of commodity hardware transactional memory. In Proceedings of the 23rd In-

ternational Conference on Parallel Architectures and Compilation, PACT ’14,

pages 3–14, New York, NY, USA, 2014. ACM.

[2] C. Ferri, S. Wood, T. Moreshet, R. Iris Bahar, and M. Herlihy. Embedded-tm:

Energy and complexity-effective hardware transactional memory for embedded

multicore systems. Journal of Parallel and Distributed Computing, 70(10):1042

– 1052, 2010. Transactional Memory.

[3] E. Gaona, R. Titos, J. FernÃąndez, and M. E. Acacio. On the design of

energy-efficient hardware transactional memoryâĂĽsystems. Concurrency and

Computation: Practice and Experience, 25(6):862–880, 2013.

[4] A. Mericas, N. Peleg, L. Pesantez, S. B. Purushotham, P. Oehler, C. A. An-

derson, B. A. King-Smith, M. Anand, J. A. Arnold, B. Rogers, L. Maurice,

and K. Vu. Ibm power8 performance features and evaluation. IBM Journal of

Research and Development, 59(1):6:1–6:10, Jan 2015.

[5] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael, and

Hisanobu Tomari. Quantitative comparison of hardware transactional memory

for blue gene/q, zenterprise ec12, intel core, and power8. SIGARCH Comput.

Archit. News, 43(3):144–157, June 2015.

66 BIBLIOGRAPHY

[6] Martin Schindewolf, Barna Bihari, John Gyllenhaal, Martin Schulz, Amy

Wang, and Wolfgang Karl. What scientific applications can benefit from hard-

ware transactional memory? In Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis, SC ’12, pages

90:1–90:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[7] z/Architecture Principles of Operation. SA22-7832-09.

[8] Nuno Diegues and Paolo Romano. Self-tuning intel restricted transactional

memory. Parallel Comput., 50(C):25–52, December 2015.

[9] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin

Ohmacht, Christopher Barton, Raúl Silvera, and Maged M. Michael. Eval-

uation of blue gene/q hardware support for transactional memories. 2012 21st

International Conference on Parallel Architectures and Compilation Techniques

(PACT), pages 127–136, 2012.

[10] Colin Blundell, Christopher Lewis, and Milo M K Martin. Deconstructing

transactional semantics: The subtleties of atomicity. 06 2005.

[11] Yehuda Afek, Amir Levy, and Adam Morrison. Programming with hardware

lock elision. In Proceedings of the 18th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, PPoPP ’13, pages 295–296, New

York, NY, USA, 2013. ACM.

[12] H. Q. Le, G. L. Guthrie, D. E. Williams, M. M. Michael, B. G. Frey, W. J.

Starke, C. May, R. Odaira, and T. Nakaike. Transactional memory support

in the ibm power8 processor. IBM Journal of Research and Development,

59(1):8:1–8:14, Jan 2015.

[13] TPC Council. TPC-C Benchmark, 2011.

[14] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stmbench7: A bench-

mark for software transactional memory. In Proceedings of the 2Nd ACM

BIBLIOGRAPHY 67

SIGOPS/EuroSys European Conference on Computer Systems 2007, EuroSys

’07, pages 315–324, New York, NY, USA, 2007. ACM.

[15] FAL Labs. Kyoto cabinet: A straightforward implementation of DBM, 2011.

http://fallabs.com/kyotocabinet/.

[16] Ali-Reza Adl-Tabatabai, Christos Kozyrakis, and Bratin Saha. Unlocking con-

currency. Queue, 4(10):24–33, December 2006.

[17] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with readers

and writers. Commun. ACM, 14(10):667–668, October 1971.

[18] Jonathan Corbet. Big reader locks. https://lwn.net/Articles/378911.

[19] Ran Liu, Heng Zhang, and Haibo Chen. Scalable read-mostly synchronization

using passive reader-writer locks. In 2014 USENIX Annual Technical Con-

ference (USENIX ATC 14), pages 219–230, Philadelphia, PA, 2014. USENIX

Association.

[20] Paul E. McKenney and John D. Slingwine. Read-Copy Update: Using Ex-

ecution History to Solve Concurrency Problems. In Parallel and Distributed

Computing and Systems, pages 509–518, Las Vegas, NV, October 1998.

[21] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceedings

of the 20th International Conference on Distributed Computing, DISC’06, pages

194–208, Berlin, Heidelberg, 2006. Springer-Verlag.

[22] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tun-

ing of word-based software transactional memory. In Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, PPoPP ’08, pages 237–246, New York, NY, USA, 2008. ACM.

[23] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: Streamlining

stm by abolishing ownership records. SIGPLAN Not., 45(5):67–78, January

2010.

http://fallabs.com/kyotocabinet/

68 BIBLIOGRAPHY

[24] Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm

with eager validation. In Proceedings of the 20th International Conference

on Distributed Computing, DISC’06, pages 284–298, Berlin, Heidelberg, 2006.

Springer-Verlag.

[25] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architec-

tural support for lock-free data structures. SIGARCH Comput. Archit. News,

21(2):289–300, May 1993.

[26] Christian Jacobi, Timothy Slegel, and Dan Greiner. Transactional memory ar-

chitecture and implementation for ibm system z. In Proceedings of the 2012 45th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-

45, pages 25–36, Washington, DC, USA, 2012. IEEE Computer Society.

[27] H. Q. Le, G. L. Guthrie, D. E. Williams, M. M. Michael, B. G. Frey, W. J.

Starke, C. May, R. Odaira, and T. Nakaike. Transactional memory support

in the ibm power8 processor. IBM Journal of Research and Development,

59(1):8:1–8:14, Jan 2015.

[28] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar. Per-

formance evaluation of intel® transactional synchronization extensions for

high-performance computing. In Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis, SC ’13,

pages 19:1–19:11, New York, NY, USA, 2013. ACM.

[29] Pascal Felber, Shady Issa, Alexander Matveev, and Paolo Romano. Hardware

read-write lock elision. In Proceedings of the Eleventh European Conference on

Computer Systems, EuroSys ’16, pages 34:1–34:15, New York, NY, USA, 2016.

ACM.

[30] Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling

highly concurrent multithreaded execution. In Proceedings of the 34th An-

BIBLIOGRAPHY 69

nual ACM/IEEE International Symposium on Microarchitecture, MICRO 34,

pages 294–305, Washington, DC, USA, 2001. IEEE Computer Society.

[31] Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael Spear. Transactionalizing

legacy code: An experience report using gcc and memcached. SIGPLAN Not.,

49(4):399–412, February 2014.

[32] Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark Moir,

Michael L. Scott, and Michael F. Spear. Hybrid norec: A case study in the

effectiveness of best effort hardware transactional memory. SIGPLAN Not.,

46(3):39–52, March 2011.

[33] Irina Calciu, Justin Gottschlich, Tatiana Shpeisman, Gilles Pokam, and Mau-

rice Herlihy. Invyswell: A hybrid transactional memory for haswell’s restricted

transactional memory. In Proceedings of the 23rd International Conference on

Parallel Architectures and Compilation, PACT ’14, pages 187–200, New York,

NY, USA, 2014. ACM.

[34] Moir Bussam, Lev. Phtm: Phased transactional memory. 2007.

[35] Yossi Lev and Jan-Willem Maessen. Split hardware transactions: True nesting

of transactions using best-effort hardware transactional memory. In Proceedings

of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’08, pages 197–206, New York, NY, USA, 2008. ACM.

[36] Alexandra Carpentier, Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi

Munos, and Peter Auer. Upper-confidence-bound algorithms for active learning

in multi-armed bandits. In Proceedings of the 22Nd International Conference

on Algorithmic Learning Theory, ALT’11, pages 189–203, Berlin, Heidelberg,

2011. Springer-Verlag.

[37] Shady Issa, Paolo Romano, and Mats Brorsson. Green-cm: Energy efficient

contention management for transactional memory. In Proceedings of the 2015

70 BIBLIOGRAPHY

44th International Conference on Parallel Processing (ICPP), ICPP ’15, pages

550–559, Washington, DC, USA, 2015. IEEE Computer Society.

[38] Diego Didona, Nuno Diegues, Anne-Marie Kermarrec, Rachid Guerraoui, Ri-

cardo Neves, and Paolo Romano. Proteustm: Abstraction meets performance

in transactional memory. SIGOPS Oper. Syst. Rev., 50(2):757–771, March

2016.

[39] David Dice, Alex Kogan, Yossi Lev, Timothy Merrifield, and Mark Moir. Adap-

tive integration of hardware and software lock elision techniques, 06 2014.

[40] Rachid Guerraoui and Michal Kapalka. On the correctness of transactional

memory. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’08, pages 175–184, New York,

NY, USA, 2008. ACM.

[41] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. Snzi: scalable

nonzero indicators, 08 2007.

[42] Jonathan Corbet. Big reader locks, 2016.

[43] Pascal Felber, Shady Issa, Alexander Matveev, and Paolo Romano. Hardware

read-write lock elision. In Proceedings of the Eleventh European Conference on

Computer Systems, EuroSys ’16, pages 34:1–34:15, New York, NY, USA, 2016.

ACM.

[44] Diego Rughetti, Paolo Romano, Francesco Quaglia, and Bruno Ciciani. Au-

tomatic tuning of the parallelism degree in hardware transactional memory.

In Euro-Par 2014 Parallel Processing, pages 475–486. Springer International

Publishing, 2014.

[45] Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael, and

Hisanobu Tomari. Quantitative comparison of hardware transactional memory

for blue gene/q, zenterprise ec12, intel core, and power8. In Proceedings of the

BIBLIOGRAPHY 71

42Nd Annual International Symposium on Computer Architecture, ISCA ’15,

pages 144–157, New York, NY, USA, 2015. ACM.

[46] https://github.com/tsepol/SpRWL, 2018.

[47] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stmbench7: A bench-

mark for software transactional memory. In Proceedings of the 2Nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007, EuroSys

’07, pages 315–324, New York, NY, USA, 2007. ACM.

[48] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,

Nabil Hachem, and Pat Helland. The end of an architectural era: (it’s time

for a complete rewrite). In Proceedings of the 33rd International Conference

on Very Large Data Bases, VLDB ’07, pages 1150–1160. VLDB Endowment,

2007.

[49] E. Jones. tpccbench. https://github.com/evanj/tpccbench, 2017.

[50] FAL Labs. Kyoto cabinet: A straightforward implementation of DBM, 2011.

http://fallabs.com/kyotocabinet/.

https://github.com/tsepol/SpRWL
https://github.com/evanj/tpccbench

	Contents
	List of Figures
	Introduction
	Related Work
	Read Write Lock Implementations
	Big Reader Lock
	PRWL
	RCU

	Transactional Memory
	Software Transactional Memory
	Transactional Locking II
	TinySTM
	NOrec

	Hardware Transactional Memory
	zEC12
	POWER8
	TSX
	HRWLE

	Lock Elision
	Legacy Code

	Hybrid Transactional Memory
	HyNOrec
	Invyswell
	PhaseTM and Split Hardware

	Self Tuning
	TinySTM
	TSX Tuning
	Green-CM
	Proteus TM

	Algorithm
	Base Algorithm
	Scheduling Techniques
	Reader Synchronization
	Writer Synchronization

	Correctness and Fairness
	Optimizations

	Evaluation
	Sensitivity Analysis
	Impact of scheduling
	Reader tracking scheme

	STMBench7
	TPC-C
	Kyoto Cabinet

	Conclusions and Future Work
	Future Work

	Bibliography

