
Towards Distributed ���
Software Transactional Memories	

	

	

Paolo Romano	

INESC – ID, Lisbon, Portugal	

	

joint work with: Nuno Carvalho, Maria Couceiro, Luís Rodrigues	

	

FCT / Universidade Nova de Lisboa	

1 April, 2009	

Roadmap	

•  (Software) Transactional Memories	

-  What, how and why?���
	

•  FénixEDU & the PASTRAMY Project���
	

•  Overview of Database Replication Schemes���
	

•  STM Replication:	

-  Critical issues 	

-  Some of our current research lines���

	

•  Conclusions	

(Software) Transactional Memory:���
What, how, why ?	

What is it? ���
(Software) tool aimed at simplifying development of concurrent
programs by leveraging on the abstraction of atomic, isolated
transactions. ���
	

How is it achieved?���
Transparently detecting conflicting memory accesses and aborting
non-serializable transactions. ���
	

Why all this ado of late?���
Multi-core CPUs are nowadays mainstream, amplified interest in
easing parallel programming	

The FénixEDU System	

	

• Open source project supporting a wide range of
activities of an university e-campus:	

•  already used in ~10 universities	

•  three-tier J2EE Web application	

•  first production system to rely on STMs	

	

•  Real-life system raising challenging research
issues!	

High level ���
FénixEDU Architecture	

Application Server	

•  in-memory object oriented domain model	

•  synchronization of concurrent transactions via JVSTM: 	

•  a multi-versioned, lock-free STM���
	

Back-end Database ���
	

•  ensures data durability	

•  overcomes appl. servers' memory capacity constraints	

Current ���
System ���

Bottleneck	

Pastramy Project	

•  Collaborative project involving:	

•  INESC-ID	

•  University of Minho	

•  University of Lisboa ���
	

•  Goals: improve performance and reliability of the FènixEDU
system by means of:	

•  efficient transactional memory replication	

•  ad-hoc, lightweight storage system 	

Our Research Focus	

• Our focus is on designing high performance
replication schemes for STM systems���
	

Key Observation	

• Databases and TMs share the same fundamental
notion of atomic transaction...	

•  ...database replication schemes represent a natural
starting point for STM replication as well!	

An Overview of ���
Database Replication Schemes	

•  Classic (eager) database replication relies on:	

-  Distributed Two Phase Locking (2PL)	

-  Two Phase Commit	

•  Suffer of large communication overheads:	

-  1 round-trip per data access (to acquire locks)	

-  2 round-trips to commit	

•  The global serialization order is based on the order of locks’
acquisition:	

-  High probability of distributed deadlocks as system scales up���
	

Eager Database Replication	

•  Rather than relying on distributed locking to tentatively determine
a global serialization order, more recent solutions rely on Atomic
Broadcast (AB)	

•  Atomic Broadcast (key properties):	

•  If a participant delivers a message, then all correct participants will eventually deliver it
	

 	

 	

 	

 	

 	

 	

(Uniform Agreement)	

•  If some participant delivers message A after message B, then every participant delivers B only
after it has delivered A ���
	

 	

 	

 	

 	

 	

 	

 	

(Uniform Total Order)	

Atomic Broadcast Based ���
DB Replication Schemes (i)	

•  Rather than relying on distributed locking to tentatively determine
a global serialization order, more recent solutions rely on Atomic
Broadcast (AB)	

•  Atomic Broadcast (key properties):	

•  If a participant delivers a message, then all correct participants will eventually deliver it
	

 	

 	

 	

 	

 	

 	

(Uniform Agreement)	

•  If some participant delivers message A after message B, then every participant delivers B only
after it has delivered A ���
	

 	

 	

 	

 	

 	

 	

 	

(Uniform Total Order)	

Atomic Broadcast Based ���
DB Replication Schemes (i)	

Whether correct or faulty: AB encapsulates fault tolerance guarantees	

Two main approaches:	

	

Atomic Broadcast Based ���
DB Replication Schemes (ii)	

 	

	

 	

 Certification	

1. optimistically run the transaction on a
single node	

2. AB the transaction read- and write-set���
	

3. validate the transactions in the order
defined by the AB	

State Machine	

	

1. AB the transaction “code” (e.g. stored
procedure) ���
	

2. upon AB-delivery: enqueue a lock
requests for any data item to be accessed���
	

3. each node runs the transaction only
after it acquires all its locks	

AB-based Replication:���
Pros & Cons	

	

- freq. abort in conflict intensive
workloads	

+ not deterministic replicas	

+ no a-priori knowledge of xacts' read-/
write-sets	

+ better scale up (potentialities) at high
update rates	

	

State Machine	

VS Classic Eager Schemes:	

	

+ Deadlock-free approaches	

- Single coordination phase	

	

	

+ never aborts ���
	

- requires deterministic replicas���
	

- a-priori knowledge of xacts' read-/write-
set���
	

- all replicas fully execute write
transactions	

Certification	

- AB is a “relatively” expensive coordination mechanism...	

How expensive is AB in
practice?	

•  Hard to give a totally general answer given the huge variety of
existing approaches.... ���
	

•  Trade-off between latency and communication complexity:	

•  Token-based 	

 	

 	

 	

Latency: O(n) 	

| Msgs: O(n)	

•  Sequencer-based 	

 	

 	

Latency: 3 	

 	

| Msgs: O(n2) ���
	

•  AB performance affected by a number of additional assumptions/
factors, e.g.:	

•  Accuracy of failure detection 	

•  Clock skew among processes	

•  Message size	

 message	

 ordering	

A simple, low latency AB algorithm	

Sequencer based algorithm, 3 nodes, failure-free run	

P1 (sequencer)	

P2	

P3	

AB(m)	

sequencer���
assigns	

total order	

message	

diffusion	

distributed���
acknowledgment	

(ensures uniformity of
both m and seq)	

m	

m	

seq	

 seq	

ACK���
(m,seq)	

ACK���
(m,seq)	

ACK���
(m,seq)	

ACK���
(m,seq)	

…and its performances in a LAN	

Sequencer based implementation, 3 nodes, FastEthernet, low load, no failures	

Critical Issues���
for STM Replication	

•  >70% of xacts are 10-100
times shorter in STMs:	

•  correspondingly larger
impact of AB latency!	

•  Transactions' lifetime
spans a much wider range
in STMs:	

•  no “one size fits all”
solutions!	

Some of our ���
current research lines	

	

���
State machine replication	

Overlap coordination and processing phases by executing
transactions in speculative serialization orders	

Certification based approaches	

Reduce latency of AB by leveraging the notion of (weak) mutual
exclusion	

	

Some of our ���
current research lines	

	

���
State machine replication	

Overlap coordination and processing phases by executing
transactions in speculative serialization orders	

Certification based approaches	

Reduce latency of AB by leveraging the notion of (weak) mutual
exclusion	

	

Exploiting mutual exclusion ���
in certification based replication	

•  Allow nodes to obtain exclusive access to a set of frequently accessed
data items	

•  The “owner” of a set of data items: 	

–  is sheltered from conflicts with remote transactions:	

•  reduce aborts affecting certification based approaches by bridling concurrency	

–  can play the “equivalent” role of a sequencer in AB:	

•  shortcutting message diffusion phase (latency drops to 2 comm. steps)	

	

Key Challenges	

•  distributed mutual exclusion is solvable only assuming very restrictive
synchrony assumptions	

•  minimize additional overhead for critical section acquisition	

•  prevent distributed deadlocks	

Fault-Tolerant Distributed ���
Mutual Exclusion Problem	

•  Model	

è  n>1 processes	

è  a single, indivisible resource that can only support one process at a time	

è  processes can fail by crashing (fail-stop)	

è  distributed processes communicating via message passing	

•  Problem. Regulate access to the resource to ensure:	

Safety:	

 At any time at most one process is using the resource	

Eventually, all correct processes must access the resource	

Liveness:	

Classical Synchrony Models	

l  Synchronous	

-  A priori known bounds on communication latency, relative process
speeds and clock drift.	

l  Asynchronous	

-  No bounds exist at all	

l  Partial Synchrony	

-  Bounds exist but are not known in advance 	

-  Bounds are known, but only hold after some unknown time (Global
Stabilization Time, or GST)	

Impossibility Result	

•  In the presence of faults, the Distributed Mutual Exclusion problem is
solvable only in a synchronous system	

���
Why?

Distributed Mutual Exclusion intimately related to the notion of time:

Practical consequences of this theoretical result:
l  Real distributed systems are all but synchronous (partitions,overloads)

l  Synchronous model can be “approximated” by assuming conservative time-
out values, but with :

-  Significant performance drawbacks (large fail-over times)
-  Vulnerability windows can only be statistically minimized, not excluded

Safety:	

 At any time at most one process is using the resource	

But what if the shared resource���
is replicated?	

l  The DME problem considers the case of fail-prone distributed
processes accessing a single unfailable resource...	

-  ...but in real life processes are not the only ones to fail...	

-  ...the shared resource can fail as well !!!���
	

l  In real life, e.g. in STMs, the shared resource can be:	

-  physically replicated across the processes	

-  required to appear as a single resource accessible in mutual exclusion	

The Weak Mutual Exclusion Problem	

l  Is the problem of mutual exclusion in the access to a replicated
shared resource as hard as classical ME?	

-  is it solvable in a more relaxed model?	

-  what is the minimum level of synchrony needed?	

-  ...but first of all how to formally define it?	

l  3 key ingredients differentiating from classic DME:	

1.  Explicitly modelling the interactions with the resource	

2.  Bound to the notion of logical time, rather than global time	

3. Admit the possibility of being ejected by the critical section	

System Model - I	

node i	

	

 tr
y	

	

 cr
it[

C
S_

id
]	

	

	

issueO
p���

[op,C
S_id]	

	

 	

ou

tc
om

e���
[r

es
,C

S_
id

]	

	

exit[C
S_id]	

 	

 re

m
[C

S_
id

]	

stub (Weak Mutual Exclusion algorithm)	

	

	

invoke[op]	

	

 	

re

sp
on

se
[o

p,
re

s]	

user	

local replica of the resource	

communicates with other
processes	

Well behaved run – no ejection from mutual exclusion	

System Model - II	

node i	

stub (Weak Mutual Exclusion algorithm)	

user	

local replica of the resource	

	

 	

ej

ec
te

d���
[C

S_
id

]	

Run incurring an ejection from mutual exclusion	

	

 tr
y	

	

 cr
it[

C
S_

id
]	

	

	

issueO
p���

[op,C
S_id]	

	

 	

ou

tc
om

e���
[r

es
,C

S_
id

]	

	

	

invoke[op]	

	

 	

re

sp
on

se
[o

p,
re

s]	

	

	

issueO
p ���

[op’,C
S_id]	

Weak Mutual Exclusion (informal definition)	

It is possible to reorder the global execution history so to:	

•  yield an equivalent sequential history, S, in which all successful operations
appear executed in a sequence of critical sections (CS)	

•  preserve the local order of events at each single process	

•  ensure that the order of acquisition of the CSs in S is consistent with the
order of acquisition of not overlapping CSs in the original history	

One Copy Serializability���
S is equivalent to a sequential execution on a not replicated resource	

Well-formedness. ���
Rules out malformed interactions, e.g. duplicate mutual exclusion request...	

The Weak Mutual Exclusion Problem ���
Specification: Safety Properties	

Starvation-Freedom. ���
A correct process wishing to enter the CS, eventually enters the CS, if no
other process stays forever in its CS���
	

CS-Release Progress.���
No correct process blocks when releasing the CS���
	

Operation Progress. ���
If a correct process issues an operation, it eventually gets an outcome, and
eventually all the operations it issues succeed.	

The Weak Mutual Exclusion Problem ���
Specification: Liveness Properties	

The Weak Mutual Exclusion Problem ���
Solvability Results	

• Good news:	

• We proved that the WME problem is solvable in a
partially synchronous system model...	

•  ...and precisely quantified the minimum necessary
degree of synchrony based on Chandra-Tueg’s failure
detection hierarchy���
	

•  So, how to exploit WME in a replicated STM?	

	

WME-based Certification	

1) Partition data into conflict classes	

2) Process update xacts at a single replica	

3) At commit time, acquire locks (unless not already owned) on the
accessed conflict classes:	

•  AB lock request, piggybacking transaction read-/write-sets:	

•  Acquiring lock based on AB’s total order guarantees deadlock-freedom and
consistent evolution despite failure (suspicions)	

•  No additional messages for lock acquisition	

If the locks are locally already granted:	

•  Lock owner can globally impose its local xact serialization order 	

	

(1) avoiding remote conflicts	

	

(2) saving one communication step wrt AB	

WME-based Certification	

 message ���
diffusion & ordering	

P1 (lock owner)	

P2	

P3	

AB(m)	

Locked data is guaranteed to be accessed in mutual exclusion���
(unless the lock owner is ejected due to a failure suspicion)	

distributed���
acknowledgment	

(ensures uniformity of
both m and seq)	

m, ���
seq	

m, ���
seq	

ACK���
(m,seq)	

ACK���
(m,seq)	

ACK���
(m,seq)	

ACK���
(m,seq)	

Lock owner can ���
unilaterally impose order	

Only required to���
 ensure uniformity	

Some of our ���
current research lines	

	

���
State machine replication	

Overlap coordination and processing phases by executing
transactions in speculative serialization orders	

Certification based approaches	

Reduce latency of AB by leveraging the notion of (weak) mutual
exclusion	

	

Problem	

WME-based certification scheme works well:	

•  If there is some data locality:	

• or lock ownership may start to be “ping-ponged”	

•  If the conflict probability is not very high:	

•  absence of remote conflicts only after the lock is acquired���
	

•  In these scenarios it may be worth to rely on an
abort-free state machine replication approach	

Key Idea	

Overcome two main problems of state machine replication
approach:	

•  A-priori knowledge of transaction’s read-/write-sets	

•  Reduce the impact of AB’s latency on system’s performance���
	

How?	

•  Exploiting atomic broadcast with optimistic delivery	

•  Using extra CPU cycles to explore alternative serialization
orders	

Optimistic Atomic Broadcast	

Atomic broadcast with two delivery indications:	

• Optimistic delivery. Early estimate of the final
total order:	

• Typically available after a single communication step	

• Possibly contradicted by final delivery	

• e.g., local network receive order���
	

• Final delivery. Agreed (uniform) total order	

State Machine Replication	

•  A priori knowledge of read-/write-sets required to ensure deterministic scheduling of
concurrent conflicting transactions:	

	

- hard to exactly determine a priori, normally coarsely over-estimated...	

	

•  Relatively large AB latency may cause severe resource underutilization	

Non-speculative use of ���
Optimistic Atomic Broadcast 	

Optimistic delivery���
giving erroneous indications...	

Speculative ���
Transaction Processing	

The need for exploring alternative speculative serialization orders is determined depending on the
actual conflicts generated by the execution of the opt-delivered transactions:	

•  Without any a-priori knowledge on their read-/write-sets	

Speculative ���
Transaction Processing	

Challenges	

1.  Determine the set of alternative serialization orders (s.o.) to be explored

based on run-time determined transactions’ conflict relations:	

•  note that a transaction’s read-/write-sets may change if this is re-executed in a different
serialization order���

	

2.  Define a concurrency control scheme allowing transactions to observe a
speculative database snapshot representative of a given s.o. ���
	

3.  Introduce effective heuristics to identify which ones among the O(N!) s.o.s to
be actully activated based on: 	

•  the likelihood of the various possible permutations	

•  the current availability of idle computing resources	

Other Research Directions	

Space efficiency via Bloom Filters	

Problem: 	

•  most efficient AB-based replication schemes require exchanging
transactions readsets...	

•  ...which can be huge, drastically affecting the AB latency!���
	

Idea: exploit Bloom Filters space efficient encoding to
deterministically limit the message size���
	

Challenge: (efficiently) accommodating unavoidable false
positives 	

Self-adapting Replication Strategies	

Problem: No single replication protocol is able to optimally cope with
the high heterogeneity of STM based systems	

Idea: Develop STM replication protocols able to self-adapt depending
on, e.g.:	

•  transaction's object-set size	

•  estimated transaction conflict probability	

•  ...	

Challenge: allow consistent coexistence of multiple replication
schemes	

Conclusions	

•  Distributed STMs may provide a robust, scalable and fault-tolerant
solution for building applications (including web-based ones)	

•  Distributed STMs can be built using ideas from the distributed
shared memory and database replication areas	

•  New research problems appear when one attempts to combine
both worlds. Some example:	

•  Weak Mutual Exclusion	

•  Speculative Transaction Processing

Thanks for	

the attention	

The FenixEDU system is ���
freely available at the following URL:	

https://fenix-ashes.ist.utl.pt/

Backup���
Slides	

Current FénixEDU
Architecure	

•  Replicated application servers���
 	

•  Replica synchronization through
centralized validation at the back-end
database	

Open Problems	

•  Interface with relational DBMS
consumes an excessive amount of
memory	

•  DBMS is the system's bottleneck and
single point of failure 	

Expected Future
Architecture	

