
Speculative Read-write Locks

Tiago João dos Santos Lopes

Abstract

We introduce SpRWL, a Big-reader focused HTM sys-
tem which uses synchronization to achieve higher per-
formance than typical TM systems, at the cost of reader
latency. We explain how its techniques provide read and
write synchronization, allowing HTM to scale better than
typical TM systems. Our primary motivation was to de-
velop a generic HTM system usable in all existent HTM
machines, improving their performance and scalability
in workloads where readers cannot run in HTM. Finally
we present performance comparisons with typical TM
systems in several benchmarks.

1 Introduction

Parallelism has become a pervasive characteristic of to-
day’s computer architectures and current trends suggest
a steady growth of the number of available logical cores
also in the foreseeable future. In this technological land-
scape, a crucial problem is how to build efficient synchro-
nization primitives that can enable programmers to take
full advantage of the performance potential of modern
parallel micro-processors.

The introduction of Hardware Transactional Memory
(HTM) by mainstream CPU manufacturers like Intel and
IBM [22] responds precisely to this urge. HTM provides a
highly-efficient, hardware-assisted implementation of the
abstraction of atomic transaction, long used in the context
of database systems, and now exposed to programmer-
s/compilers via a dedicated extension of the processor
instruction set. HTM requires programmers to wrap code
blocks in transactions that will be executed concurrently,
in a speculative fashion, while transparently ensuring se-
mantics equivalent to sequential execution by detecting
conflicts among concurrent transactions in hardware and
aborting/restarting them if necessary.

Interestingly, HTM can be employed both directly, as a
transaction-centric synchronization mechanism explicitly

leveraged and controlled by HTM-aware applications, as
well as to enhance the parallelism of legacy applications
based on pessimistic, lock-based synchronization prim-
itives — a techniques that goes under the name of lock
elision.

A number of recent works have shown that HTM can re-
duce significantly the synchronization overheads incurred
by parallel applications [10, 24, 13] in various applica-
tion domains. Unfortunately, though, several studies have
also highlighted that existing HTM implementations suf-
fer of severe limitations, stemming from the inherently
restricted nature of the hardware mechanisms that they
employ.

Such a design approach limits the applicability of HTM
in a number of ways: not only it explicitly restricts the
maximum amount of memory positions that can be ac-
cessed by transaction, but also makes hardware transac-
tions unable to withstand events that lead to scratching
the processor’s cache, which includes, notably, system
calls, context switches and interrupt requests (including
periodic timer interrupts raised for OS scheduling pur-
poses). Overall, these restrictions make current HTM
systems unfit to serve as a general-purpose synchroniza-
tion mechanism, significantly limiting the scope of their
applicability.

This work aims at tackling precisely this issue by in-
troducing SpRWL (Speculative RW Lock), a novel HTM-
based synchronization primitive that provides a key bene-
fit: allowing read-only atomic blocks to execute outside
the scope of any hardware transaction, thus, effectively
sparing them from the inherent limitations affecting exist-
ing HTM implementations. SpRWL’s name stems from
the fact that it exposes to programmers the familiar in-
terface of a classic read-write lock and can, therefore,
be seen as a specialized HTM-based technique for elid-
ing this type of locks in legacy applications. However,
SpRWL can also be straightforwardly employed in ap-
plications that assume a transactional API by mapping
the beginning of a read-only or an update transaction to a

1

request for acquiring a read or write lock, respectively.
As we will show, SpRWL can yield remarkable (up

to 6×) throughput gains over plain HTM in workloads
that have long read-only atomic blocks. However, these
throughput gains are achieved at the cost of an increased
latency of update atomic blocks, which can suffer from
frequent aborts (and theoretically from starvation) in read-
dominated workloads.

We evaluated SpRWL via an extensive experimental
study conducted using the HTM implementations avail-
able on Intel’s Broadwell [3] and IBM’s Power8 [18]
CPUs and encompassing some standard benchmarks
(TPC-C [11], STMBench7 [14]). The results of our study
shows SpRWLs throughput can reach 15× typical TM
systems in some of the standard benchmarks, at the cost
of reader latency.

2 Related Work

Hardware Read-Write Lock Elision (HRWLE) intro-
duced the concept of executing read-only critical sec-
tions outside the scope of transactions [12]. To do
so, HRWLE relied on two specific features available
in the POWER8 HTM implementation: suspend-and-
resume and Rollback-Only Transactions (ROTs). Al-
though HRWLE achieved significant gains, its applica-
tion is limited by such features, which are only supported
only in one out the four current commodity HTM imple-
mentations. SpRWL, however, is portable across all the
different HTM implementations and does not require any
specific hardware feature other than HTM support. Even
its reliance on invariant time-stamp counters, which is not
supported by all processors, is for performance optimiza-
tion and not correctness, unlike HRWLE. Furthermore,
as we will show later in Section 4, SpRWL is capable of
outperforming HRWLE on POWER8.

Other than HRWLE, SpRWL is very related to two
bodies of work: one which tries to enhance the efficiency
of HTM systems and the other concerned with developing
efficient synchronization mechanisms for read-dominated
workloads.

For the former:

• POWER8-TM [17] extended HRWLE with new tech-
niques to further expand the capacity limitation of up-
date transactions but also relies on the ROTs, which
again makes it non-portable to other HTM imple-
mentations.

• Tuner [9] used online self-tuning mechanisms to
determine when to activate a fallback path upon con-
flict and upon capacity aborts. This is orthogonal to
the problem tackled in this paper, and can still be
integrated within SpRWL.

• Calciu et al. [5] suggested lazy subscription of the
fallback lock from within the HTM transaction to al-
low more parallelism by reducing the window where
a transaction can be aborted after the activation of
the fallback path. Unfortunately, though, Dice et. al
[8] found out that it is unsafe for lock elision appli-
cations to use lazy subscription with current HTM
implementations.

For the latter:

• Multiple-Readers/Single-Writer or Read-Write Lock
(RWLock) was first suggested by Hamilton [15] as
mechanism to allow more concurrency between crit-
ical sections that do not alter the shared state.

• Probably the most popular implementation, nowa-
days, is the Pthreads RWLock [1] which uses two
counters, protected by a mutex, to track the num-
ber of active readers and writers providing fairness
amongst them.

• Big-Reader Locks (BRLock) [7] which was once
part of the Linux Kernel [16] uses per thread mutexes
and a global mutex. When BRLock is acquired in
read mode, a thread needs only to acquire its private
per-thread mutex. Whereas for a writer, it must first
acquire the global mutex, then each and every per
thread mutex.

• Recently, Liu et. al [19] introduced Passive Reader-
Writer Lock (PRWL), which tries to reduce the cost
imposed by most RWLocks on the writer mode. The
idea behind PRWL is a version based consensus pro-
tocol between readers and writers. Writers increment
the lock version and wait for readers to signal they
have read the latest version.

• When compared with SpRWL, the various algo-
rithms that implement RWLock differ in two aspects:
(i) they do not allow concurrency among writers,
which SpRWL is capable of thanks to HTM, and
(ii) they do not allow concurrency between readers
and writers, which SpRWL permits via its efficient
scheduling and ability to abort writers, without any
side-effects, in case they may break the consistency
of un-instrumented readers.

• Read-Copy-Update (RCU) [20] is an alternative syn-
chronization mechanism that targets read-dominated
workloads. Unlike RWLocks, with RCU, a read-
only critical section does not need to acquire any
mutex, it just flags itself, using a memory barrier, at
the beginning and end of critical section. To ensure
correctness, a writer modifying shared data, would
create a copy of the data and apply the modifica-
tions to the copy. Readers that existed prior to the

2

write would continue to access the older, unmodified
data, while new readers get to witness the updates.
Only when all readers that existed before the writer
have completed their critical sections, the unmodi-
fied data is replaced by the copy. However to support
RCU, programs must be written in a way such that
creating copies of shared data is feasible. Further,
duplicating and discarding the copies must maintain
correct pointers to other referenced data. This limits
the applicability of RCU and has been the reason
for the few number of RCU-based datastructures
[4, 6, 21]. On the contrary, SpRWL does not re-
quire any changes neither to legacy RWLock-based
programs, nor on the approach of developing new
software.

3 Algorithm

As already mentioned, SpRWL exposes a classic read-
write lock interface. As such, SpRWL can be used as a
drop-in, speculative replacement for conventional read-
write locks in applications that already use this synchro-
nization primitive; however, it is straightforward to adapt
SpRWL’s algorithm to be employed also by TM-based
applications, by mapping the begin and commit of read-
only and update transactions to lock and unlock requests
to a single global lock implemented using SpRWL.

For the sake of clarity, we present SpRWL in an in-
cremental fashion. We start by presenting, in Section 3.1
a simple, base algorithm that embodies one of the key
ideas at the basis of SpRWL: enabling safe concurrency
between un-instrumented readers and HTM-backed writ-
ers. We then extend this base algorithm in Section 3.2, by
introducing two scheduling techniques that aim both at
enhancing performance and ensuring fairness.

3.1 Base Algorithm

The pseudo-code of SpRWL base algorithm SpRWL is
reported in Algorithm 1. In the following, for brevity, we
will refer to the threads that request to acquire the lock in
read/write mode as readers/writers, respectively.

As already mentioned, write critical sections are exe-
cuted speculatively, using HTM: a write lock acquisition
request triggers the activation of a HTM transaction and
the corresponding unlock request triggers the commit of
its associated hardware transaction. Readers, conversely,
are executed uninstrumented, i.e., without recurring to
HTM, and are therefore spared from HTM’s inherent lim-
itations.

In order to ensure the safety of readers, in presence
of concurrent writers executing in HTM, SpRWL uses
the following mechanism. Before a reader tid is granted

R-begin
flag
active R-commitr(x)=0 r(x)=0

W-begin W-checkR

Abort writer

w(x=1)

Detect active reader

Figure 1: A read access during an active update transac-
tion will abort the latter.

W-begin W-commitW-checkRw(x=5) w(y=7)

R-begin R-endr(x)=0 r(y)=0

Figure 2: A read access which commits before an active
update transaction writes on shared values or verifies the
state allows it to successfully commit.

access to the read critical section, it first advertises its exis-
tence to concurrent writers in the tid-th entry of the state
shared array. The update of the state array is followed by
a memory fence, which, as we will discuss, is key for cor-
rectness, as it ensures that the state of readers is globally
visible before they enter the read critical section. Upon
releasing the read lock, the reader’s state is accordingly
reset — this time without recurring to memory barriers,
though.

Writers, in their turn, check for the existence of con-
current active readers, by inspecting the state array, upon
requesting to release the write lock, i.e., before attempt-
ing to commit the corresponding HTM transaction. Only
in case no reader is found active, the HTM transaction
can be committed; else, the writer is forcibly aborted and
restarted (see Fig.1).

This mechanism ensures that no writer can commit
and materialize any changes to memory if there is any
concurrent, active readers. This, in turn, guarantees that
readers execute on isolated snapshots of memory, despite
they can run concurrently with HTM-backed writers, as
illustrated in Fig. 2, as well as with other readers.

In the above description, we have, for simplicity, omit-
ted discussing the management of the fall-back execution
path, which, we recall, is required in HTM systems to
ensure termination of transactions that cannot be success-
fully executed in hardware. As in typical HTM systems,
SpRWL uses a single_global_lock (SGL) as fall-back syn-
chronization method: in case a transaction cannot com-
plete successfully in HTM after some predetermined num-
ber of attempts, the transaction is executed pessimistically,
after having acquired the SGL. SGL is also subscribed
right after a hardware transaction begins, i.e., the lock’s
state is read and the transaction is aborted if the lock is

3

not found free. This guarantees that if a thread activates
the fall-back path and acquires the SGL, any concurrent
hardware transaction is immediately aborted.

In order to ensure the correct interplay between un-
instrumented readers and writers active using the SGL,
readers check the SGL after flagging their own state to
active, and are allowed proceed only if the SGL is found
free (see line 7). The writers that execute in the fall-back
path, in their turn, have to wait for the completion of any
active reader after acquiring the SGL and before execut-
ing the write critical section (see line 36). Overall, this
mechanism ensures safety by precluding any concurrency
between un-instrumented readers and writers executing
in the SGL.

As we will show, despite its simplicity, this base al-
gorithm is surprisingly effective in boosting system’s
throughput in workloads dominated by long readers that
do not fit HTM’s capacity. Indeed, if one attempted to use
plain HTM to elide a read critical section that does not
meet the hardware capacity limitations, the reader would
eventually exhaust its budget of retries using HTM and
acquire the SGL fallback. This would prevent any con-
currency with other readers and/or writers. Conversely,
with SpRWL, readers that exceed HTM’s capacity can
still execute concurrently not only with other readers, but
also with other writers executing in HTM, as exemplified
by Fig. 2.

However, since writers are only allowed to commit
using HTM in absence of concurrent readers, in read in-
tensive workloads, this base algorithm exposes writers to
the risk of starvation. More precisely, this approach can
expose writers to the risk of exhausting their budget of
retries in HTM, leading to frequent activations of the pes-
simistic fall-back path that can hinder not only the latency
of writers, but also the global degree of concurrency in
the system.

3.2 Scheduling Techniques

In order to address the above discussed shortcomings,
SpRWL integrates two additional scheduling techniques,
which we refer to as reader and writer synchronization
schemes. The former imposes delays on the readers’ side,
in case they detect active writers, whereas the latter im-
poses delays to writers, if they detect active readers. The
two synchronization schemes operate in a synergistic fash-
ion, ultimately aimed to enhance SpRWL’s efficiency, but
they do pursue different goals.

Specifically, the reader synchronization scheme pur-
sues a twofold goal: i) providing fairness guarantees
for the writers, by ensuring that newly readers cannot
cause the abort of already active writers, and ii) reducing
the. The writer synchronization scheme, conversely, stalls
writers to prevent them from uselessly consuming their

Algorithm 1 — Basic algorithm (thread tid)
1: Global variables:
2: state[N]←{⊥,⊥, . . . ,⊥} . One status per thread
3: gl . global lock for HTM fallback
4: function SPRWLbasic_READ_LOCK
5: state[tid]← #READER . Flag active reader
6: MEM_FENCE . Make sure writers see reader
7: READER_GL_SYNC()
8: function SPRWLbasic_READ_UNLOCK
9: state[tid]←⊥ . Exit critical section

10: function SPRWLbasic_WRITE_LOCK
11: attempts← 0
12: BEGIN_HTM_TX() . Start transaction
13: function SPRWLbasic_WRITE_UNLOCK
14: if tid is executing in a HTM transaction then
15: CHECK_FOR_READERS()
16: TX_COMMIT . Commit the HTM transaction
17: else
18: RELEASE_GL()
19: function CHECK_FOR_READERS
20: for i← 0 to N−1 do . Abort if any thread...
21: if state[i] is #READER thenis an active reader...
22: TX_ABORT()
23: function WAIT_FOR_READERS
24: for i← 0 to N−1 do . Wait for completion...
25: wait until state[i]= #READER . of active readers
26: function READER_GL_SYNC
27: if isLocked(gl) then
28: state[tid]←⊥ . Defer to gl writer
29: wait until isLocked(gl) . wait until lock is free
30: go to 5
31: function BEGIN_HTM_TX
32: repeat until !locked(gl) . wait until lock is free
33: attempts ++
34: status← TX_BEGIN() . Begin HTM transaction
35: if status == SUCCESS then . Normal exec. path
36: if locked(gl) then . Add lock to read-set and...
37: TX_ABORT() . abort Tx if lock is busy
38: else . Branch executed upon abort of a hw tx.
39: ABORT_HANDLER()
40: function ABORT_HANDLER
41: if attempts > MAX_RET RIES then . is budget over?
42: ACQUIRE_GL() . activate fallback
43: WAIT_FOR_READERS()
44: else
45: BEGIN_HTM_TX()

budget of attempts using HTM, while striving to achieve
maximum concurrency with any active reader.

Also, in this case, we present the two techniques in
an incremental fashion, introducing first the reader syn-
chronization scheme and then the writer synchronization
mechanism.

3.2.1 Reader Synchronization

The pseudo-code of the reader synchronization scheme is
reported in Alg. 2. Note that the pseudo-code illustrates
only the differences with respect to the base algorithm,

4

Algorithm 2 — Reader synchronization (thread tid)
1: Global variables:
2: As in Alg. 1
3: clock_w[N]←{⊥,⊥, . . . ,⊥} . per thread
4: waiting_ f or[N]←{⊥,⊥, . . . ,⊥} . per thread
5: function SPRWLrSync_WRITE_LOCK
6: state[tid]← #WRITER
7: clock_w[tid]← estimateEndTime()();
8: SPRWLbasic_WRITE_LOCK() . Execute basic alg.
9: function SPRWLrSync_WRITE_UNLOCK

10: SPRWLbasic_WRITE_UNLOCK()
11: state[tid]←⊥
12: function SPRWLrSync_READ_LOCK
13: READERS_WAIT() . Sync with writers
14: SPRWLbasic_READ_LOCK() . Execute basic alg.
15: function READERS_WAIT()
16: wait← -1
17: max_wait← 0
18: for i← 0 to N−1 do . Wait for longest ...
19: if state[i]=#WRITER ∧ clock_w[i]>max_wait then
20: max_wait← clock_w[i]active writer ...
21: wait← i
22: else if waiting_ f or[i] 6=⊥ thenor join..
23: wait← waiting_ f or[i]a waiting reader.
24: BREAK
25: if wait 6=−1 then . Wait until last writer finishes.
26: waiting_ f or[tid]← wait . Advertise wait phase.
27: wait until state[wait] 6= #WRITER
28: waiting_ f or[tid]←⊥

omitting the parts in common. This variant uses two
additional shared arrays, also having one entry per each
thread in the system: clockw, which stores the expected
end time of any currently active writer, and waiting_ f or,
which is used by readers to advertise the identity of any
writer they are currently waiting for.

In order to estimate the expected end time of (write)
critical sections in a lightweight, yet accurate, fashion,
SpRWL relies on the hardware time stamp counter, which
in modern CPUs provides a low-overhead, cycle-accurate
time source. Further, in order to cope with programs hav-
ing critical section of heterogeneous duration, SpRWL
gathers independent statistics for different critical sec-
tions. More in detail, SpRWL samples the execution
time of critical sections on a single thread so as to reduce
measurement overhead — and computes an exponential
moving average — which can be efficiently computed
in an on-line fashion and allows for quickly reflecting
changes in the workload characteristics. To simplify pre-
sentation, we omit describing explicitly these mechanisms
in the pseudo-code and encapsulate them in the estima-
teEndTime() primitive.

The reader synchronization mechanism introduces two
main changes to the base algorithm presented in Sec-
tion 3.1.

First, upon requesting a write critical section, writers

Algorithm 3 — Writer synchronization (thread tid)
1: Shared variables:
2: As in Alg. 2
3: clock_r[N]←{⊥,⊥, . . . ,⊥} . per thread
4: function SPRWLwSync_READ_LOCK
5: READERS_WAIT() . Sync with active writers
6: clock[tid]← estimateEndTime() . Advertise end time
7: SPRWLbasic_READ_LOCK() . Execute basic alg.
8: function ABORT_HANDLERwSync

9: if attempts > MAX_RET RIES then . is budget over?
10: ACQUIRE_GL() . activate fallback
11: WAIT_FOR_READERS() . as in Alg. 1
12: else . Can still retry in HTM
13: if abort_cause is reader_abort then
14: WRITER_WAIT() . Sync with active readers
15: BEGIN_HTM_TX()
16: function WRITER_WAIT()
17: wait← 0
18: for i← 0 to N−1 do . Store the end time...
19: if state[i]= #READER thenof the last reader...
20: if clock_r[i] > wait thento finish...
21: wait← clock[i]in wait.

. Delay the writer to end δ cycles after the last reader.
22: wait −= estimateDuration()−δ

23: repeat until RDTSC() ≥ wait

advertise their existence and expected end time in the
state and clockw arrays, respectively.

Second, before entering a read critical section (via
the SPRWLbasic_READ_LOCK() function), readers check
whether they have to first execute a wait phase
(READERS_WAIT() function). More in detail, a reader
inspects the state and waiting_ f or arrays’ entries of the
other threads in the system and starts a waiting phase in
case i) it finds any active writer, or ii) any reader already
waiting for an active writer.

If there are no readers already waiting, the newly ar-
rived reader waits for the writer that is expected to com-
plete last. It is easy to see that this ensures that newly
arrived readers do not prevent already active writers from
committing using HTM.

If, instead, a newly arrived reader r detects the exis-
tence of another reader r′ waiting for some writer w, r
joins r′ in the wait for w. As we will show experimentally,
this policy has a relevant beneficial impact on perfor-
mance at high thread counts, since it tends to synchronize
the starting time of readers. If readers are likely to begin
simultaneously, the time window there is any active reader
in the system is globally reduced, increasing the chances
for writers to be able to execute using HTM. Further, it
tends to reduce the average reader latency, by allowing
them to start sooner.

5

3.2.2 Writer Synchronization

The writer synchronization scheme, whose pseudo-code
is reported in Alg. 3, aims at sheltering writers from the
risk of incurring repeated aborts due to already active read-
ers, while striving to jointly maximize the concurrency
achievable by writers and readers.

In a nutshell, these goals are pursued by delaying the
starting time of a writer that executes in HTM, in case
it encounters any active reader, by the shortest time pos-
sible that still allows the writer to commit successfully.
This is achieved by timing the start of the writer so that
the execution of the corresponding write critical section
completes “shortly after” the last reader. This way, not
only writers are guaranteed (or at least is more likely) not
to have to abort due to a concurrent reader, they can also
maximize the period of time during which their execution
overlaps with concurrent readers.

More in detail, a writer first attempts, optimistically, to
execute in HTM immediately, i.e., avoiding the writer syn-
chronization phase. Note that the pseudo-code in Alg. 3
only reports the parts that differ with respect to Alg. 2 and,
as such, omit specifying the pseudo-code for entering a
write critical section, which is not modified by the writer
synchronization scheme.

If a writer, executing in a HTM transaction, incurs
an abort, it determines the maximum end time of any
active reader. To this end, with the writer synchro-
nization scheme, also readers advertise their expected
end time, right after having completed the reader syn-
chronization and before starting execution (see function
SPRWLwSync_READ_LOCK) using a dedicated global ar-
ray (clock_r). In order to overlap its execution with that
of already active readers, a writer adjusts its waiting phase
so that it is expected to complete δ cycles after the last
active reader. δ is a parameter, whose tuning allows to
trade-off the degree of concurrency between writers and
readers (which can be increased by setting δ close to 0)
for the likelihood that writers can commit successfully
(which can be increased by setting δ close to the expected
duration of the writer). In SpRWL, we use half the ex-
pected duration of the writers as default value for δ , which
we have observed to provide the best over-all performance
based on preliminary experimentations.

It should be noted that, to preserve fairness, writers
maintain their writer flag active while waiting for a reader:
this guarantees that writers have a chance to commit suc-
cessfully, as new coming readers will wait for them thanks
to the reader synchronization scheme.

4 Evaluation

In this section we evaluate SpRWL against a number
of RWLock implementations that use either specula-

tive or pessimistic techniques. The experimental study
is conducted on two HTM-enabled processor (by Intel
and IBM) characterized by different capacity limitations,
and encompasses a large set of synthetic and complex
benchmarks/real-life applications.

More in detail, we consider the following baseline solu-
tions: SpRWL is evaluated against: (i) pthread’s RWLock
(rwl), (ii) Big Reader Lock [7] (brlock), (iii) plain transac-
tional lock elision (tle) and (iv) hardware read-write lock
elision (herwl) [12], which, unlike SpRWL, relies on spe-
cific features of IBM POWER8 processor (see Section 2)
and, as such, cannot be tested on Intel platforms.

For all HTM based solutions, including SpRWL, we
used a retry policy of attempting a transaction 10 times
in hardware before activating the fallback path except in
case of capacity aborts, where a transactions is directly
executed using the fallback path. The only exception is
HRWLE, where we used a budget of attempts equal to 10
for update transactions executing using ROTs — the same
policy used by the authors of HRWLE in their evaluation.
Previous works have shown that dynamically tuning the
budget of HTM retries can lead to performance gains in
some workloads [23], but in our study we use a common,
static retry policy to simplify the analysis of the results.

The evaluation is performed using two different ar-
chitectures that provide support for HTM, namely Intel
Broadwell and IBM POWER8. For Intel, we used a dual
socket Intel Xeon E5-2648L v4 processors with 28 cores
and up to 56 hardware threads running Ubuntu 16.04 with
Linux 4.4. For IBM, we used a POWER8 8284-22A pro-
cessor that has 10 physical cores, with 8 hardware threads
each running Fedora 24 with Linux 4.7.4. It should be
noted that, due to their architectural differences, these
Intel’s and IBM’s processors are faced with very different
capacity limitations. Specifically, POWER8 processors
have a 8KB capacity for both memory reads and writes,
whereas the capacity of Broadwell is 22KB for writes and
4MB for reads [22].

The source code, which will be made public [2], was
compiled with -O2 flag using GCC 5.4.0 and 6.2.1 for the
Intel and IBM platforms, respectively. Thread pinning
was use to pin a thread per core at the beginning of each
run for all the solutions, and threads were distributed
evenly across the available CPUs. All the results reported
in the following are obtained as the average of at least 5
runs.

4.1 STMBench7

STMBench7 [14] simulates complex applications, such
as CAD, composed of several different and large datas-
tructures, such as indexes and graphs. It is one of the most
complex TM benchmarks, allowing flexible customiza-
tion of the generated workload and extensively testing the

6

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 8 14 28 56

1% update
T

h
ro

u
g

h
p

u
t

(1
0

4
 T

x
/s

)

 2 4 8 14 28 56

10% update

Number of threads

tle
rwl

brlock

sprwl
snzi

 2 4 8 14 28 56

50% update

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 8 16 32 64

1% update

T
h

ro
u

g
h

p
u

t
(1

0
4
 T

x
/s

)

tle
herwl

rwl

 0

 5

 10

 15

 20

 2 4 8 16 32 64

10% update

Number of threads

brlock
sprwl
snzi

 2 4 8 16 32 64

50% update

 0

 20

 40

 60

 80

 100

1% update

C
o

m
m

it
s
 (

%
)

snzisprwltle

10% update

Number of threads (2,4,8,16,32,64,80)

HTM GL Unins

snzisprwltle

50% update

snzisprwltle
 0

 20

 40

 60

 80

 100

1% update

C
o

m
m

it
s
 (

%
)

snzisprwlherwltle

10% update

Number of threads (1,2,4,8,16,32,64,80)

HTM ROT GL Unins

snzisprwlherwltle

50% update

snzisprwlherwltle

 1

 10

 100

 1000

 2 4 8 16 32

1% update

L
a

te
n

c
y

re
a

d
e

r
(1

0
4
 c

y
c
le

s
)

 2 4 8 16 32

10% update

Number of threads

tle
rwl

brlock

 2 4 8 16 32

50% update

sprwl
snzi

 1

 10

 100

 1000

 2 4 8 16 32 64

1% update

L
a

te
n

c
y

re
a

d
e

r
(1

0
4
 c

y
c
le

s
)

 2 4 8 16 32 64

10% update

Number of threads

tle
herwl

rwl
brlock

 2 4 8 16 32 64

50% update

sprwl
snzi

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 8 16 32

1% update

L
a

te
n

c
y

w
ri
te

r
(1

0
5
 c

y
c
le

s
)

 2 4 8 16 32

10% update

Number of threads

tle
rwl

brlock

 2 4 8 16 32

50% update

sprwl
snzi

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2 4 8 16 32 64

1% update

L
a

te
n

c
y

w
ri
te

r
(1

0
5
 c

y
c
le

s
)

 2 4 8 16 32 64

10% update

Number of threads

tle
herwl

rwl

 2 4 8 16 32 64

50% update

brlock
sprwl
snzi

Figure 3: STMBench7: throughput, abort rate, and breakdown of commit modes at 10%, 50% and 90% update ratios on
Intel (left) and POWER8 (right).

proposed algorithms in heterogeneous settings. As with
the microbench previously tested this workbench only
operated transactions which are either large readers which
do not fit in HTM or writer which fit in HTM. We also
set the benchmark to run in 1%, 10% and 50% in order to
showcase SpRWL in its best workloads.

Overall SpRWLs best workload, both in Intel and
POWER8, in STMBench7 is u1% where throughput
is 13×/2×, respectively, higher than typical backends
(3). Latency wise SpRWL benefits mostly writers, as
their latency is 2×/1.5×, Intel and POWER8 respec-
tively lower than other backends (3). In terms of scaling,
SpRWL scales up to 56 threads on Intel and 32 threads
on POWER8, whereas BRLock only manages 14 and 16
threads, respectively.

On Intel SpRWLs achieves throughputs 13×/2×/1.5×
at 1%, 10% and 50% updates, respectively. These through-
puts are obtained at 56, 42 and 42, respectively, for the
update percentages mentioned before. This confirms that
as the amount of update transactions increases, concur-
rency increases, resulting in a decrease of throughput.
SpRWL maintains the same reader latency as other back-
ends when thread count increases in 1% updates, but
diverges up to 7× and 5× more ate 10% and 50% re-
spectively. Its writer latency however manages to become
100×/20×/10× smaller than other backends at 1%, 10%
and 50% updates respectively.

Moving to POWER8, SpRWL manages to outperform
HRWLEat 10% and 50% updates with 1.5× their through-
put. As for typical locking techniques, SpRWL manages

7

to achieve throughputs 2× higher at 1% and 10% updates
as well as 1.5× higher at 50% update transactions. La-
tency plots show that as the update % increases so does
overall reader latency, going from an identical value at
1% to 10× higher at 50% updates. Writer tendency also
shows the same results as in Intel since SpRWL manages
to increase its value less than other backends, reaching
values 100×/90×/15× lower at 1%, 10% and 50% update
transactions, respectively.

4.2 TPC-C

TPC-C benchmark is used to simulate a complete online
transaction environment and is representative of a ware-
house supplier application. TPC-C uses five different
types of transactions (new-order, payment..), with very
diverse profiles, such as long read-only transactions, long
and contention-prone vs short and almost contention-free
update transactions. We use this benchmark in a realistic
warehouse simulation.

Overall Both in Intel and POWER8 SpRWLs ideal
workload is 10% updates, where it can generate through-
puts up to 14×/15× times larger than BRLock, respec-
tively. As seen in the plots (Fig.4) SpRWL shows better or
equal latency values as other backends, its reader latency
being identical to BRLocks, on Intel, while writer la-
tency manages to reachs over 500× smaller writer latency
values at 1% updates compared to BRLock. Results also
show that SpRWL can scale to a much higher thread count
than other backends, scaling up to 80 threads in u1%, in
POWER8, both with SNZI and State Array variants.

On a standard workload (Fig.5) Intel and P8 SpRWL
generates throughputs up to 45×/2×, respectively, larger
than other backends. It also shows that even in a realistic
workload SpRWL scales up to 28 threads on Intel and
16 on POWER8. SpRWL also maintains its lower writer
latency on a standard workload, achieving 10× lower
values than other backends in both Intel and P8.

On the ideal workloads of Intel SpRWLs achieves
throughputs 40×/14×/5.5× at 1%, 10% and 50% up-
dates, respectively. All of these optimal throughputs are
at 28 threads, which is where SpRWL scales up to. As
mentioned above, SpRWL maintains the same reader la-
tency as other backends as thread count increases across
all workloads. Its writer latency however manages to be-
come 150×/100×/2× smaller than other backends at 1%,
10% and 50% updates respectively.

In POWER8 SpRWLreaches throughputs 5×/15×/6×
higher than other backends at 1%, 10% and 50%, respec-
tively. Unlike in Intel, SpRWL in POWER8 scales more
as the amount of writer transactions decreases, achieving
its best throughputs at 80/80/16 threads, respectively. As
in Intel, SpRWL also manages to become 100×/100×/5×
smaller at 1%, 10% and 50% updates, respectively, in

POWER8.
As shown in (Fig.5) SpRWL continues presenting up

to 45× throughput on Intel, as update transactions run-
ning in HTM allow us to maintain concurrency and our
un-instrumented readers can operate while avoiding ac-
tive writers. As for latency the plots show that SpRWL
can have better writer latency than all other compared
algorithms, up to 18× less than BRLock at 28 threads.
SpRWL reader latency however, is much higher than other
backends, reaching up to 10× larger the BRLock. This
is due to our waiting policy for active writers, which in-
creases overall throughput and ensures fairness at the cost
of a reader start delay.

In POWER8 SpRWL continues outperforming other
backends, showing throughput up to 2× higher than
other backends. This lower throughput difference in
POWER8, compared to Intel, is due to the limited ca-
pacity of POWER8 as multi-threading increases. This can
be viewed in the abort rates where only our SNZI variant
can commit in HTM at high thread counts. Nonetheless
SpRWL still shows the effectiveness of un-instrumented
readers and HTM. Like Intel, SpRWL in POWER8 also
shows the same tendencies in latency, having 40× higher
reader latency but compensating with up to 10× lower
latency on writers.

4.3 Conclusion

We presented SpRWL, a scalable HTM locking technique
which leverages HTMs high isolationism to run readers
un-instrumented, and its SNZI variant. We explained how
SpRWL uses its synchronization techniques to improve
the throughput and scalability of transactional memory
systems. Performance wise we show that SpRWL excels
in workloads where update transactions fit in HTM and
read transactions do not. We also show SpRWLs per-
formance in realistic benchmark simulations out-scaling
typical locking mechanisms.

References
[1] Posix.1-2008, 2013.

[2] https://github.com/tsepol/SpRWL, 2018.

[3] AFEK, Y., LEVY, A., AND MORRISON, A. Programming with
hardware lock elision. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(New York, NY, USA, 2013), PPoPP ’13, ACM, pp. 295–296.

[4] ARBEL, M., AND ATTIYA, H. Concurrent updates with rcu:
Search tree as an example. In Proceedings of the 2014 ACM
Symposium on Principles of Distributed Computing (New York,
NY, USA, 2014), PODC ’14, ACM, pp. 196–205.

[5] CALCIU, I., SHPEISMAN, T., POKAM, G., AND HERLIHY, M.
Improved single global lock fallback for best-effort hardware trans-
actional memory. 9th ACM SIGPLAN Wkshp. on Transactional
Computing (2014).

8

https://github.com/tsepol/SpRWL

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 8 14 28 56

1% update
T

h
ro

u
g

h
p

u
t

(1
0

3
 T

x
/s

)

tle
rwl

brlock

 2 4 8 14 28 56

10% update

Number of threads

sprwl
snzi

 2 4 8 14 28 56

50% update

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 8 16 32 64

1% update

T
h

ro
u

g
h

p
u

t
(1

0
3
 T

x
/s

)

tle
herwl

rwl
brlock

 2 4 8 16 32 64

10% update

Number of threads

sprwl
snzi

 2 4 8 16 32 64

50% update

 0

 20

 40

 60

 80

 100

1% update

C
o

m
m

it
s
 (

%
)

snzisprwltle

10% update

Number of threads (2,4,8,16,32,64,80)

HTM GL Unins

snzisprwltle

50% update

snzisprwltle
 0

 20

 40

 60

 80

 100

1% update

C
o

m
m

it
s
 (

%
)

snzisprwlherwltle

10% update

Number of threads (1,2,4,8,16,32,64,80)

HTM ROT GL Unins

snzisprwlherwltle

50% update

snzisprwlherwltle

 0.1

 1

 10

 100

 2 4 8 16 32

1% update

L
a

te
n

c
y

re
a

d
e

r
(1

0
6
 c

y
c
le

s
)

 2 4 8 16 32

10% update

Number of threads

tle
rwl

brlock

 2 4 8 16 32

50% update

sprwl
snzi

 0.1

 1

 10

 100

 2 4 8 16 32 64

1% update

L
a

te
n

c
y

re
a

d
e

r
(1

0
6
 c

y
c
le

s
)

 2 4 8 16 32 64

10% update

Number of threads

tle
herwl

rwl
brlock

 2 4 8 16 32 64

50% update

sprwl
snzi

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2 4 8 14 28 56

1% update

L
a

te
n

c
y

w
ri
te

r
(1

0
6
 c

y
c
le

s
)

 2 4 8 14 28 56

10% update

Number of threads

 2 4 8 14 28 56

50% update

tle
rwl

brlock

sprwl
snzi

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 2 4 8 16 32 64

1% update

L
a

te
n

c
y

w
ri
te

r
(1

0
5
 c

y
c
le

s
)

tle
herwl

rwl
brlock

 2 4 8 16 32 64

10% update

Number of threads

 2 4 8 16 32 64

50% update

sprwl
snzi

Figure 4: TPC-C: throughput, abort rate, and breakdown of commit modes at 10%, 50% and 90% update ratios with sl
and pay transactions on Intel (left) and POWER8 (right).

[6] CLEMENTS, A. T., KAASHOEK, M. F., AND ZELDOVICH, N.
Scalable address spaces using rcu balanced trees. In Proceedings
of the Seventeenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (New
York, NY, USA, 2012), ASPLOS XVII, ACM, pp. 199–210.

[7] CORBET, J. Big reader locks, 2016.

[8] DICE, D., HARRIS, T. L., KOGAN, A., LEV, Y., AND MOIR,
M. Hardware extensions to make lazy subscription safe. CoRR
abs/1407.6968 (2014).

[9] DIEGUES, N., AND ROMANO, P. Self-tuning intel transactional
synchronization extensions. In 11th International Conference on
Autonomic Computing (ICAC 14) (Philadelphia, PA, June 2014),
USENIX Association, pp. 209–219.

[10] DIEGUES, N., ROMANO, P., AND RODRIGUES, L. Virtues and
limitations of commodity hardware transactional memory. In
Proceedings of the 23rd International Conference on Parallel Ar-

chitectures and Compilation (New York, NY, USA, 2014), PACT
’14, ACM, pp. 3–14.

[11] E. JONES. tpccbench. https://github.com/evanj/
tpccbench, 2017.

[12] FELBER, P., ISSA, S., MATVEEV, A., AND ROMANO, P. Hard-
ware read-write lock elision. In Proceedings of the Eleventh Eu-
ropean Conference on Computer Systems (New York, NY, USA,
2016), EuroSys ’16, ACM, pp. 34:1–34:15.

[13] GOEL, B., TITOS-GIL, R., NEGI, A., MCKEE, S. A., AND
STENSTROM, P. Performance and energy analysis of the restricted
transactional memory implementation on haswell. In 2014 IEEE
28th International Parallel and Distributed Processing Symposium
(May 2014), pp. 615–624.

[14] GUERRAOUI, R., KAPALKA, M., AND VITEK, J. Stmbench7:
A benchmark for software transactional memory. In Proceedings
of the 2Nd ACM SIGOPS/EuroSys European Conference on Com-

9

https://github.com/evanj/tpccbench
https://github.com/evanj/tpccbench

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 8 14 28 56

Throughput (10
3
 Tx/s)

tle
rwl

brlock

sprwl
snzi

 0

 20

 40

 60

 80

 100

Commits (%)

Number of threads

HTM
GL

Unins

snzisprwltle

Aborts (%)
conflictshtm
capacityhtm

explicit
reader

snzisprwltle
 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32 64

Throughput (10
3
 Tx/s)

tle
herwl

rwl

brlock
sprwl
snzi

 0

 20

 40

 60

 80

 100

Commits (%)

Number of threads

HTM
ROT

GL
Unins

snzisprwlherwltle

Aborts (%)
conflictshtm
capacityhtm
explicit

conflictsrot
capacityrot
reader

snzisprwlherwltle

 1

 10

 100

 1000

 2 4 8 16 32

Readers

L
a

te
n

c
y
 (

1
0

5
 c

y
c
le

s
)

 0.01

 0.1

 1

 10

 100

 1000

 2 4 8 16 32

Writers

Number of threads

 1

 10

 100

 2 4 8 16 32 64

Readers

L
a

te
n

c
y
 (

1
0

5
 c

y
c
le

s
)

tle
herwl

rwl
brlock

 0.01

 0.1

 1

 10

 100

 1000

 2 4 8 16 32 64

Writers

Number of threads

sprwl
snzi

Figure 5: TPC-C: throughput, abort rate, and breakdown of commit modes with the following mix of transactions: sl:
31, del: 4, os 4, pay: 43, no: 18 on Intel (left) and POWER 8(right).

puter Systems 2007 (New York, NY, USA, 2007), EuroSys ’07,
ACM, pp. 315–324.

[15] HAMILTON, D. Suggestions for multiple-reader/single-writer
lock, 1995.

[16] HEMMINGER, S. Kill big reader locks, 2003.

[17] ISSA, S., FELBER, P., MATVEEV, A., AND ROMANO, P. Extend-
ing Hardware Transactional Memory Capacity via Rollback-Only
Transactions and Suspend/Resume. In 31st International Sympo-
sium on Distributed Computing (DISC 2017) (Dagstuhl, Germany,
2017), A. W. Richa, Ed., vol. 91 of Leibniz International Proceed-
ings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, pp. 28:1–28:16.

[18] LE, H. Q., GUTHRIE, G. L., WILLIAMS, D. E., MICHAEL,
M. M., FREY, B. G., STARKE, W. J., MAY, C., ODAIRA, R.,
AND NAKAIKE, T. Transactional memory support in the ibm
power8 processor. IBM Journal of Research and Development 59,
1 (Jan 2015), 8:1–8:14.

[19] LIU, R., ZHANG, H., AND CHEN, H. Scalable read-mostly syn-
chronization using passive reader-writer locks. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14) (Philadelphia,
PA, June 2014), USENIX Association, pp. 219–230.

[20] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-Copy Update:
Using Execution History to Solve Concurrency Problems. In
Parallel and Distributed Computing and Systems (Las Vegas, NV,
Oct. 1998), pp. 509–518.

[21] MCKENNEY, P. E., AND WALPOLE, J. What is rcu, fundamen-
tally? https://lwn.net/Articles/262464/.

[22] NAKAIKE, T., ODAIRA, R., GAUDET, M., MICHAEL, M. M.,
AND TOMARI, H. Quantitative comparison of hardware transac-
tional memory for blue gene/q, zenterprise ec12, intel core, and
power8. In Proceedings of the 42Nd Annual International Sym-
posium on Computer Architecture (New York, NY, USA, 2015),
ISCA ’15, ACM, pp. 144–157.

[23] RUGHETTI, D., ROMANO, P., QUAGLIA, F., AND CICIANI, B.
Automatic tuning of the parallelism degree in hardware transac-
tional memory. In Euro-Par 2014 Parallel Processing (2014),
Springer International Publishing, pp. 475–486.

[24] YOO, R. M., HUGHES, C. J., LAI, K., AND RAJWAR, R. Per-
formance evaluation of intel® transactional synchronization
extensions for high-performance computing. In Proceedings of
the International Conference on High Performance Computing,
Networking, Storage and Analysis (New York, NY, USA, 2013),
SC ’13, ACM, pp. 19:1–19:11.

10

	Introduction
	Related Work
	Algorithm
	Base Algorithm
	Scheduling Techniques
	Reader Synchronization
	Writer Synchronization

	Evaluation
	STMBench7
	TPC-C
	Conclusion

