
Hardware Read-Write Lock Elision on Intel
Processors

Tiago João dos Santos Lopes

Instituto Superior Técnico, University of Lisbon

Abstract. Transactional Memory (TM) is a promising alternative to
lock- based synchronization mechanisms. This report analyses the state
of art and existing implementations of TM, focusing, in particular, on
Hardware Read-Write Lock Elision (HRWLE). HRWLE is a recently pro-
posed technique that exploits the hardware TM supports of IBM Power8
(P8) processor to build a speculative implementation of the well-known
read-write lock abstraction. Unfortunately, though, the reliance on hard-
ware features that are only available on P8 represents a key limitation of
HRWLE, which prevents its usage on commodity processors by other ven-
dors - in particular Intels CPUs, which also ship with Hardware Transac-
tional Memory (HTM) support and are more commonly employed than
P8.
The dissertation proposal detailed in this document will aim at tackling
precisely this limitation, by designing, implementing and evaluating al-
ternative HRWLE algorithms that will not rely on specific features of
Power8 processors and, as such, will be usable in broader contexts.
In addition to defining goals, this report also presents an initial algorithm
implementation and some preliminary results compared to other common
TM implementations.

Keywords: transactional memory, concurrency control, read-write lock,
lock elision, hardware



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 State of Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Software Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Transactional Locking II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
TinySTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
NOrec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Hardware Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
zEC12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
POWER8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
TSX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Lock Elision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Legacy Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Hybrid Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
HyNOrec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Invyswell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
PhaseTM and Split Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Self Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
TinySTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
TSX Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Green-CM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Proteus TM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Read Write Lock Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Big Reader Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
PRWL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
HRWLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Work Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Initial Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Synthethic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
STMBench7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
TPC-C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Kyoto Cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Work Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



1 Introduction

During various decades processors frequencies have been enjoying an exponential
increase. Since early 2000, though, this trend stopped as manufacturers hit the so
called "Power Wall": due to thermal issues, it is nowadays economically infeasible
to further increase the operational frequencies of single core processors. This has
brought a paradigm shift not only in the way hardware is designed, turning multi-
core processors into a mainstream technology, but also in the way software is
built - bringing parallel computing to the forefront of software development.

Unfortunately, developing parallel applications is well known to be a chal-
lenging task. One major source of parallel applications complexity is the im-
plementation of a synchronized access to shared resources. Indeed, the classic
approach to synchronization problems is to rely on a lock-based scheme, which
are known as susceptible to several problems such as deadlocks, livelocks, prior-
ity inversions, etc. Given the increased relevance of parallel computing, over the
last decade a large research effort has been devoted to identifying simpler, yet
highly efficient, alternative synchronization paradigms.

TM is probably one of the alternative synchronization methods to have been
most intensively investigated as of late. Making use of Database Systems con-
cept of Transactions, TM is an Automatic Mutual Exclusion method, where
Programmers no longer need to worry with the synchronization, needing only
to code which operations to execute concurrently. TM system would then en-
sure atomicity by detecting and resolving any conflict arising between concur-
rent transactions. The TM abstraction can be implemented in software, known
as Software Transactional Memory (STM), hardware (HTM) or combinations
thereof.

Compared to other synchronization methods, HTM focuses on minimizing
transaction overhead through hardware support, reducing or even removing the
need of programming instrumentation on read and write accesses to shared re-
sources. Various studies [13,16,17,26,27,31] have clearly shown that HTM can
achieve, at least in certain workloads, impressive performance gains when com-
pared to software based implementations. Unfortunately, though, existing HTM
implementations also suffer of several relevant restrictions that can severely ham-
per its performance.

Indeed, even though existing HTM implementations come in different flavors
depending on [1,12,26,32], they all share a key common treat: they all support
transactions that perform a limited number of memory accesses. Whenever a
transaction exceeds the maximum HTM capacity, it needs to be executed using
a fall-back synchronization method, namely a Single Global Lock (SGL) that
executes pessimistically and whose activation causes the immediate abort of any
concurrent HTM transaction.

HRWLE [15] is a recently proposed synchronization technique that builds on
HTM and aims to overcome the above mentioned limitation of HTM.

HRWLE exposes the API of a classic read-write lock, which is executed in
a speculative fashion using, in an original way, the hardware supports provided

3



by the IBMs P8 HTM implementation, i.e., allowing for the safe concurrent
execution of readers and writers.

HRWLE functions on the concept that HTM works detecting any data con-
flict of other transactions and operations on its own atomic sequences and on
the concept that the system knows if the transaction will be read-only or will
implement changes to the data.

By leveraging these two concepts, HRWLE runs read-only operations out-
side the scope of hardware transactions, which frees them from any capacity
constraint. To guarantee atomicity and snapshot consistency it makes use of
POWER8 (P8)s suspend and resume feature, which allows readers to commu-
nicate with writers and notify them about their existence. This allows writers
to postpone their commit request until any concurrent reader has completed its
execution. This quiescence mechanism, combined with the atomicity guarantees
provided by HTM transactions (used by writers), is sufficient to isolate readers
from any concurrent writer and preserve the original correctness semantics.

Although this method has a good performance, it is limited to processors with
suspend and resume feature, that is, to P8 processors. The need for a suspend
and resume feature in HRWLE is due to the fact that HTM prevents any form of
communication between concurrent transactions. In fact, any attempt to read by
a hardware transaction any memory position that is concurrently updated (by
a reader, running in a non-transactional context) is automatically detected as a
conflict by HTM and causes the abort of the hardware transaction. Conversely,
by suspending the hardware transaction that encompasses the writer logic, the
communication (via shared memory) between readers and writes is performed
outside of the scope of the hardware transaction. Hence, it allows writers to be
informed by readers (via shared memory) about their execution state, without
causing writers aborts.

As such this work purpose the development of an algorithm with the same
concept as HRWLE, namely supporting the concurrent execution of un-instrumented
readers as well of writers using HTM, without however requiring the use of the
suspend and resume mechanism, which is presently a unique architectural fea-
ture of Power8 processors that is not supported by other HTM implementations.
Achieving this goal would therefore greatly amplify the generality of the HRWLE
approach, enabling its use also in mainstream commodity processors by Intel -
whose HTM implementation, referred to as Transactional Synchronization Ex-
tensions (TSX), does not support the suspend and resume mechanism.

This document is divided in 3 parts: Chapter 2 describes the current state of
art in Transactional Memory and Read Write Lock Implementations. Chapter
3 overviews the proposed approach, reports some promising preliminary results,
and defines the work plan for the remainder of this dissertation. In Chapter 4
we present the conclusions of this report.

4



2 State of Art

With the emergence of multi-core architectures, the need for a synchronization
method between parallel threads accessing shared resources has been a critical
priority. In fact, the conventional synchronization approach based on locking is
well known to suffer from several problems.

Coarse-grained locking, although easy to implement, is far too pessimistic
as it can overly restrict parallelism, failing to take full advantage of modern
multi-core systems. Fine-grained locking, although enabling good performance,
is complex to implement correctly, debug and reason about [2]. Furthermore, it
compromises a key desirable property of software: composability [2]. Using Locks
as a synchronization method not only delays the access to critical sections due
to the lock, effectively disabling concurrent access to such values, but also delays
the threads themselves with its additional overhead during its normal workloads.

Transaction, as a concept, was first developed for databases, as a set of op-
erations that manipulate data atomically. The main purpose was to keep the
database consistent, while allowing the concurrent access to the database. To
achieve this, transactions have to be Atomic, Consistent, Isolated and Durable
(ACID).

These features are also essential for parallel programming. Atomicity ensures
that changes done within a transaction appear as all or none to other code.
Consistency ensures that data is always in a consistent state. Isolation is relevant
since all changes done from within a transaction must remain invisible to all other
transactions. Durable as in case of failure the system can either recover entirely
or discard the changes by this set of instructions.

2.1 Transactional Memory

TM borrows the abstraction of transactions from databases to the parallel pro-
gramming domain. It provides programmers with the ability to execute trans-
actions on shared memory data. These transactions are either committed by
TM (i.e., the changes of the transaction are applied atomically to the data) or
aborted (i.e., the changes are discarded as if they never happened).

TM is a parallel programming paradigm that avoids the pitfalls of traditional
locking techniques while promising the performance of fine-grained locking [2].
Programmers using TM need only to worry on their applications logic, not on
how to implement synchronization, thus easing the development of concurrent
applications that are both scalable and thread-safe in parallel computing.

TM algorithms can be classified according to data versioning, conflict detec-
tion, granularity and read visibility.

– Data versioning has the objective of guaranteeing consistency among all
reads and writes. It is implemented in several different methods with its ob-
jective being to guarantee all transactions work on a consistent snapshot of
the systems memory. TM are mainly divided into eager versioning and lazy
versioning.

5



• lazy versioning stores all memory changes the transaction implements in
a buffer to insert in the shared memory on commit. If the transaction is
successful the new values are copied to the memory, which results in a
small delay as all values are copied. If however the transaction is aborted
no further operations are necessary as the values were never written in
the system.

• In eager versioning however the transaction writes its new values di-
rectly in memory, storing the old value in a log for its possible abort.
This allows its commit to be much faster, however if the transaction is
aborted it must recover all overwritten values causing some additional
delay in conflicting transactions.

– Conflict Detection is needed when two of more transactions access the same
value and at least one of them changes the value before all other transactions
sharing access commit. To resolve these situations all reads and writes are
tracked and checked for collisions in one of two ways: pessimistic conflict
detection and optimistic conflict detection.

• With pessimistic conflict detection the system regularly checks the trans-
actions accessed values. This allows for a early and quick conflict detec-
tion at the cost of performance due to its constant checks.

• optimistic conflict detection assumes a conflict will not occur in a trans-
action, checking all values before commit, thus avoiding the performance
drop of constant conflict checking. However this detection has the down-
side that conflicts are only detected at the very end, possibly delaying
the abortion for a long time and wasting resources in an aborting trans-
action.

– Granularity is the level at which the TM detects conflicts. Granularity is gen-
erally either word-based, object-based, value-based or cache-line based. Word-
based granularity means that the TM system detects conflicts between 4 or 8
bytes. Object-based, as the name implies, means the system only checks each
objects atomicity, leading to possible false conflicts of different variables in-
side an object.Value-based on access locally stores read address and value,
allowing the transaction to later confirm the new and previous value are the
same. Finally cache-line based is a hardware specific granularity explained
further on.

– Read Visibility can be divided in visible, where reader inform which memories
they have accessed increasing memory checks but enabling early conflict de-
tection, and invisible, where readers do not inform other active transactions,
forcing writers to check if reads and writes are complete and a consistent
snapshot of the system is maintained on commit.

6



2.2 Software Transactional Memory

Due to the difficulty of manufacturing and testing hardware based TM solutions,
STM was developed to implement TM only as a software framework, enabling
portability across different hardwares.

STM relies on instrumented read and write accesses to shared memory loca-
tions from transactional blocks. This instrumentation then allows the software
to detect conflicts through data versioning and conflict detection as previously
mentioned. This generates a higher overhead compared to the hardware-based
alternative. On the other hand one of its main advantages is the transaction size
it can support, unlike hardware-based solutions.

Due to the low cost and high flexibility of software implementations, many
different designs of STM were developed. STM can be divided according to the
previous categories. Table 1 shows some popular and efficient STM implemen-
tations.

Table 1: Popular STM characteristics
Data Versioning Conflict Detection Granularity

TL2 [10] Lazy Optimistic Word/Object
TinySTM [14] Lazy/Eager Pessimistic Word
NORec [9] Lazy Pessimistic Value

Transactional Locking II Transactional Locking II (TL2), proposed by Dave
Dice et al. [10], works as a two-phase locking scheme, maintaining a global version
clock, which is incremented by all writing transactions, and versioned write-locks
for every shared memory location. It works with optimistic conflict detection and
lazy versioning.

On start all transactions read and store the current global version clock in
a local variable to identify its read-version number. The transaction then runs
the user transactional code locally, maintaining a list of versioned write-locks of
all read values (read-set) and written values (write-set). The transaction also
verifies in each read value that its current version is ≤ read-version number and
the read values lock is free to guarantee that the value has not been modified
since the transaction began. When it finishes the writer acquires the write-set
locks using a bounded spinning (aborting after a fixed period of unsuccessfully
acquiring a lock). It then performs a increment-and-fetch operation of the global
version clock recording its value in a local write-version variable. Finally it re-
validates the read-set ≤ read-version number to guarantee no accessed memory
locations were modified during the transaction. If in both checks a value is locked
or its value does not comply to the rules above then the transaction aborts.

7



TinySTM Pascal et al. later proposed TinySTM [14], a word-based variant of
LSA [29]. TinySTM, like TL2 uses both global version clock for snapshot consis-
tency and versioned write-locks for shared memory addresses. However, instead
of locking all needed writes just before commit the algorithm acquires locks on
read. TinySTM works with pessimistic conflict detection and is presented as
able to use both versioning methods.

Read-only transactions are benefited in this algorithm, the reader verifies
the shared memories lock is free, reads the corresponding value and then checks
the lock again to confirm that no changes occurred in the meantime. A reader
may need to extend its snapshot in case it is reading a value that has a version
number greater than the transactions. This is done by validating the read-set
and making sure they have not been updated meanwhile.

Write transactions acquire the lock to guarantee that there are no concurrent
writers. If the lock bit is set the writer verifies its the current lock owner, oth-
erwise waits or aborts. In the presented TinySTM transactions are set to abort
immediately. This is useful in workloads with high contention as it minimizes
the amount of useless work done.

TinySTM, as mentioned above, can use both eager versioning, with write-
through, resulting in a smaller overhead and delay for other transactions on suc-
cessful commit, or lazy versioning with write-back, resulting in a larger overhead
in all transactions but smaller delay on abort.

It also presents the concept of Hierarchical locking, a strategy to reduce the
validation cost of read-sets by reducing the number of read locks while avoiding
the increase of aborts due to shared memory with the same lock. Hierarchical
locking is specially useful if transactions read many memory locations and there
are few competing write transactions.

NOrec No Ownership records (NOrec) presented by Luke Dalessandro et al.
[9] is a highly scalable STM on read-mostly workloads, allowing any reader to
promote into a writer at anytime limiting however the algorithm to a single write
transaction system-wide. NOrec uses lazy versioning and pessimistic conflict
detection.

NOrec minimizes its overhead by using Transactional Mutex Lock (TML),
a global clock counter, which allows writers to be serialized. By using TML
readers only store a snapshot of the TML and a read-set, consisting of both read
values and their addresses. On commit the reader checks its stored TML value
and current TML value. If the value is the same then it finishes committing
successfully. If the value is different, the reader needs to perform a validation of
its read-set, checking its stored reads and current values to confirm its read-set
is consistent.

Writer transactions buffer all their writes into a log, attempting to acquire
the lock only on commit. This reduces the time TML is held by a transaction,
allowing read-only transactions to commit more easily.

8



2.3 Hardware Transactional Memory

TM was initially proposed as a hardware based solution with the goal of "a
new multiprocessor architecture intended to make lock-free synchronization as
efficient (and easy to use) as conventional techniques based on mutual exclusion."
[19].

After two decades of thorough TM research, it finally made to commercial
hardware under the name Hardware Transactional Memory (HTM). All HTM
systems provide the following machine instructions: begin, end and abort trans-
actions.

– Begin instruction is used by the programmer to inform the HTM that a
transaction has begun and all following reads and writes must be executed
with atomicity and isolation guarantees.

– End instruction is called by the transaction to inform the TM that it is ready
to commit.

– Abort instruction is used to abort a running transaction and call the abort
handler, which is also activated upon a hardware triggered abort.

HTM detects conflicts with the granularity of a cache line, this differs from
one processor to another. Table 2 shows the values for different processors that
support HTM.

Although there exist different implementations of HTM, Nakaike et al. [27]
show that no HTM outperforms all other for all workloads.

Table 2: HTM implementations of zEC12, Intel Core i7-4770 and POWER8.
Adapted from [27]

Processor Type zEC12 Intel Core i7-4770 POWER8
Conflict-detection granularity 256 bytes 64 bytes 128 bytes
Transactional-Load Capacity 1 MB 4 MB 8 KB
Transactional-Store Capacity 8 KB 22 KB 8 KB

zEC12 IBMs zEnterprise EC12 (zEC12) [1] was the first commercial server to
implement HTM. zEC12 uses L1 cache for conflict detection [21]. It provides
constrained transactions, which are transactions guaranteed to eventually com-
mit, avoiding the need of abort handlers. This characteristic allows zEC12 to
perform well in highly contended scenarios [21].

POWER8 P8, also developed by IBM [23] uses Content Addressable Memory
(CAM), a special type of memory, which keeps track of the address of cache
lines accessed from within a transaction. CAM records all reads and writes,
allowing for a quick search of all transactions using the searched word. Another

9



characteristic of P8 is its suspend and resume transactions. These allow the
programmer a higher layer of liberty compared to other HTM since it allows the
system to suspend the transaction. During suspend no data accesses are recorded
by the HTM allowing the user to access clocks and counters outside its isolation
ie. updating values visible to other transactions. The main downside of P8 is its
low capacity compared to other HTM, as shown in the table 2.

TSX Intels TSX [33] provides two programming interfaces: Hardware Lock Eli-
sion (HLE) and Restricted Transactional Memory (RTM).

RTM is a simple HTM interface which allows programmers to specify a fall-
back code if the HTM cannot successfully execute.

HLE Hardware Lock Elision (HLE) is an interface that implements Spec-
ulative Lock Elision (SLE). Basically, it provides the ability of transparently
replacing the legacy lock acquire and release instructions with XACQUIRE and
XRELEASE instructions. This transforms critical sections protected by locks
into transactions that are executed speculatively. HLE is backward compatible,
i.e., code developed with HLE will work on hardware without TSX support by
falling back to pessimistic execution. HLEs drawback is its incapability of setting
a custom fall-back code, using the original locks in case of failure.

Another drawback both Intel interfaces suffer of is the possibility of spurious-
aborts due to data-conflict caused by pre-fetching cache-lines [27]. Although
Intels pre-fetching feature can be disabled, doing so can degrade performance of
other applications.

2.4 Lock Elision

Speculative Lock Elision(SLE), proposed by Rajwar et al. [28] is a novel tech-
nique which intends to dynamically spot and remove unnecessary serialization
through locks, allowing previously locked critical sections to run concurrently.
The concept of this paper is that frequent serialization lowers the performance of
multi-threaded application, even if fine tuned. The main idea is that Hardware
will dynamically identify synchronization operations, namely locks, and elide
them, that is, instead of acquiring the lock the critical operation is executed as
is. In the situation that two critical sections develop a conflict, the algorithm
will fall-back to acquiring the lock pessimistically.

Legacy Code Ruan et al. in their paper [30] make use of Lock Elision (LE) as
a way to allow legacy programs, previously implemented with lock-based syn-
chronization, to elide the locks and implement the corresponding critical section
as a transaction. They tested this implementation by changing the Compilers
cache_lock and stats_lock instructions for atomic operations in TM. This allows
legacy programs with limited performance in concurrency to be able to imple-
ment TM without the programmers having to consider the new complexity of
perform changes to their code.

10



2.5 Hybrid Transactional Memory

Given the restrictions of existing HTM implementations, researchers have inves-
tigated an alternative approach, which goes under the name of Hybrid Transac-
tional Memory (HyTM). In HyTM systems, transactions are first executed using
HTM, yet fall-back to a STM if necessary, in an attempt to make the best use of
both implementations. Unfortunately the simultaneous execution of HTM and
STM induce high overheads to assure their correct synchronization [13].

HyNOrec Hybrid No Ownership records (HyNOrec), developed by Luke Da-
lessandro et al. [8], was created with the purpose of supporting concurrent hard-
ware and software transactions while avoiding heavy instrumentation in hard-
ware transactions. It uses lazy subscription and eager conflict detection.

As its name suggests, HyNOrec uses NOrec as its STM fall-back [9] which
only requires a global clock, called TML. This allows for both HTM and STM to
operate concurrently since both TM access and update this clock when writing.

Hardware Write transactions begin by reading TML to ensure they are sub-
scribed to STM commit notifications, and increment it upon commit to sig-
nal software transactions. To avoid hardware-hardware conflicts due to TML
changes, each processor core has its own local counter which each hardware
transaction locally increments. This ensures a consistent snapshot, however it re-
quires STM to increase its overhead as it must check the TML and each counter
to guarantee its consistency with the HTM.

Invyswell Proposed by Irina Calciu et al. [4], Invyswell Invyswell is a HyTM
that relies on a modified Inval-STM as the fall-back path of HTM. Invyswell
uses lazy subscription and commit-time invalidation.

Inval-STM uses a novel method of validation called commit-time invalidation
an optimistic conflict detection where each transaction stores its read and write-
sets. During commit, the writer invalidates all conflicting transactions, giving
itself priority. After finishing its validation it commits its changes to memory.

This simplifies the validation of other transactions, as they are immediately
invalidated as if using pessimistic conflict detection without the regular conflict
verification associated to this method.

To ensure its guarantees and increase the set of workloads where Invyswell
performs well, five types of transaction were developed: lightweight Hardware
(LiteHW), bloom filter-based Hardware (BFHW), irrevocable Software (IrrevSW),
speculative Software (SpecSW) and single global lock Software (SglSW).

– LiteHW is a simple hardware transaction with no read or write software in-
strumentation. This allows for a faster execution. This benefit of LiteHW is
also its downside as it is incapable of executing concurrently with software
transactions.

11



– BFHW records its reads and writes, storing their memory location in Bloom
filters. When finished, BFHW checks if the commit lock is free. If so, it in-
crements the hardware post commit lock and commits. This lock prevents
SpecSW from performing operations until it is free, allowing the BFHW to
perform commit-time invalidation, with its recorded reads and writes, suc-
cessfully.

– SpecSW is identical to Inval-STM. As with BFHW, SpecSW keeps track
of accessed memory locations, both reads and writes, through Bloom fil-
ters. At commit time SpecSW performs commit-time invalidation with other
SpecSW. Its main difference from Inval-STM is that it commits changes to
memory before invalidating conflicting transactions.

– SglSW is a final transaction type used for small transactions the HTM does
not support. Due to its small overhead SglSW is fast but does not allow for
concurrent software executions as it acquires the SGL. It can however run in
concurrency with HTM if it commits before BFHW and LiteHW check the
SGL, as the HTM strong isolation detects and aborts if a data conflict occurs.

– IrrevSW is implemented for transactions that repeatedly could not commit
in BFHW. As with SglSW it acquires the lock on start. All of its operations
are immediately written to memory. During the execution of an IrrevSW,
SpecSWs are disallowed to commit and BFHWs must check if they are con-
flicting and abort if needed.

Invyswell first tries transactions using HTM, running either in LiteHW or
BFHW depending on other active transactions and the expected size of the
transaction. If a transaction is not supported in HTM, it is immediately exe-
cuted in SglSW. If the number of attempts a hardware transaction tries exceeds
the defined retry policy, the transaction is tried in SpecSW. Finally if SpecSW
continues to abort it is escalated to IrrevSW.

PhaseTM and Split Hardware Although not HyTM, Phased Transactional
Memory (PhTM) [3] and Split Hardware(SplitTM) [24] use both HTM and STM.
PhTM focuses on supporting several phases of the system, in which different
TM-based synchronization schemes are used. It was presented with the following
modes: Hardware, Software, Hybrid, Sequential and Sequential-NoAbort. This
allows for adapting the employed TM implementation to the characteristics of the
current workload. However, phase transitions take a stop the world approach: all
threads must complete executing using the current synchronization mechanism,
before they are allowed to start the new phase and use a different synchronization
scheme.

SplitTM uses both STM and HTM by splitting an STM into multiple HTM
segments, overcoming current HTM nesting issues. SplitTMs HTM sub-transactions

12



write to a thread-local log allowing the HTM to commit at any point of the par-
ent transaction while ensuring isolation. HTMs also log their reads, allowing the
parent transaction to maintain consistency as it can detect conflicts after the
hardware transactions, where the reads occurred, have committed. Finally, on
commit the parent transaction runs a hardware sub-transaction which writes all
changes from the local write log to the main memory. Although allowing bigger
transactions to be implemented in HTM, this implementations comes at the cost
of instrumenting HTM transactions, tracking both reads and writes each HTM
performs.

2.6 Self Tuning

As seen through the previous topics, TMs can be implemented in a variety of
ways, each with their own set of parameters. These parameters are generally
tuned manually, a time consuming and error prone task. Furthermore, it is not
possible to implement a perfectly optimal configuration through a static manual
tuning as workloads can vary over time. This motivated the investigation of
self-tuning techniques for TM, of which I overview the following.

TinySTM When proposing TinySTM [14] Felber et al. noticed that some pa-
rameters of their algorithm, such as hierarchical locking, had to be fine tuned
to each workload. In order to allow their algorithm to perform well in a larger
set of workloads, they developed a hill-climbing tuning algorithm. Starting with
a certain number of locks, the tuner periodically adapted these parameters at-
tempting to acquire a more optimal value. This tuning algorithm proved capable
of autonomously reaching throughput values close to those obtained by the team
through static testing, optimized to the workload.

TSX Tuning Diegues and Romano [12] tackled the problem of automatically
identifying the optimal number of times a transaction should be attempted in
hardware, and how to react to capacity aborts, by activating the fall-back im-
mediately or treating it as a conflict induced abort. The two sub-problems are
tackled using different self-tuning algorithms, namely hill-climbing ( with proba-
bilistic jumps to avoid being trapped in local minimums) and Upper Confidence
Bound (UCB) [5], a reinforcement learning algorithm that seeks an optimal
trade-off between exploration of new configuration and exploitation of available
knowledge. Its results showed that, as in TinySTM, self-tuning can reach results
very close to those obtained through extensive off-line testing.

Green-CM Proposed by Shady et al. Green-CM [20] focuses on a Contention
Manager directed mostly to optimize energy consumption, that is, avoiding
aborts and implementing low consumption sleeps so as to reduce the energy

13



consumption of the TM. For this Green-CM proposes an energy efficient alter-
native for longer waits when blocked by a conflicting transaction. It separates
waiting transactions into two types, long waits where they apply a time-based
sleep, lowering consumption but also wait accuracy, and short waits were the
algorithm applies a spin-based wait, a high energy consumption wait with high
accuracy. To decide which back-off policy it should use, Green-CM makes use
of both UCB and hill-climbing. Like TSX Tuning, Green-CM makes use of hill-
climbing to explore the parameters searching for optimal configurations to the
current workload. A problem of this method is that hill climbing continues to
search for a better value even after arriving at the optimal configuration. In
order to avoid changing to a less ideal configuration in subsequent oscillations,
Green-CM uses a variant named stabilizing which functions as an UCB for the
algorithm to avoid oscillating unnecessarily.

Proteus TM Didona et al. proposed Proteus TM [11], a self-tuning algorithm
that focuses on adapting multiple parameters for optimal configurations. Proteus
TM makes use of Collaborative Filtering (CF), a prominent technique in Recom-
mender Systems, which attempts to obtain the best value for a user-defined Key
Performance Indicator (KPI) and Bayesian optimization to profile the current
workload to use CF with. KPI infers the ideal configuration of new workloads
based on previously discovered optimal configurations for other workloads, as
such, the algorithm is first implemented with an off-line profile of optimal con-
figurations for a set of workloads. It then builds a matrix with the parameters
to optimize in order to apply CF. Finally whenever a new workload appears,
Proteus TM first attempts to profile the workload based on stored optimal con-
figurations, using Bayesian optimization, and recommending the resulting KPI
maxed configuration for the workload.

2.7 Read Write Lock Implementations

First described by Courtois et al. [7], the Read/Writer Lock (RWL) abstraction
allows multiple readers to access the same value simultaneously, but locking the
object from both readers and writers when a writer requests access to the value.
Classic implementations of the RWL abstraction rely internally on mutex locks
and semaphores.

The basic algorithm consists of two semaphores, one for active readers and
one for writers. The reader, upon start, increments a waiting list to inform it
is currently waiting to activate. It then verifies there are no writers active by
checking the writer lock. If a writer is active, the reader will wait until the writer
finishes. The reader then increments the semaphore and removes itself from the
waiting list. After performing the critical section, the reader removes itself from
the semaphore allowing writers to run again.

The writer begins by also publishing itself in a waiting list to inform it is ready
to begin. It then verifies no reader is active and, if so, attempts to acquire the

14



writer lock. If successful it removes itself from the waiting list. Upon conclusion
it removes itself from the writing lock, first signaling readers they may begin
and afterwards writers.

The overall concurrent accesses allowed by this typical RWL can be seen in
3. In order to ensure a thread-safe access to the waiting lists a mutex lock is
used.

The key challenge of RWLs design is how to minimize the additional over-
heads incurred with respect to plain mutex locks, while ensuring fair access to
the lock to both readers and writers.

The main drawback of RWL is their poor scalability as they only have con-
currency in reader-reader interactions as shown in table 3.

Table 3: Concurrent accesses allowed by typical RWL
Reader Writer

Reader Yes No
Writer No No

Big Reader Lock Big Reader Lock (BRLock)s [6] objective is to allow read-
only transactions to function as fast as possible by locking a CPU-local spinlock.
This implies a array of locks is created, one for each CPU. This algorithm was
developed for read intensive workloads, as its objective is to increase reader
throughput, resulting however in the reduction of writers throughput. The loss
of writer throughput is due to the need of writers acquiring the full lock array
to function.

PRWL Passive Reader-Writer Locks (PRWL) developed by Liu et al. [25],
focuses in several points:

1. Readers do not need to share data between them, as such there is no shared
state or the need of memory barriers if no writer exists.

2. In typical RWL writer use memory barriers to ensure version updates are
visible to all readers/writers. To solve this situation without costly memory
barriers PRWL uses Inter-Processor Interrupts (IPI) a special type of inter-
rupt where one processor interrupts another, to force staggered readers to
check the snapshot update.

HRWLE Proposed by Felber et al. [15], HRWLE is an algorithm, optimized
for heavy-read workloads, which makes use of HTM concurrency capability to
allow multiple writers to work concurrently via hardware speculation, enabling a
different approach to the typical RWL system which only allows readers to run

15



concurrently. For this HRWLE makes use of P8s previously presented character-
istic, suspend and resume transactions.

HRWLE works by treating readers and writers in distinct ways: writers are
executed in HTM, allowing the system to automatically track conflicts between
them. Conversely readers execute without any hardware instrumentation, hence
avoiding the capacity limitations, which writers, by running in HTM, are sub-
ject to. Analogously to BRLock, in HRWLE readers announce their presence by
flagging their presence in a thread-local variable (and ensuring the visibility of
this update via a memory barrier).
To ensure correctness, no readers can be active during a writer commit. HTM
however is known for its strong isolation, forcing the abortion in case of any
data conflicts, such as flag verifications. Because of this isolation, in order to
allow writers to commit more easily the algorithm makes use of P8s suspend and
resume feature to suspend their transaction right before commit.

The writer can then access each readers flag to wait for each active reader to
commit without aborting, maintaining a consistent snapshot and avoiding the
writers abort due to flag value changes. After confirming each previously active
reader has finished, the writer commits.

This allows for fairness between readers and writers as previously active
transactions are always given priority to commit. If a reader activates itself dur-
ing this suspend the correctness is still ensured, since any data reads conflicting
with the writer will still provoke an abort of the writer, while the flag access
itself does not.

As mentioned before, previously active readers are given priority in order
to avoid starvation. Unfortunately, due to the HTMs strong isolation, writers
cannot be given priority as any readers that access their data force an abort of the
conflicting writer. HRWLE presents two methods of avoiding writer starvation:
Non-Speculative Transactions and Rollback-Only Transactions (ROT).

If a writer has not successfully committed after a defined number of attempts,
the algorithm tries to run it in ROT, a special HTM with minimized overhead.
In this type of transaction the writer acquires SGL in ROT-lock, allowing only
readers to execute concurrently. It also disables the suspend mechanism reducing
the capacity needed and increasing the speed at which the transaction performs.

Non-Speculative Transactions is used by HRWLE when a transaction exceeds
HTMs capacity or exceeds its maximum amount of tries defined in the configu-
ration. In this case the writer acquires the SGL, waits for previous transactions
to finish, performs its critical section and frees the lock afterwards. As the name
implies, no other transaction may run during its execution.

Overall, HRWLE excels in workloads with high-capacity compared to the
base HTM due to its fall-back paths. It also performs very well in high-contention
workloads, compared to other RWL and HTM, as readers are un-instrumented
and, in case of fall-back, ROT forces writer serialization, reducing SGL con-
tention.

16



3 Work Proposal

As discussed, the pessimistic nature of lock-based synchronization mechanisms
can unnecessarily limit parallelism and prevent tapping the full potential of
modern massively parallel architectures.

By exploiting P8s suspend and resume supports, HRWLE can achieve ex-
cellent performance in many types of workloads. Its use of suspend and resume
in writers allows it to verify flags otherwise bound to force an abort in typi-
cal HTM, enabling a higher level of concurrency and fairness between HTM and
readers. It also allows for the un-instrumentation of readers, as HTM conflict de-
tection and the reader flags ensure a consistent snapshot is always maintained.
Unfortunately, due to its reliance on suspend and resume mechanism, HRWLE
is limited to P8 processors, which impedes its usability in other HTM-equipped
processors, in particular Intel CPUs.

This work proposes the development of a HTM supporting un-instrumented
readers, much like HRWLE, but making only use of "standard" HTM instruc-
tions, that is BEGIN, END and ABORT, so as to make it capable of running in
any HTM. This algorithm will be implemented for Intel TSX.

3.1 Initial Solution

During the development of this report an initial version of the solution has been
developed. Algorithm 1 shows the pseudo-code for this initial version. It was
developed as a proof of concept in order to confirm that it is feasible to run un-
instrumented readers along with HTM writers while still ensuring correctness
and achieving performance gains. Due to the best effort nature of current HTM
implementations, a single_global_lock (SGL) is used as a fall-back in case a
transaction cannot complete successfully in HTM.

The algorithm begins by separating readers and writers on acquire call, sim-
ilar to read-write lock interface.

Upon read acquire, the algorithm executes outside the HTM. However if the
call originates from a writer, the algorithm directs it to the HTM synchronization
method as usual. When a reader starts (line 6), it first checks that the SGL is
free. If so, it publicizes itself by updating its corresponding isReader counter. It
then proceeds to run its the critical section and, on finish (line 15), concludes
its operation by disabling its isReader counter, allowing other transactions to
know it is no longer actively reading. If the single_global_lock is locked, the
reader must then wait for its unlock to proceed as above. A writer however must
proceed in a different way (line 17), it first confirms that the SGL is free, as with
reader, starts in a HTM transaction and then re-reads the SGL. This serves to
add the SGL to its read set, ensuring the writer aborts if the lock is acquired
by some other thread during our writers transaction. After running its critical
section and ready to commit (line 33), it first checks all isReader counters in
order to confirm no reader is active (line 36). Only if no reader is found active
is the writer allowed to commit. If a reader is active, the writer must forcibly be
aborted as it is isolated and cannot instruct the reader to stop.

17



For this implementation to function correctly, while ensuring atomicity, the
algorithm makes use of the fact that HTM detects conflicts between both concur-
rent transactions and non-transactional read/write accesses. This ensures that
all writers can be executed concurrently as HTM detects their collisions. Read-
ers however, are not instrumented and do not run in HTM. As such, they are
prone to reading inconsistent states if a writer commits while a reader is active.
This, however, is avoided by forcing writers to commit only when there are no
active readers. This is achieved by readers publicizing their existence, through
the shared flag isReader (line 2).

If a reader is active when the writer is ready to commit, the writer must
abort as it cannot know which data the reader transaction has seen and may
see, making it possible to generate a inconsistent snapshot for the reader. It is
worth noting here that if a reader starts after the writer checks for active readers
but before committing, the writer will abort due to HTMs conflict detection since
the reader begins its operation by updating its isReader counter.

3.2 Experimental Results

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 1  10

T
h

ro
u

g
h

p
u

t 
(t

x
/s

)

Threads

HTM-SGL IRWLE BRLock

(a) 10% writers

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1  10

T
h

ro
u

g
h

p
u

t 
(t

x
/s

)

Threads

HTM-SGL IRWLE BRLock

(b) 50% writers

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1  10

T
h

ro
u

g
h

p
u

t 
(t

x
/s

)

Threads

HTM-SGL IRWLE BRLock

(c) 90% writers

Fig. 1: Hashmap testing with high Capacity and low Contention for 10%(a)
50%(b) and 90%(c) writers

18



 0

 20

 40

 60

 80

 100

1 2 4 8 1 2 4 8

%
 C

o
m

m
it
s

Threads

HTM GL Read-Only

IRWLEHTM-SGL

(a) 10% writers

 0

 20

 40

 60

 80

 100

1 2 4 8 1 2 4 8

%
 C

o
m

m
it
s

Threads

HTM GL Read-Only

IRWLEHTM-SGL

(b) 50% writers

Fig. 2: Comparison of commit percentages between suspend and IRWLE in a
Hashmap with high capacity low contention at 10%(a) and 50%(b) writers

To validate this work proposal, a preliminary performance evaluation was
performed in order to compare between our initial algorithm, noted as Intel-
RWLE (IRWLE), and some of the algorithms described above, more specifically
the Big Readers Lock (BRLock) and a solution purely based on HTM (noted
as HTM-SGL). The considered workload generates update transactions with
probability 10% 1a, 50% 1b and 90% 1c.

Update transactions operate on a hash map that has 1000 buckets, each
containing 800 items. More precisely, the input value is hashed to a bucket and
the bucket is scanned to search for that value. If the value is found, the value is
updated, else the value is added to the bucket. The readers, on the other hand,
simply scan the hash map in search of the input value and return it if they find
it. This workloads parameters were set to generate very limited contention and
high probability of incurring a capacity exception.

The results obtained, figure 1, proves our proof of concept previously ex-
plained, revealing that our algorithm can achieve remarkable performance gains
(2x to 3x) with respect to both HTM-SGL and BRLock for both the case of 10%
and 50% of update transactions.

Since the reader, in our initial algorithm, is not instrumented and is not run
in transactional memory, its throughput is higher due to its almost inexistent
overhead, compared to typical HTM transactions and locks as seen in 1a and
1b.

We can further compare our performance with HTM-SGL by observing the
commit percentage in figure 2. With the increase of concurrent threads, both al-
gorithms see a decrease of HTM usage and an increase in SGL commits, our algo-
rithm however only sees this occur in writers since readers are un-instrumented.

Un-instrumented readers can always commit with no conflicts, compared to
writers that may abort, performing always at the ideal throughput. Overall our
algorithm acquires much less frequently SGL compared to HTM-SGL, allowing
our system to perform concurrently longer, thus our increase in throughput.

19



3.3 Improvements

As seen in our algorithm 1, there are several aspects to correct and improve. The
first issue to review is its fairness. As most workloads are reader focused, the
algorithm was developed with focus on readers. However, in its current form the
more concurrent readers are running the more likely it is for a writer to be unable
of successfully committing since readers cannot be abort and can begin at any
moment. This forces writers to acquire the fall-back lock disabling concurrency
in the system, as seen in the results 2, where readers have exactly the percentage
of commits expected but writers have a much lower use of HTM compared to
HTM-SGL since readers continuously abort them.

In order to solve this issue, we plan to introduce a scheduling technique based
on the idea of estimating execution times of readers and writers and exploit this
information to mitigate contention and ensure fairness. By publicizing end times
of readers and writers, readers can predict conflicts with writers and postpone
their start, in order to wait for the writers to successfully commit before begin-
ning. Writers can also check the expected end-times of read critical sections and
activate their hardware transaction only if it is expected to end after the commit
of all readers that are found already active.

This solution however generates another issue, how to predict in a precise
manner the end-time of both readers and writers. Our proposed solution is to
develop an auto-tuning algorithm which reads the Time Stamp Counter (TSC)
of cores and dynamically tunes its prediction. We must also verify if reading
TSC influences or not the performance of the proposed algorithm.

3.4 Benchmarks

To evaluate our algorithm we shall use several benchmarks, we describe the
following:

Synthethic the first benchmark I plan to use is a synthetic benchmark that
mimics the behavior of a concurrent hash-map, analogously to the one used for
producing the results in figures 1 and 2. By tuning the number of buckets and
entries in the them, this benchmark allows for precise control of contention and
capacity abort probabilities, which are expected to have a major impact on the
performance of the proposed solution.

STMBench7 Proposed by Guerraoui et al. [18], STMBench7 simulates com-
plex applications, such as CAD, composed of several different and large data
structures, such as indexes and graphs. It is one of the most complex TM bench-
marks, allowing flexible customization of the generated workload and extensively
testing the proposed algorithms in heterogeneous settings.

20



TPC-C TPC-C benchmark is used to simulate a complete online transaction
environment and is representative of a warehouse supplier application. TPC-C
uses five different types of transactions (new-order, payment..), with very diverse
profiles, such as long read-only transactions, long and contention-prone vs short
and almost contention-free update transactions. Also this benchmark can be
flexibly configured to generate heterogeneous workloads.

Kyoto Cabinet Finally, I am going to considerKyoto Cabine [22], a commercial
C++ database management library. In particular, I will focus on the in-memory
variant KyotoCacheDB. Internally, it breaks the database into slots, where each
slot is composed of buckets and each bucket is a search tree. To synchronize
database operations, KyotoCacheDB uses a single global read-write lock. As
such, this is an ideal use case for lock elision techniques specialized to deal with
read-write locks.

3.5 Work Plan

In this section is the work plan to be followed during my dissertation. I propose
the following deadlines:

– 20/10/2017 : Integration of mechanism to ensure fairness between readers
and writers

– 24/11/2017 : Development of scheduling policy based on transaction dura-
tion estimation

– 9/02/2017 : Design and evaluation of different transaction prediction policies
– 9/03/2017 : Evaluate with micro and macro benchmarks the solution both

in Intel and P8, considering single-socket and multi-socket deployment sce-
narios

– 13/04/2018 : Completion of a report describing the results of this dissertation
– 27/04/2018 : Completion of the dissertation

4 Conclusion

The report explains the current state-of-art of Transactional Memory, detail-
ing its features and most common hardware and software implementations. It
also explains different implementations of read-write locks and lock elision. More
specifically, Hardware Read Write Lock Elision which makes use of the suspend
and resume feature of P8 processor and allows for supporting un-instrumented
readers. It also details on Self-Tuning as a method of optimizing Synchronization
Methods according to the nature of workloads. Next, it proposes the implemen-
tation of a Hardware Lock Elision technique supporting un-instrumented readers
while retaining compatibility with Intels HTM implementation, i.e., not requir-
ing the suspend and resume feature. It also presents an initial version of the
algorithm which has several aspects to improve but proves the practicality of
this concept. An improved implementation will be developed by developing an

21



auto-tuning algorithm to enhance the fairness between readers and writers. The
expectation is to obtain experimental results proving both practicality and per-
formance in comparison to current Transactional Memory implementations and
state of the art read-write lock implementations.

References

1. z/Architecture Principles of Operation. SA22-7832-09.
2. Ali-Reza Adl-Tabatabai, Christos Kozyrakis, and Bratin Saha. Unlocking concur-

rency. Queue, 4(10):24–33, December 2006.
3. Moir Bussam, Lev. Second acm sigplan workshop on transactional computing

(transact 07). 2007.
4. Irina Calciu, Justin Gottschlich, Tatiana Shpeisman, Gilles Pokam, and Maurice

Herlihy. Invyswell: A hybrid transactional memory for haswell’s restricted trans-
actional memory. In Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation, PACT ’14, pages 187–200, New York, NY, USA,
2014. ACM.

5. Alexandra Carpentier, Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi
Munos, and Peter Auer. Upper-confidence-bound algorithms for active learning
in multi-armed bandits. In Proceedings of the 22Nd International Conference on
Algorithmic Learning Theory, ALT’11, pages 189–203, Berlin, Heidelberg, 2011.
Springer-Verlag.

6. Jonathan Corbet. Big reader locks. https://lwn.net/Articles/378911.
7. P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with readers

and writers. Commun. ACM, 14(10):667–668, October 1971.
8. Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark Moir,

Michael L. Scott, and Michael F. Spear. Hybrid norec: A case study in the effective-
ness of best effort hardware transactional memory. SIGPLAN Not., 46(3):39–52,
March 2011.

9. Luke Dalessandro, Michael F. Spear, and Michael L. Scott. Norec: Streamlining
stm by abolishing ownership records. SIGPLAN Not., 45(5):67–78, January 2010.

10. Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In Proceedings
of the 20th International Conference on Distributed Computing, DISC’06, pages
194–208, Berlin, Heidelberg, 2006. Springer-Verlag.

11. Diego Didona, Nuno Diegues, Anne-Marie Kermarrec, Rachid Guerraoui, Ricardo
Neves, and Paolo Romano. Proteustm: Abstraction meets performance in trans-
actional memory. SIGOPS Oper. Syst. Rev., 50(2):757–771, March 2016.

12. Nuno Diegues and Paolo Romano. Self-tuning intel restricted transactional mem-
ory. Parallel Comput., 50(C):25–52, December 2015.

13. Nuno Diegues, Paolo Romano, and Luís Rodrigues. Virtues and limitations of com-
modity hardware transactional memory. In Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation, PACT ’14, pages 3–14, New
York, NY, USA, 2014. ACM.

14. Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic performance tuning
of word-based software transactional memory. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’08, pages 237–246, New York, NY, USA, 2008. ACM.

15. Pascal Felber, Shady Issa, Alexander Matveev, and Paolo Romano. Hardware
read-write lock elision. In Proceedings of the Eleventh European Conference on

22



Computer Systems, EuroSys ’16, pages 34:1–34:15, New York, NY, USA, 2016.
ACM.

16. C. Ferri, S. Wood, T. Moreshet, R. Iris Bahar, and M. Herlihy. Embedded-tm: En-
ergy and complexity-effective hardware transactional memory for embedded multi-
core systems. Journal of Parallel and Distributed Computing, 70(10):1042 – 1052,
2010. Transactional Memory.

17. E. Gaona, R. Titos, J. FernÃąndez, and M. E. Acacio. On the design of energy-
efficient hardware transactional memoryâĂĽsystems. Concurrency and Computa-
tion: Practice and Experience, 25(6):862–880, 2013.

18. Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stmbench7: A benchmark for
software transactional memory. In Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys ’07, pages 315–324,
New York, NY, USA, 2007. ACM.

19. Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-
port for lock-free data structures. SIGARCH Comput. Archit. News, 21(2):289–300,
May 1993.

20. Shady Issa, Paolo Romano, and Mats Brorsson. Green-cm: Energy efficient con-
tention management for transactional memory. In Proceedings of the 2015 44th
International Conference on Parallel Processing (ICPP), ICPP ’15, pages 550–559,
Washington, DC, USA, 2015. IEEE Computer Society.

21. Christian Jacobi, Timothy Slegel, and Dan Greiner. Transactional memory ar-
chitecture and implementation for ibm system z. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-45,
pages 25–36, Washington, DC, USA, 2012. IEEE Computer Society.

22. FAL Labs. Kyoto cabinet: A straightforward implementation of DBM, 2011.
http://fallabs.com/kyotocabinet/.

23. H. Q. Le, G. L. Guthrie, D. E. Williams, M. M. Michael, B. G. Frey, W. J. Starke,
C. May, R. Odaira, and T. Nakaike. Transactional memory support in the ibm
power8 processor. IBM Journal of Research and Development, 59(1):8:1–8:14, Jan
2015.

24. Yossi Lev and Jan-Willem Maessen. Split hardware transactions: True nesting
of transactions using best-effort hardware transactional memory. In Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’08, pages 197–206, New York, NY, USA, 2008. ACM.

25. Ran Liu, Heng Zhang, and Haibo Chen. Scalable read-mostly synchronization
using passive reader-writer locks. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 219–230, Philadelphia, PA, 2014. USENIX Association.

26. A. Mericas, N. Peleg, L. Pesantez, S. B. Purushotham, P. Oehler, C. A. Anderson,
B. A. King-Smith, M. Anand, J. A. Arnold, B. Rogers, L. Maurice, and K. Vu.
Ibm power8 performance features and evaluation. IBM Journal of Research and
Development, 59(1):6:1–6:10, Jan 2015.

27. Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael, and Hisanobu
Tomari. Quantitative comparison of hardware transactional memory for blue
gene/q, zenterprise ec12, intel core, and power8. SIGARCH Comput. Archit. News,
43(3):144–157, June 2015.

28. Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling highly
concurrent multithreaded execution. In Proceedings of the 34th Annual ACM/IEEE
International Symposium on Microarchitecture, MICRO 34, pages 294–305, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

23



29. Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm with
eager validation. In Proceedings of the 20th International Conference on Distributed
Computing, DISC’06, pages 284–298, Berlin, Heidelberg, 2006. Springer-Verlag.

30. Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael Spear. Transactionalizing legacy
code: An experience report using gcc and memcached. SIGPLAN Not., 49(4):399–
412, February 2014.

31. Martin Schindewolf, Barna Bihari, John Gyllenhaal, Martin Schulz, Amy Wang,
and Wolfgang Karl. What scientific applications can benefit from hardware trans-
actional memory? In Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’12, pages 90:1–90:11,
Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

32. Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin Ohmacht,
Christopher Barton, Raúl Silvera, and Maged M. Michael. Evaluation of blue
gene/q hardware support for transactional memories. 2012 21st International
Conference on Parallel Architectures and Compilation Techniques (PACT), pages
127–136, 2012.

33. Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar. Perfor-
mance evaluation of intel&reg; transactional synchronization extensions for high-
performance computing. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’13, pages 19:1–
19:11, New York, NY, USA, 2013. ACM.

24



Algorithm 1 initial version of proposed algorithm
1: Shared variables:
2: isReader[N ]← {0, 0, . . . , 0} . Boolean counter for each thread to identify

itself as reader or writer
3: single_global_lock

4: Local variables:
5: tid ∈ [0..N ] . Identifier of current thread

6: function read_lock
7: while 1 do
8: isReader[tid]= 1 . Updates its Status to inform it is Active
9: if is_locked(single_global_lock) then
10: isReader[tid]= 0 . Updates its Status to inform it is Inactive
11: Wait
12: Continue
13: MemBarrier() . Memory Barrier to ensure correct order of instructions
14: Break
15: function read_unlock
16: isReader[tid]= 0 . Updates its Status to inform it is Inactive

17: function write_lock
18: retries = 0
19: while 1 do
20: if is_locked(single_global_lock) then
21: Wait
22: status = tx_begin
23: if status == tx_started then . Confirm the GL is free
24: if is_locked(single_global_lock) then
25: tx_abort
26: if status == tx_abort then . If aborted register the attempt and retry
27: retries++
28: if retries == max_retries then . Acquire Lock as last resort
29: Lock( single_global_lock)
30: for i← 0 to N−1 do . Wait for all threads to finish
31: if isReader[i] 6= 0 then
32: Wait

33: function write_unlock
34: synchronize . Confirm no Readers are active
35: tx_commit . Write back updates

36: function synchronize
37: for i← 0 to N−1 do . Check for active Readers...
38: if isReader[i] 6= 0 then
39: tx_abort

25


	Introduction
	State of Art
	Transactional Memory
	Software Transactional Memory
	Transactional Locking II
	TinySTM
	NOrec

	Hardware Transactional Memory
	zEC12
	POWER8
	TSX

	Lock Elision
	Legacy Code

	Hybrid Transactional Memory
	HyNOrec
	Invyswell
	PhaseTM and Split Hardware

	Self Tuning
	TinySTM
	TSX Tuning
	Green-CM
	Proteus TM

	Read Write Lock Implementations
	Big Reader Lock
	PRWL
	HRWLE


	Work Proposal
	Initial Solution
	Experimental Results
	Improvements
	Benchmarks
	Synthethic
	STMBench7
	TPC-C
	Kyoto Cabinet

	Work Plan

	Conclusion

