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Autonomic computing: the inception

- “Dealing with complexity is the single most important
challenge facing the IT industry”, IBM VP Research, 2001
- 60%-75% of databases’ TCO in spentin administration
- 40% outages caused by (skilled) humans’errors
- 30%-50% of IT budget spent preventing or recovering from crashes
- IT labour costs exceed equipment costs by up to 18:1

=

P4 1.3GHZ ~500x less transistors than 2018 Xeon
High-end system specs: 2566 MB RAM, 40 GB HD




Autonomic computing: the inception

- “Dealing with complexity is the single most important
challenge facing the IT industry”, IBM VP Research, 2001

- Solution inspired to autonomic nervous system:
- free conscious brain from low-level tasks (breathing, heating, etc...)




Autonomic computing: the inception

- “Dealing with complexity is the single most important
challenge facing the IT industry”, IBM VP Research, 2001

- Solution inspired to autonomic nervous system:
- free conscious brain from low-level tasks (breathing, heating, etc...)

- Tame IT complexity via self-*:

- express system’s behavior via high-level policies
- pursue these goals via automatic control loops

MEASURE




What happened next?



I'T complexity has kept on spiraling

GP-GPU & Manycores: i \ ~

Commercial clouds:
elasticity

\) x

heterogeneity

Multicores (r)evolution:
concurrency
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Today, autonomic computing is
a key tool to cope with IT complexity
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Autonomic manager

éManaged element 5

Surge of IT complexity challenges
our ability to model their behavior




Focus of
this talk ~~




Approaches to (performance) modelling
of computing systems

Black Box White Box




Black box modelling

I
Training input :

Xy | -
' . y' = f(X)
Machine Learner +}— Stat'St'C?| Model
Traini y=F(x)
raining output :
{yi = f(Xi)} |

Query x'
PROS CONS
High accuracy in areas already * Poor accuracy in non-observed
observed (interpolation) areas (extrapolation)
No knowledge on system’s * Curse of dimensionality

internals » Extensive training phases



White box modelling

* Exploit knowledge on internal system dynamics

<> model dynamics analytically or via simulation

pali e

_,Q__,

Q_
— [ ()
PROS LI

CONS

* Minimal or no learning phase * Simplifying assumptions
» reduced accuracy

* Knowledge of system internals

e Good extrapolation power
P P often unavailable



Key Observation & Questions

Pros of white-box are cons of black-box & vicev.

'l

Can we achieve the best of the two worlds?

('l

Can black and white box modelling be reconciled ?



Gray box modeling

* Combine WB and BB modeling

* Enhancerobustness & reduce cost
— Lower training time & cost thanks to White box models

— Incremental learning thanks to Black box techniques



Gray box modeling

* | will presentthree methodologies:

— | T

Divide and conquer Bootstrapping

‘ Boosting




Case study:
Self-tuning of Transactional Data Grids



Infinispan

* In-memory transactional data-grid:
— Data scattered across elastic distributed platform
* Full vs partial replication

— Transactional --ACI(D)— manipulation of data

— Pervasive support for dynamic reconfiguration:

 elastic scaling, data placement, replication protocol,
locking strategy,...

Cloud ™
‘ redhat o for e G



Transactional Data Grids: performance
NfinisCoN

Committed Transactions/sec

2 3 4 5 6 7 8 9 10

Number of nodes
RG - Small —¢—  RG - Large —8&— TPC-C —6—

* Heterogeneous, nonlinear scalability trends!



Network RTT Latency (microsec)

Factors limiting scalability

Commit Probability

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

Number of nodes Number of nodes
RG - Small —¢—  RG - Large —B— TPC-C —&— RG - Small —¢—  RG - Large —B— TPC-C —e—
Network latencyin Aborted transactions

commit phase because of conflicts



Transactional Data Grids:
a forge of self-tuning problems

Scale up and/or scale out [SEAMS18, ASPLOS16, ICPE15]

— how many machines should my DTM be provisioned with?
— how many threads should be active on each machine?

Which distributed synchronization scheme [TPDS14]

— single- vs multi-master, optimistic vs pessimistic

Tuning of data replication and group communication layers:
— quorum sizes [Middlewarel5], message batching [SASO12]

Data placement [TAAS14]:

— where should data and code be placed to maximize locality?



Gray box modeling

* | will presentthree methodologies:

Divide and conquer

Boosting

/\

Bootstrapping




Divide and conquer

@ Modular approach
— WBM of what is observable/easy to model
— BBM of what is un-observable or too complex

* Reconcile their output in a single function

®Higher accuracy in extrapolation via WBM

O Apply BBM only to sub-problem
— Less features, lower training time & cost



Self-tuning (data grids) in the cloud:
the partial observability problem

* Important to model network-bound ops but...

© Cloud hides detail about network

— No topology info
— No load info
— Additional overhead of virtualization layer

@BBI\/I of network-bound ops performance
— Train ML on the target platform



TAS/PROMPT maas14 Mascots14]

e Analytical modeling (queuing theory based)

— Concurrency control scheme
e encounter time vs commit time locking

— Replication protocol
e multi-master (2PC) vs single-master (Primary Backup)

— Replication scheme
* Partial vs full

— CPU

 Machine Learning (Decision tree regressor)
— Latency network bound operations (prepare, remote gets)
— Inputs: operation rates, #nodes involved in commit



AM and ML coupling

O At ML training time, all features are known
‘1 At query time they are NOT!

YEXAMPLE
* Current config: 5 nodes, full replication
— Contactall 5 nodes at commit

* Query config: 10 nodes, partial replication

— How many contacted nodes at commit?



Model resolution

f@AM can provide (estimates of) missing input

Recursive coupling scheme

ML predicts network latencies based on AM inputs

AM predicts KPIs andates inputs for ML



Commit Probability
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Como_parison with Pure ML
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* YCSB (transactified) workloads while varying
— # operations/tx
— Transactional mix
— Platform Scale & replication degree



Gray box modeling

* | will presentthree methodologies:

— |

Divide and conquer

Boosting

Bootstrapping




Bootstrapping [ICPADS15, SEAMS18]

:@/‘Obtain zero-training-time ML via initial AM
1. Initial (synthetic) training set of ML from AM

1 1 1 : o V4
2. Retrain periodically with “real” samples
Analytical Boostrapping Machine Gray box trS:Jr:;enstet I}lzi:llze G;?;cll);x
model training set learning model : % &
Sampling of Model construction New data <
the Parameter Space . come in

(1) Boostrapping phase (2) Model update



How many synthetic samples?
;4 10000
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Important tradeoff

— Higher # - lower fitting error over the AM output
— Lower# -2 higher density of real samplesin dataset



How to update the
synthetic training set?



Real vs AM function

Real function

AM function




Real vs learnt

* Assuming enough point to perfectly learn AM

o Synthetic sample

ML function




Merge

* Add real samples to synthetic
® Real sample




Merge

* Problem: same/near samples have diff. output




Replace Nearest Neighbor (RNN)

* Remove nearest neighbor




Replace Nearest Neighbor (RNN)

* Preserve distribution...

N




Replace Nearest Neighbor (RNN)

e ... but may induce alternating outputs




Replace Nearest Region (RNR)

* Add real and remove synth. samples in a radius




Replace Nearest Region (RNR)

* R =radius defining neighborhood




Replace Nearest Region (RNR)

* R =radius defining neighborhood




Replace Nearest Region (RNR)

e Skew samples’ distribution

hl




Replace Nearest Region 2 (RNR2)

* Replace all synthetic samples in a radius R




Replace Nearest Region 2 (RNR2)

* Maintain distribution, piecewise approximation




Welighting

* Give more relevance to some samples

O Fit better the model around real samples

— “Trust” real samples more than syntheticones
— Useful especially with Merge-based updates

O Too high can cause over-fitting!

— Learner fails to generalize



Evaluation

e Case studies

— Response time in Total Order Broadcast (TOB)
* building block at the basis of many data grids
e 2-dimensional yet highly nonlinear perf. function

— Throughput of Infinispan data grid

e 7-dimensional performance function



Accuracy

Merge #F RNR2-0.01 @ WBM— BBM»

MAPE

% Training set % Training set
TOB Infinispan

Best accuracy than individual B&W-box models

— AM prediction corrected as new data is acquired
— Same accuracy of BB with far less training data (>5x)



Batching level

Visualizing the correction

BASE AM

5000 10000
Messages arrival rate

l 1

0.8
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Absolute Percentage Error

BOOTSTRAPPED ML (70% TS)
i 1
- 0.8

| 0.6
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0.2

Absolute Percentage Error

0 5000 10000
Messages arrival rate

PURE ML (70%TS)
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Absolute Percentage Error



Gray box modeling

* | will presentthree methodologies:

— | T

Divide and conquer

Boosting

Bootstrapping




Boosting [IcPE15, Netys13]

f@learning the error of a model on a function may
be simpler than learning the function itself

* Chain composed by AM + cascade of ML
* ML, trained over residual error of AM

* ML, i>1 trained over residual error of ML, ,



Training and Querying

Training
Original
training set

<Xy, Y1
<Xy, Y»>

<X Yn>




Training and Querying

Training
Original
training set Residual error of AM
<X1, y1> <X1, Y1i- AM(X1)>
<x2, y2> <X2, Vz - AM(X2)>

> AM

<X, V> <X, Yn— AM(x,)>




Original
training set

<Xy, Y1
<Xy, Y»>

<X Yn>

Training and Querying

Training

Residual error of AM

=

AM |

<Xi, Y1- AM(x)>
<Xy, Y2 - AM(x,)>

<X, Yn,— AM(x,)>

[0

ML,

Residual error of ML,

=

<Xy, Y1- ML(x4)>
<X;, Y2— MLy(x;)>

<Xny Yn— MLl(Xn)>

=



Original
training set

<Xy, Y1
<Xy, Y»>

<X Yn>

Training and Querying

Training

Residual error of AM

=

AM

)

<Xi, Y1- AM(x)>
<X;, Y2 - AM(x,)>

<X, Yn,— AM(x,)>

[

L

> ML,

Query
F(x) = AM(x) + ML, (x)+...+ML_ (x)

Residual error of ML,

=

<Xy, Y1- ML(x4)>
<Xy, Y2— MLy(x;)>

<Xny Yn— MI—l(Xn)>

=



Evaluation

HyBoost ¢ WBM — BBM ¢

% Training Set
Infinispan

* Chain composed by AM + Decision Tree



Concluding remarks



Time to reconcile
black-box & white-box modeling

 White and black box modelling are not
antithetic techniques!

* They can be effectively used in synergy
— Increased predictive power via analytical models
— Incremental learning via black box models

* Presentedthree gray box methodologies:
— Divide and conquer, Bootstrapping, Boosting
— Use case: transactional data-grids in the cloud



Open questions (1/4)

* The 3 presented methodologies are only
some possible approaches

Divide and conquer l Bootstrapping

Boosting
 Design space is largely unexplored

 Any other way of using white-box models
and machine learning in synergy?



Open questions (2/4)

 Convergence of model coupling in divide
and conquer schemes

 Fixed point recursion AM predicts input
vs iterative schemes parameters for ML

» Sufficient/necessary

conditions for

convergence? ML predicts input
parameters for AM




Open questions (3/4)

* Which gray box modelling
methodology to choose?

 (Can we infer the best gray box
technique by analyzing the error
distribution of the AM model?



Open questions (4/4)

 White box models are normally
understandable by humans

* Not necessarily true for gray-box models, e.g.:
— bootstrapping a Neural Network with an AM
— boostingan AM with a decision tree

e Canwedistilla “corrected” white-box model
that preserves human-readability?



THANK YOU

Questions?
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