Boosting Data Replication in
Distributed Transactional Memories

Paolo Romano

@ nesc ld

About me

Master (2002) and PhD (2007) from Rome University “La Sapienza”
Member of the OASIS WS-Reliability Technical Committee (2003-2004)
Researcher & Lecturer (2007-2008) at Rome University “La Sapienza”
Researcher at the Distributed Systems Group INESC-ID, Lisbon (since 2008)

Coordinator of the FCT Aristos Project (Jan 2010-Jan 2012)
— Bilateral Italian-Portuguese project
— Autonomic Replication of Transactional Memories

Coordinator of the FP7 Cloud-TM Project (Jun 2010-Jun2012)
— 4 international partners from industry and academy
— Self-tuning, Distributed Transactional Memory platform for the Cloud

Coordinator of the Cost Action Euro-TM (fall 2010-fall 2013)
— Pan-European Research network on Transactional Memories
— 56 experts, 42 institutions, 12 countries

Roadmap

* Transactional Memories (TM)
e Distributed Transactional Memories (DTM)

* Data Replication in DTM
— State of the Art of transactional replication
— new challenges of DTMs...

— ...and two new protocols:
* Asynchronous Lease Certification
» Speculative Transaction Replications

The era of free performance gains is over

10,000,000

1,000,000

e Over the Iast 30 years: 100,000
* new CPU generation = free speed-up

10,000

* Since 2003:
* CPU clock speed plateaued...
* but Moore’s law chase continues: 100

* Multi-cores, Hyperthreading...

10

FUTURE IS PARALLEL

0

1970

Dual-Core Itanium 2

/[

Intel CPU’

(sources: Intel, Wikipe:

Trends
dia, K. Olukotun)

m Transistors (000)

@ Clock Speed (MHz)
A Power (W)
@ Perf/Clock (ILP)

1975 1980 1985

2005

Multicore Software Scaling

X

Speedup 1 _8X 3M

User code

Multicore I I I I
2 B

Unfortunately, not so simple...

5

Real-World Multicore Scaling

Speedup
1.8x 2X 2.3%
B — ”'
- 6 B .
User code - o % @E mﬁ@)r@
8 8 8 b8 i y@ﬁ@a

Multicore I I I I

Parallelization and Synchronization
require great care...

Coarse grained parallelism?
simple but does not scale

Amdahl’s Law:
Speedup = 1/(ParallelPart/N + SequentialPart)

Pay for N = 128 cores
SequentialPart = 25%

As num cores grows the effect of 25%
becomes more accute

2.3/4,2.9/8, 3.4/16, 3.7/32....

Fine grained parallelsim?
easier to say than to do

* Simple grained locking is a conundrum:
— need to reason about deadlocks, livelocks, priority inversions:

* complex/undocumented lock acquistion protocols
* scarce composability of existing software modules

... and a verification nightmare:
* subtle bugs that are extremely hard to reproduce

* Make parallel programming accessible to the masses!

Transactional memories

 Key idea:

— hide away synchronization issues from the programmer

— replace locks with atomic transactions:
 avoid deadlocks, priority inversions, convoying
e way simpler to reason about, verify, compose
 deliver performance of hand-crafted locking via speculation (+HW support)

* Brief historic overview:

— Original idea dating back to early 90s
— Largely neglected until advent of multi-cores (~2003)
— Today among the most relevant research topics in the areas of:

e Computer architecture
* Programming Languages
* Operating Systems

* Distributed Computing

—

—

STRONG
INTERDISCIPLINARITY

TMs: where we are, challenges, trends

* Theoretical Aspects
— formalization of adequate consistency guarantees, performance bounds

e Software-based implementations (STM)

— performance/scalability improving, but overhead still unsatisfactory

* Hardware support

— very promising simulation-based results, but no support in commercial processors

* Language integration
— advanced supports (parallel nesting, conditional synchronization) are appearing...
— ...but lack of standard APIs & tools hampers industrial penetration

* Operating system support
— still inits infancy, but badly needed (conflict aware scheduling, transactional I/0O)

* Recent trends:
— shift towards distributed environments to enhance scalability & dependability

Distributed
Transactional Memories

An obvious evolution

e Real, complex STM based applications are
starting to appear:
— Apache Web Server
— FenixEDU
— Circuit Routing

e ...and are being faced with classic production
environment’s challenges:

— scalability
— high-availability DIReErilbnntad IriVIe

— fault-tolerance

Distributed STMs

* At the convergence of two main areas:

Y

10000 r

STBeﬁch? (write transéctions
TPC-W (write transactions

1000 ¢

100

>70% xacts are 10-100

times shorter:
* larger impact of coordination

10

Execution Time (millisec)

0.01

i £
0 0.2 0.4 0.6 0.8 1
Cumulative Distribution Function

2. Boost pertormance by batching any remote
synchronization during the commit phase

unique, challenging requirements!

Existing Distributed STMs

* \Very recent research area....

* Only a handful of existing prototypes:
— DMV [PPoPP,2006]

— DiSTM [ICPP, 2008]
— ClusterSTM [PPoPP, 2008]

DISTRIBUTION ONLY, NO REPLICATION:

NO SUPPORT FOR FAULT TOLERANCE!

Classic Synchronous
Transactional Replication Schemes

Single-master schemes: ., Multi-master schemes:
e primary runs all write xacts and e all replicas can process both
propagates updates to backups ¥ read&write xacts
't e« locks are acquired during xact’s
« backups exec read-only xacts i execution or at commit time

e 2PC ensures agreement on the
outcome of conflicting transactions
(and their atomicity)

+ simple + better load balancing & scalability
- scales poorly with write intensive i - high latency for intra-transaction lock
workloads ¥ acquisition

- distributed deadlocks grow cubically
with #nodes:

10x incr. nodes — 1000x incr.deadlocks

Atomic Broadcast-based
Transactional Replication Schemes

Multi-master schemes:

— no intra-transaction coordination

— rely on Atomic Broadcast (AB) rather than 2PC:
e deadlock-freedom schemes

 ABis (1 comm. step) faster than 2PC

AB ensures:

1. agreement on set of received messages:
 all or none (correct) processes deliver a message

2. agreement on the order of message delivery
3. no blocking scenarios despite process crashes

A Conventional AB-based Replication Scheme
“Non-voting Certification Protocol”

AB of T1's AB of T2’s

read & writeset read & writeset

Execution
Transaction T1
R1 |
Execution Validation&Commit Validation&Abort
Transaction T2 T1 T2
R2 | | -
Validation& Commit Validation&Abort
T1 T2
R3 | | [[1

* No communication overhead during xact execution:
» one AB per xact

* No distributed deadlocks

Respornse Tme nms

3

:

;

(=

Perfomance of AB-based replication schemes
(database world)

Standard Dstributed Locking

-

< 3 1 5
Number of Servers
l —
T Atomic Broadeast ——
09 b ALOR Comesie]
g .
- 08 -
E o6
j 0.5 e
04 f
03
s 10 15 20 25
Transactioos's

Figure 4: Equiprobable accesses

Commitied transaceions (%)

.-
LA

Fosponso Temg inms

Paostgres-R
>~- — >
1 2 3

1
— Atomic Beosd o
09} ‘--—\A_u_n-_‘:comn
08 -
07
06
0s
04
03
5 10 15 20 25
Transactionss

Figure 5: Hot spots

Cloud-TM Kick-off Meeting — Atomic
Broadcast Based Replication Schemes

18

How it actually looks like in a STM context

Atomic Broadcast

Validation &
Execution Commit

R1 [

Validation &
Commit
R2 []

* In STMs, transactions are often 10-100 times smaller than in DBs:
— the cost of AB is correspondingly amplified

* Optimistic scheme subject to risk of high abort rate:
— a posteriori certification
— transactions might be undefinitely aborted, e.g. long xact VS stream of smaller xacts

Boosting STM’s Replication

* I'll overview two recently proposed techniques:
— Asynchronous Lease Certification (ALC)[Middleware2010]

— Speculative Transactional Replication (STR)
[SPAA2010/ISPA2010]

 ALC and STR pursue the same goal

e ..though leveraging on antithetic approaches!

&

joint work with Nuno Carvalho and Luis Rodrigues

Key intuition Q'

e Exploit data access locality by letting replicas
dynamically establish ownership of memory regions:

— replace AB with faster coordination primitives:

* no need to establish serialization order among non-conflicting
transactions

— shelter transactions from remote conflicts

* Data ownership established by acquiring an
Asynchronous Lease
— mutual exclusion abstraction, as in classic leases...

— ...but detached from the notion of time:
* implementable in a partially synchronous system

Protocol’s overview

Transactions are locally processed

At commit, replicas checks if a lease on the accessed
data is already owned:
— NO

1. an Asynchronous Lease is established

2. the transaction is locally validated

3. if validation succeeds, its writeset is propagated using Uniform
Reliable Broadcast (URB):

— no ordering guarantee, 30-60% faster than AB

4. if validation fails, upon re-execution the node holds the lease:
— xact cannot be aborted due to a remote conflict!

— YES

e as above, but from point 2.

Asynchronous Lease Establishment

Basic Protocol

4 N\ () 4)
Lease Request Lease Ensured Apply
(AB) (URB) (URB)
P1 ¥ N
“— \\\ *4 l‘ 1\ *T-D
,/ ‘\ / Il ! \\\\,l /
\ \ / VAR

/ UV}] \/

/) N 1 A A

/ A 1\ / / \/ \

1/ / \|I ‘ / II \/| >

| P2 | \ A Y IR

\ \ ‘/ / // \(N\

\\ v I, AVAR

| | /) \

\ w I// VAN

\ 1 ‘\ l1 pd o

] Iy /
P3 L\ B A | : LU
Simple but sloppy:

If a node doesn’t own a lease, it incurs in the latency of 1 AB + 2 URB to commit a xact

Certification

Asynchronous Lease Establishment

Optimized Protocol
e N N e N
LeaseRequest LeaseFreed ApplyWS —> AB
(AB) (URB) (URB)
P > ----% URB
— A M 4 AT » AB&URB
/! Yo K Wt in parallel
// ‘)’ \] \A/ \/
/ " /A‘< /) \A‘ 0 Optimistic
P2 ¢) I(y | /I ‘ \I\ /A\‘ > deIiVery
— \\ Vo 1 , \I 2
\ \UI \‘/ /I // I< ,/ \‘
\ I [SR ™ Certification
\ o\ iy, o\ \
") I
P3 = C 1 A) — - r X ‘) > Certification
Y & Commit/
. Abort
(Basic)
e N . r N
| LeaseRequest (AB) | [ApplyWS (URB) | [LeaseRequest+WS+RS (AB) |
[LeaseFreed (URB) | | LeaseFreed (URB) |
P1 74 7 AN ¥ i A T 44
N |‘;. ". h \\\\,l /I N -_;. ".
/ VAN
Y 1 AN S
. -“ ; ‘ I/ I/ \\/A\ R ‘,‘ : ““
N l-“ / L A ‘ N -"
P2 4 T P2 |
. ") Y /)\ A
b "y AR X
!y I
b 11\
‘ i 0 ‘
P3 — P\ A > P3
(Optimization 1) (Optimization 2)

Benefits of ALC

If applications exhibit some access locality:
— avoid, or reduce frequency of, AB
— locality enhanceable via conflict-aware load balancing

Ensure transactions are aborted at most once due
to remote conflicts:

— essential to ensure liveness of long running
transactions

— benefic at high contention rate even with small
running transactions

Synthetic “Best case” scenario

Replicas accessing distinct memory regions

2500

2000 [

Throughput (commits/sec)

500

1500 |-

1000 |

Replicas

- 1L0)¢

Throughput (commits/sec)

Synthetic “Worst case” scenario

* All replicas accessing the same memory region

100 %

1600 ALC - throughput ALC - % abort -
CERT - throughput CERT - % abort
—
1400 w0 [B
\ ° —_—
1000 < 60% -
\ 3 /
800 \ e .
500 \ § 40 % /
N \\ /
20 % /
200 T /
0 0%
2 3 4 5 6 7 8 2 3 4 5 6 7

Replicas # Replicas

on av. =2 speedup due to reduced abort abort rate

Speed-up (ALC vs CERT)

Lee Benchmark

* Complex application with diverse workload:

5

4.5

4

3.5

3

2.5

2

15

1

— both long and short running transactions

e

-

/

2 3

4

5
Replicas

6

7

8

Abort rate (%)

30

25

20

15

10

5_,,

0

ALC

CERT ——

e

~

ey

e

2 3

4

5
Replicas

* long running transactions subject to livelock:

— aborted up to 10 times

Speculative
Transactional
Replication

[. Palmieri, F. Quaglia, N. Carvalho and L. Rodrigues

Beyond certification mechanisms

* Certification schemes achieve no overlapping
between transaction processing and replica
coordination:

— AB is started only after transaction ends!

 Can’t we do any better to minimize the
coordination costs?

YES WE CAN!

* Using optimistic deliveries + state machine:

— messages are received from the network long before their

1.

2.

final order is established by the AB

AB incoming transactions and execute on all nodes:

e RPC-like execution fashion of the xacts

start processing as soon as a xact is opt-delivered

+ overlapping between processing & communication

Certification Scheme

Speculative Scheme

Processing

Easier to say than to do....

1. in STM transactions can be VERY small !!

e -

...much ado for nothing! @

Easier to say than to do....

2. This only works if transactions execute
deterministically at all replicas

. classic concurrency controls (e.g. 2PL) are not deterministic

. existing solutions have several key limitations:
— a-priori knowledge of readsets/writesets:

. may force to large conflict over-estimation VERY POOR
— acquire ALL locks as xact begins _ CONCURRENCY!
. way more pessimistic than classic 2PL
time

-

T,

Opt-deI(TB‘l’ Opt-del(T,) FinaI-deI(TB)‘l’ ‘LFinaI-deI(TA)

blocked on T locks l
Tg: H holds locks till final order

ﬁ_.ggon

. 4

Easier to say than to do....

3. Vulnerable to mismatches between final and
optimistic delivery orders!

Opt-del(T;), Opt-del(T,) Final-del(T,) l ‘LFinaI-deI(TB) ime
| >

N sar

Ty

v

I

[

[

| blocked on T, locks M
i 0]anlnt

[

Tyt l holds locks till final order

~+=00 0
E:

\/,

@ Don’t be pessimistic...be speculative!

Opt-del(T,) Final-del(T,)
opt-de|(TB)‘l lFinaI-deI(TB)
v v time X

i abort(T’,)
T.: : abort(Tj)
A : commit(T,)

T

ﬁ ﬁ B

Speculatively explore multiple Serialization Orders (SO)

+ #SMhe camgnownfdeoebitl fronthmibdegs mob et direaliscHitbetuees
+ shdhee fnonorsttvasek evergrantgonflicts with every other, hardly the case in practice
+ #5@sdriochicbravsgthgbserves distinct snapshots depends on actual conflict graph

Problem formalization:
Optimal STR protocol

2={T,,...,T,}: set of Opt-delivered, but not yet TO-delivered, transactions
¥={T4,..., T,5...,T.L...,T.™}: set of fully executed speculative transactions

An optimal STR protocol must guarantee:
Consistency: each speculative xact is view-serializable
Non-redundancy: no two speculative xacts observe the same snapshot

Completeness: if system is quiescent (stops Opt- and TO-delivering messages)
then, for every permutation ri(2) of Z and for every T, in %, eventually there
is a T)in m(Z) that has observed the same snaphot generated by
sequentially executing all the transactions preceding T;

Filters out trivial solutions that blindly enumerate all permutations of 2

Shelters from any mismatch between optimistic and final delivery order

An Optimal STR Protocol
Core Technical Challenge

Design a provably optimal speculative concurrency
control:

« online algorithm driving the dynamic generation of speculative
transactions based on conflict patterns

Key ldea:

 each speculative xact maintains a Speculative Polygraph (SP)
. keeps track of conflicts developed with other xacts

. embeds a family of digraphs, each associated with an equivalent
serialization order for the transaction

. unlike traditional polygraphs accommodate for the coexistence of non-
conciliable speculative transactions

Performance speed-up
(20% reordering, only one SO explored)

no speculation List speculation

Response Time (usecs)

3000

2000

5000 10000 15000 20000 25000 30000 35000
Transactions per Second (\)

ALC vs SIR

Overlap comm. & proc. via speculation,
reduce abort via »/dundant computation

Bridle concurrency to exploit lighter
synchronization sche »es & reduce conflic

+ higher scalability intensj ping processing and

* upde

sSibly large
arriteset)

optimized for: different workloads

NO ONE-SIZE-FITS-ALL ‘Geiss

intensive

SO LUTI 0 N ! 3’ dependencies is

and ca pensive
ing

+ cansigni

locality

- can gener me ea
requests @Pwriteset)

- does ork for long rt
transactions

Conclusions & Future work

Overhead of conventional transactional
replication schemes is strongly amplified in STMs

ALC & STR:

— up to 10x performance boost via antithetic approaches
— optimized for different workloads

Future work:

— Workload-driven adaptive replication

— Partial replication

— Deployment on elastic cloud computing platforms

Thanks for the attention

Serialization Orders per transaction
Optimal protocol VS Blind speculation

5.00

I

" Blind Sp')eculation'

4.50

4.00

3.50

3.00

2.50

2.00

1.50

#Spec. Transactions / #0pt-Delivered Msgs

1.00 ¥—F—=5
2 4 6 8 10 12 14

Opt-Delivered Msgs (m)
Simulation study based on real (STM) workloads:
Optimal STR scheme: #S0s=[2.5-5] with 15 opt-delivered xacts
Blind enumeration: #50s=1,000,000 with 10 opt-delivered xacts

BACKUP SLIDES

Atomic Broadcast — how expensive?

- # comm. # forced
protocol resilience # msgs.)
steps writes
Sequencer based AB (i) Blocking 2 n+1 n
Two Phase Commit Blocking 3 3n n
Sequencer based AB(ii) Non-blocking 4 4n n
Three phase commit Non-blocking 5 5n n

step 1 step 2

An optimal STR Protocol
Classic Polygraphs

* P=(N,AB)
— N: set of vertexes, one per xact

— A: set of edges (Ti=>»Tj) tracking read-from relationships

T.: w(x,)
T;: r(xi)

— B: set of bipaths <(Tk=>»Ti),(Tj=»Ti)> serializing two writers with respect to a reader

T.: w(x;) G ®_)
T r(x) 6
T, wi(x,)

P is associated with a family of directed graphs, called D(P)
A history H is view serializable iff exists an acyclic direct graph in D(P(H))

Polygraphs don’t work with
speculative histories!

T, w(x) w(y) a a

T,: w(y) w(z)

T.% r(x,T,) r(y,T,) r(z,T,) Q Ttr(x,Ty) rly,T,) r(z,T,) G
equivalent to: e equivalent to: Q

T, T, T,° T,T, T,

The classic approach would merge the two above polygraphs,
yielding a cycle between T1 and T2!

S

Speculative polygraphs (SPs)

Basic intuition:

* keep into account history as perceived by each speculative transaction T/

* SP(T)) selectively merges the polygraphs of speculative transactions T* s.t.:
1. T*conflict, either directly or indirectly, with T/

2. at least a serialization order exists allowing both T* and T/ to exist

SP(TJ)=(N,A,B) where:
- N is a set of vertex, associated with (speculative) transactions
— Aisaset of merging edges (T @=T/) which merges SP(T,5) and SP(T/)

TS w(x?®) .
T):r(x) @ @Gﬁ %@%Q N
— Bis a set of asymmetric bipaths denoted as <(T,Y @=T)), (T/=2T)> @\ %@@ @% N
o B B
) N\NRC I
TS w(x®) 0@ @@
T): r(x) | < Q a N\ S

&
TV: v NS
o wix,) Q LS @%\
@@

Performance speed-up
(20% reordering, only one SO explored)

List
8000 T T T T T L
Opt - p=1

7000 b fo Opt-p=8 —o— i .
. | Aggro - p=1 -
% ~ Aggro-p=4 &
%_ 6000 || - Aggro-p=8 o b .
\GE_; : : : :
i= 5000
(O]
n
c
Q 4000
»n
(O}
o

3000

2000

5000 10000 15000 20000 25000 30000 35000
Transactions per Second (M)

Performance evaluation

* Based on fully fledged

p rOtOty p e Application
e Relies on a state-of-the- | \

art multi-versioned STM |(_ Doistibuted S Wrapper)
for local concurrency , ; o ;
reg U I d tl on il J<l—l> Replication

* Permits transparent Memsotanager oo

execution of legacy _i—i_

(d |St rl bUl'IOH agnOSth) | Group Communication Service |
STM applications

