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Roadmap

* Transactional Memories (TM)
e Distributed Transactional Memories (DTM)

* Data Replication in DTM
— State of the Art of transactional replication
— new challenges of DTMs...

— ...and two new protocols:
* Asynchronous Lease Certification
» Speculative Transaction Replications



The era of free performance gains is over
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* new CPU generation = free speed-up
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* Since 2003:
* CPU clock speed plateaued...
* but Moore’s law chase continues: 100

* Multi-cores, Hyperthreading...
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Multicore Software Scaling
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Unfortunately, not so simple...
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Real-World Multicore Scaling
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Parallelization and Synchronization
require great care...




Coarse grained parallelism?
simple but does not scale

Amdahl’s Law:
Speedup = 1/(ParallelPart/N + SequentialPart)

Pay for N = 128 cores
SequentialPart = 25%

As num cores grows the effect of 25%
becomes more accute

2.3/4,2.9/8, 3.4/16, 3.7/32....



Fine grained parallelsim?
easier to say than to do

* Simple grained locking is a conundrum:
— need to reason about deadlocks, livelocks, priority inversions:

* complex/undocumented lock acquistion protocols
* scarce composability of existing software modules

... and a verification nightmare:
* subtle bugs that are extremely hard to reproduce

* Make parallel programming accessible to the masses!




Transactional memories

 Key idea:

— hide away synchronization issues from the programmer

— replace locks with atomic transactions:
 avoid deadlocks, priority inversions, convoying
e way simpler to reason about, verify, compose
 deliver performance of hand-crafted locking via speculation (+HW support)

* Brief historic overview:

— Original idea dating back to early 90s
— Largely neglected until advent of multi-cores (~2003)
— Today among the most relevant research topics in the areas of:

e Computer architecture
* Programming Languages
* Operating Systems

* Distributed Computing

—

—

STRONG
INTERDISCIPLINARITY



TMs: where we are, challenges, trends

* Theoretical Aspects
— formalization of adequate consistency guarantees, performance bounds

e Software-based implementations (STM)

— performance/scalability improving, but overhead still unsatisfactory

* Hardware support

— very promising simulation-based results, but no support in commercial processors

* Language integration
— advanced supports (parallel nesting, conditional synchronization) are appearing...
— ...but lack of standard APIs & tools hampers industrial penetration

* Operating system support
— still inits infancy, but badly needed (conflict aware scheduling, transactional I/0O)

* Recent trends:
— shift towards distributed environments to enhance scalability & dependability



Distributed
Transactional Memories



An obvious evolution

e Real, complex STM based applications are
starting to appear:
— Apache Web Server
— FenixEDU
— Circuit Routing

e ...and are being faced with classic production
environment’s challenges:

— scalability
— high-availability DIReErilbnntad IriVIe

— fault-tolerance



Distributed STMs

* At the convergence of two main areas:
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2. Boost pertormance by batching any remote
synchronization during the commit phase

unique, challenging requirements!




Existing Distributed STMs

* \Very recent research area....

* Only a handful of existing prototypes:
— DMV [PPoPP,2006]

— DiSTM [ICPP, 2008]
— ClusterSTM [PPoPP, 2008]

DISTRIBUTION ONLY, NO REPLICATION:

NO SUPPORT FOR FAULT TOLERANCE!




Classic Synchronous
Transactional Replication Schemes

Single-master schemes: ., Multi-master schemes:
e primary runs all write xacts and e all replicas can process both
propagates updates to backups ¥ read&write xacts
't e« locks are acquired during xact’s
« backups exec read-only xacts i execution or at commit time

e 2PC ensures agreement on the
outcome of conflicting transactions
(and their atomicity)

+ simple + better load balancing & scalability
- scales poorly with write intensive i - high latency for intra-transaction lock
workloads ¥ acquisition

- distributed deadlocks grow cubically
with #nodes:

10x incr. nodes — 1000x incr.deadlocks



Atomic Broadcast-based
Transactional Replication Schemes

Multi-master schemes:

— no intra-transaction coordination

— rely on Atomic Broadcast (AB) rather than 2PC:
e deadlock-freedom schemes

 ABis (1 comm. step) faster than 2PC

AB ensures:

1. agreement on set of received messages:
 all or none (correct) processes deliver a message

2. agreement on the order of message delivery
3. no blocking scenarios despite process crashes



A Conventional AB-based Replication Scheme
“Non-voting Certification Protocol”

AB of T1's AB of T2’s

read & writeset read & writeset

Execution
Transaction T1
R1 |
Execution Validation&Commit Validation&Abort
Transaction T2 T1 T2
R2 | | -
Validation& Commit Validation&Abort
T1 T2
R3 | | [ [ 1

* No communication overhead during xact execution:
» one AB per xact

* No distributed deadlocks
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How it actually looks like in a STM context

Atomic Broadcast

Validation &
Execution Commit

R1 [

Validation &
Commit
R2 [ ]

* In STMs, transactions are often 10-100 times smaller than in DBs:
— the cost of AB is correspondingly amplified

* Optimistic scheme subject to risk of high abort rate:
— a posteriori certification
— transactions might be undefinitely aborted, e.g. long xact VS stream of smaller xacts



Boosting STM’s Replication

* I'll overview two recently proposed techniques:
— Asynchronous Lease Certification (ALC)[Middleware2010]

— Speculative Transactional Replication (STR)
[SPAA2010/ISPA2010]

 ALC and STR pursue the same goal

e ..though leveraging on antithetic approaches!



&

joint work with Nuno Carvalho and Luis Rodrigues



Key intuition Q'

e Exploit data access locality by letting replicas
dynamically establish ownership of memory regions:

— replace AB with faster coordination primitives:

* no need to establish serialization order among non-conflicting
transactions

— shelter transactions from remote conflicts

* Data ownership established by acquiring an
Asynchronous Lease
— mutual exclusion abstraction, as in classic leases...

— ...but detached from the notion of time:
* implementable in a partially synchronous system



Protocol’s overview

Transactions are locally processed

At commit, replicas checks if a lease on the accessed
data is already owned:
— NO

1. an Asynchronous Lease is established

2. the transaction is locally validated

3. if validation succeeds, its writeset is propagated using Uniform
Reliable Broadcast (URB):

— no ordering guarantee, 30-60% faster than AB

4. if validation fails, upon re-execution the node holds the lease:
— xact cannot be aborted due to a remote conflict!

— YES

e as above, but from point 2.



Asynchronous Lease Establishment

Basic Protocol
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If a node doesn’t own a lease, it incurs in the latency of 1 AB + 2 URB to commit a xact

Certification




Asynchronous Lease Establishment

Optimized Protocol
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Benefits of ALC

If applications exhibit some access locality:
— avoid, or reduce frequency of, AB
— locality enhanceable via conflict-aware load balancing

Ensure transactions are aborted at most once due
to remote conflicts:

— essential to ensure liveness of long running
transactions

— benefic at high contention rate even with small
running transactions



Synthetic “Best case” scenario

Replicas accessing distinct memory regions
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Synthetic “Worst case” scenario

* All replicas accessing the same memory region
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Speed-up (ALC vs CERT)

Lee Benchmark

* Complex application with diverse workload:
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* long running transactions subject to livelock:

— aborted up to 10 times




Speculative
Transactional
Replication

[ . Palmieri, F. Quaglia, N. Carvalho and L. Rodrigues




Beyond certification mechanisms

* Certification schemes achieve no overlapping
between transaction processing and replica
coordination:

— AB is started only after transaction ends!

 Can’t we do any better to minimize the
coordination costs?



YES WE CAN!

* Using optimistic deliveries + state machine:

— messages are received from the network long before their

1.

2.

final order is established by the AB

AB incoming transactions and execute on all nodes:

e RPC-like execution fashion of the xacts

start processing as soon as a xact is opt-delivered

+ overlapping between processing & communication

Certification Scheme

Speculative Scheme

Processing




Easier to say than to do....

1. in STM transactions can be VERY small !!

e -

...much ado for nothing! @



Easier to say than to do....

2. This only works if transactions execute
deterministically at all replicas

. classic concurrency controls (e.g. 2PL) are not deterministic

. existing solutions have several key limitations:
— a-priori knowledge of readsets/writesets:

. may force to large conflict over-estimation VERY POOR
— acquire ALL locks as xact begins _ CONCURRENCY!
. way more pessimistic than classic 2PL
time

-

T,

Opt-deI(TB‘l’ Opt-del(T,) FinaI-deI(TB)‘l’ ‘LFinaI-deI(TA)

blocked on T locks l
Tg: H holds locks till final order

ﬁ_.ggon
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Easier to say than to do....

3. Vulnerable to mismatches between final and
optimistic delivery orders!

Opt-del(T;), Opt-del(T,) Final-del(T,) l ‘LFinaI-deI(TB) ime
| >

N sar

Ty

v
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| blocked on T, locks M
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\/,

@ Don’t be pessimistic...be speculative!

Opt-del(T,) Final-del(T,)
opt-de|(TB)‘l lFinaI-deI(TB)
v v time X

i abort(T’,)
T.: : abort(Tj)
A : commit(T,)

T

ﬁ ﬁ B

Speculatively explore multiple Serialization Orders (SO)

+ #SMhe camgnownfdeoebitl fronthmibdegs mob et direaliscHitbetuees
+ shdhee fnonorsttvasek evergrantgonflicts with every other, hardly the case in practice
+ #5@sdriochicbravsgthgbserves distinct snapshots depends on actual conflict graph




Problem formalization:
Optimal STR protocol

2={T,,...,T,}: set of Opt-delivered, but not yet TO-delivered, transactions
¥={T4,..., T,5...,T.L...,T.™}: set of fully executed speculative transactions

An optimal STR protocol must guarantee:
Consistency: each speculative xact is view-serializable
Non-redundancy: no two speculative xacts observe the same snapshot

Completeness: if system is quiescent (stops Opt- and TO-delivering messages)
then, for every permutation ri(2) of Z and for every T, in %, eventually there
is a T)in m(Z) that has observed the same snaphot generated by
sequentially executing all the transactions preceding T;

Filters out trivial solutions that blindly enumerate all permutations of 2

Shelters from any mismatch between optimistic and final delivery order



An Optimal STR Protocol
Core Technical Challenge

Design a provably optimal speculative concurrency
control:

« online algorithm driving the dynamic generation of speculative
transactions based on conflict patterns

Key ldea:

 each speculative xact maintains a Speculative Polygraph (SP)
. keeps track of conflicts developed with other xacts

. embeds a family of digraphs, each associated with an equivalent
serialization order for the transaction

. unlike traditional polygraphs accommodate for the coexistence of non-
conciliable speculative transactions



Performance speed-up
(20% reordering, only one SO explored)
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ALC vs SIR

Overlap comm. & proc. via speculation,
reduce abort via »/dundant computation

Bridle concurrency to exploit lighter
synchronization sche »es & reduce conflic

+ higher scalability intensj ping processing and

* upde

sSibly large
arriteset)

optimized for: different workloads
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Conclusions & Future work

Overhead of conventional transactional
replication schemes is strongly amplified in STMs

ALC & STR:

— up to 10x performance boost via antithetic approaches
— optimized for different workloads

Future work:

— Workload-driven adaptive replication

— Partial replication

— Deployment on elastic cloud computing platforms



Thanks for the attention



Serialization Orders per transaction
Optimal protocol VS Blind speculation
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Simulation study based on real (STM) workloads:
Optimal STR scheme: #S0s=[2.5-5] with 15 opt-delivered xacts
Blind enumeration:  #50s=1,000,000 with 10 opt-delivered xacts



BACKUP SLIDES



Atomic Broadcast — how expensive?

- # comm. # forced
protocol resilience # msgs. )
steps writes
Sequencer based AB (i) Blocking 2 n+1 n
Two Phase Commit Blocking 3 3n n
Sequencer based AB(ii) Non-blocking 4 4n n
Three phase commit Non-blocking 5 5n n

step 1 step 2




An optimal STR Protocol
Classic Polygraphs

* P=(N,AB)
— N: set of vertexes, one per xact

— A: set of edges (Ti=>»Tj) tracking read-from relationships

T.: w(x,)
T;: r(xi)

— B: set of bipaths <(Tk=>»Ti),(Tj=»Ti)> serializing two writers with respect to a reader

T.: w(x;) G ®_)
T r(x) 6
T, wi(x,)

P is associated with a family of directed graphs, called D(P)
A history H is view serializable iff exists an acyclic direct graph in D(P(H))



Polygraphs don’t work with
speculative histories!

T, w(x) w(y) a a

T,: w(y) w(z)

T.% r(x,T,) r(y,T,) r(z,T,) Q Ttr(x,Ty) rly,T,) r(z,T,) G
equivalent to: e equivalent to: Q

T, T, T,° T,T, T,

The classic approach would merge the two above polygraphs,
yielding a cycle between T1 and T2!

S



Speculative polygraphs (SPs)

Basic intuition:

* keep into account history as perceived by each speculative transaction T/

* SP(T)) selectively merges the polygraphs of speculative transactions T* s.t.:
1. T*conflict, either directly or indirectly, with T/

2. at least a serialization order exists allowing both T* and T/ to exist

SP(TJ)=(N,A,B) where:
- N is a set of vertex, associated with (speculative) transactions
—  Aisaset of merging edges (T @=T/) which merges SP(T,5) and SP(T/)

TS w(x?®) .
T):r(x) @ @Gﬁ %@%Q N
—  Bis a set of asymmetric bipaths denoted as <(T,Y @=T)), (T/=2T)> @\ %@@ @% N
o B B
) N\NRC I
TS w(x®) 0@ @@
T): r(x) | < Q a N\ S

&
TV: v NS
o wix,) Q LS @%\
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Performance speed-up
(20% reordering, only one SO explored)
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Performance evaluation

* Based on fully fledged

p rOtOty p e Application
e Relies on a state-of-the- | \

art multi-versioned STM  |(_ Doistibuted S Wrapper )
for local concurrency , ; o ;
reg U I d tl on il J<l—l> Replication

* Permits transparent Memsotanager oo

execution of legacy _i—i_

(d |St rl bUl'IOH agnOSth) | Group Communication Service |
STM applications




