
SELF-TUNING HTM
Paolo Romano

Based on ICAC’14 paper

N. Diegues and Paolo Romano
Self-Tuning Intel Transactional Synchronization Extensions
11th USENIX International Conference on Autonomic Computing
(ICAC), June 2014
Best paper award

2

Best-Effort Nature of HTM

3

No progress guarantees:

•  A transaction may always abort

…due to a number of reasons:

•  Forbidden instructions

•  Capacity of caches (L1 for writes, L2 for reads)

•  Faults and signals

•  Contending transactions, aborting each other

Need for a fallback path, typically a lock or an STM

When and how to activate the fallback?

4

•  How many retries before triggering the fall-back?

•  Ranges from never retrying to insisting many times

•  How to cope with capacity aborts?
•  GiveUp – exhaust all retries left
•  Half – drop half of the retries left
•  Stubborn – drop only one retry left

•  How to implement the fall-back synchronization?
•  Wait – single lock should be free before retrying
•  None – retry immediately and hope the lock will be freed
•  Aux – serialize conflicting transactions on auxiliary lock

Is static tuning enough?

5

Focus on single global lock fallback

Heuristic:

 Try to tune the parameters according to best practices

•  Empirical work in recent papers [SC13, HPCA14]

•  Intel optimization manual

GCC:

 Use the existing support in GCC out of the box

Why Static Tuning is not enough

6

Benchmark GCC Heuristic Best Tuning
genome 1.54 3.14 3.36 wait-giveup-4
intruder 2.03 1.81 3.02 wait-giveup-4
kmeans-h 2.73 2.66 3.03 none-stubborn-10
rbt-l-w 2.48 2.43 2.95 aux-stubborn-3
ssca2 1.71 1.69 1.78 wait-giveup-6
vacation-h 2.12 1.61 2.51 aux-half-5
yada 0.19 0.47 0.81 wait-stubborn-15

Speedup with 4 threads (vs 1 thread non-instrumented)

Intel Haswell Xeon with 4 cores (8 hyperthreads)

room for improvement

No one size fits all

7

Intruder from STAMP benchmarks

0

1

2

3

4

 1 2 3 4 5 6 7 8

sp
ee

du
p

threads

GCC

Heuristic

Best Variant

none-giveup-1

aux-giveup-3

wait-giveup-5

wait-giveup-4

wait-stubborn-7
aux-stubborn-12

wait-stubborn-10
wait-stubborn-12

Are all optimization dimensions relevant?

8

•  How many retries before triggering the fall-back?
•  Ranges from never retrying to insisting many times

•  How to cope with capacity aborts?
•  GiveUp – exhaust all retries left
•  Half – drop half of the retries left
•  Stubborn – drop only one retry left

•  How to implement the fall-back synchronization?
•  Wait – single lock should be free before retrying
•  None – retry immediately and hope the lock will be freed
•  Aux – serialize conflicting transactions on auxiliary lock

•  aux and wait perform similarly

•  When none is best, it is by a marginal amount

•  Reduce this dimension in the optimization problem

Self-tuning design choices
3 key choices:

• How should we learn?

• At what granularity should we adapt?

• What metrics should we optimize for?

9

How should we learn?
• Off-line learning

•  test with some mix of applications & characterize their workload
•  infer a model (e.g., based on decision trees) mapping:

workload ! optimal configuration
•  monitor the workload of your target application, feed the model with

this info and accordingly tune the system

• On-line learning
•  no preliminary training phase
•  explore the search space while the application is running
•  exploit the knowledge acquired via exploration for tuning

10

How should we learn?
• Off-line learning

•  PRO:
•  no exploration costs

•  CONs:
•  initial training phase is time-consuming and “critical”

•  accuracy is strongly affected by training set representativeness
•  non-trivial to incorporate new knowledge from target application

• On-line learning

•  PROs:
•  no training phase ! plug-and-play effect
•  naturally incorporate newly available knowledge

•  CONs:
•  exploration costs

11

reconfiguration cost is low with HTM
! exploring is affordable

Which on-line learning techniques?

12

Uses 2 on-line reinforcement learning techniques in synergy:

•  Upper Confidence Bounds: how to cope with capacity aborts?

•  Gradient Descent: how many retries in hardware?

•  Key features:

•  both techniques are extremely lightweight ! practical

•  coupled in a hierarchical fashion:

•  they optimize non-independent parameters

•  avoid ping-pong effects

Self-tuning design choices
3 key choices:

• How should we learn?

• At what granularity should we adapt?

• What metrics should we optimize for?

13

At what granularity should we adapt?
• Per thread & atomic block

•  PRO:
•  exploit diversity and maximize flexibility

•  CON:
•  possibly large number of optimizers running in parallel

•  redundancy ! larger overheads
•  interplay of multiple local optimizers

• Whole application
•  PRO:

•  lower overhead, simpler convergence dynamics
•  CON:

•  reduced flexibility

14

Self-tuning design choices
3 key choices:

• How should we learn?

• At what granularity should we adapt?

• What metrics should we optimize for?

15

What metrics should we optimize for?
• Performance? Power? A combination of the two?

• Key issues/questions:
•  Cost and accuracy of monitoring the target metric

•  Performance:
•  RTDSC allow for lightweight, fine-grained measurement of latency

•  Energy:
•  RAPL: coarse granularity (msec) and requires system calls

•  How correlated are the two metrics?

16

Energy and performance in (H)TM:
two sides of the same coin?

• How correlated are energy consumption and throughput?
•  480 different configurations (number of retries, capacity aborts

handling, no. threads) per each benchmark:
•  includes both optimal and sub-optimal configurations

17

Understanding and Self-Tuning Intel Restricted Transactional Memory A:29

6.4. Considering Energy Consumption
To conclude our evaluation study, we also assessed the energy efficiency of the different
algorithms. So far we have focused on optimizing performance, but shifting the focus
towards energy saving may dictate a different optimization. The idea is that some
configurations favour the fall-back path usage upon any trouble arising from RTM, and
consequently that spend less energy due to the threads sleeping/waiting for the global
lock (at the cost of possibly running slower). At the same time, it may also be better to
fall-back to the STM sooner and avoid repeated execution in hardware, although the
software transactions may be held back due to locks used internally by the STM. To a
large extent, the trade-off between energy and time is a consequence of the trade-off
between the usage of locks in software and their lack in the hardware path.

To better understand this matter, we collected the energy consumption of each ex-
ecution via the Intel RAPL facility [David et al. 2010]. Recent studies ([Hackenberg
et al. 2013; Hähnel et al. 2012]) show that the model used by Intel RAPL estimates
quite accurately the power consumption, when compared to a power meter attached to
the machine.

As a first experiment, we took every execution in all our benchmarks and measured
the distance correlation between the time to complete the benchmark and the energy
spent in doing so. These executions encompass all the possible configurations, bench-
marks and parallelism degree, which amounts to almost twenty five thousand runs.
We used a state of the art distance correlation metric [Szkely et al. 2007] in which two
random variables are considered dependent if the distance is 1, and independent if the
distance is 0.

In Table IX we show the computed distance correlation between time and energy.
The objective is to assess the extent to which these two variables are related. The re-
sults are shown for each benchmark, and averaged across all the configurations and
degrees of parallelism. As a result, we obtain an average correlation of 0.81, with an
outlier in Vacation High with 0.55 and all others above 0.70. This, by itself, indicates
that among all executions we have on average a high chance of optimizing for energy
consumption if we focus on performance alone because their outcomes are tightly re-
lated.

However, we can understand this relationship even more, because the former anal-
ysis is looking at the two variables from a very fine grained perspective, i.e., it tries to
characterize their relationship in a space between 0 and 1.

Our next experience brings us closer to what we could actually do in case there was
a large room for improvement in terms of optimization for energy. For each benchmark

Benchmark Correlation Benchmark Correlation
genome 0.74 linked-list low 0.91
intruder 0.84 linked-list high 0.87
labyrinth 0.82 skip-list low 0.94

kmeans high 0.76 skip-list high 0.81
kmeans low 0.92 hash-map low 0.98

ssca2 0.97 hash-map high 0.72
vacation high 0.55 rbt-low 0.95
vacation low 0.74 rbt-high 0.73

yada 0.77 average 0.81

Table IX: Distance correlation between performance and energy consumption averaged
over the runs with different number of threads for each benchmark. Values closer to 1
show dependence between performance and energy consumption.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Energy and performance in (H)TM:
two sides of the same coin?

• How suboptimal is the energy consumption if we use a
configuration that is optimal performance-wise?

18

A:30 N. Diegues et al.

Benchmark Relative Energy Benchmark Relative Energy
genome 0.99 linked-list low 1.00
intruder 1.00 linked-list high 1.00
labyrinth 0.92 skip-list low 1.00

kmeans high 1.00 skip-list high 0.98
kmeans low 1.00 hash-map low 0.99

ssca2 1.00 hash-map high 0.99
vacation high 0.99 rbt-low 1.00
vacation low 1.00 rbt-high 1.00

yada 0.89 average 0.98

Table X: Relative energy of the best configurations, aimed for performance, with re-
spect to the best configuration in terms of energy. Values closer to 1 show that opti-
mizing for performance also optimizes for energy consumption. We show the geometric
mean across different number of threads for each benchmark.

and parallelism degree, we took the best performing configuration in terms of time
(configuration T) and energy (configuration E), which are typically different (i.e., we
verified that normally T 6= E). Then, we compare the relative energy obtained with T

with respect to that of E (i.e., the optimal one). As such, we obtain the relative loss in
terms of energy when optimizing for time compared to that if we optimized for energy.

The results, shown in Table X, show with an outstanding consistency that the loss
is negligible. The average relative energy consumption (i.e., a metric akin to that of
speedup that we used earlier) shows a value of 0.98, which means that for the most
part we obtain the optimal energy when focusing on performance alone. This allows us
to conclude also that our self-tuning proposals benefit both metrics of time and energy
together, while only focusing on the former.

7. RELATED WORK
Transactional Memory was initially proposed as an extension to multi-cores’ cache co-
herence protocols [Herlihy and Moss 1993]. Due to the inaccessibility of rapidly proto-
typing in such environment, researchers resorted to software implementations (STM)
to advance the state of the art [Dragojević et al. 2011]. These STMs require instru-
menting the code (either manually or compiler-assisted) to invoke the TM software
run-time in every read and write to shared memory. As a result, STMs impose some
overhead in sequential executions, but they are efficient enough to pay off with some
meaningful degree of parallelism [Diegues and Romano 2014b; Diegues and Cachopo
2013].

Full implementations in hardware (HTM) were always sought as desirable to avoid
the overhead of software instrumentation. As a result, several proposals explored the
design space in hardware via simulations (e.g. [Hammond et al. 2004]. However, these
proposals (and respective results) were typically obtained with different environments
than those available in mainstream x86 processors, for instance by simulating in-order
processors.

Recently, HTMs became available in commercial processors delivered by major in-
dustry players. Beyond Intel, IBM also provided support for HTM [Jacobi et al. 2012],
in processors mostly used on high performance computing. We only had access to an
Intel machine, but we believe the techniques described here should also be applica-
ble to IBM’s HTMs due to their similar nature. Furthermore, the mainstream nature
of Intel processors increases significantly the relevance of works, like this, aimed to
optimize its performance.

ACM Transactions on Computer Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

(G)Tuner

19

Performance measured through processor cycles (RTDSC)

Support fine and coarse grained optimization granularity:

•  Tuner: per atomic block, per thread

•  no synchronization among threads

•  G(lobal)-Tuner: application-wide configuration

•  Threads collect statistics privately

•  An optimizer thread periodically:

•  Gathers stats & decides (a possibly) new configuration

Periodic profiling and re-optimization to minimize overhead

Integrated in GCC

Evaluation
20

•  Idealized “Best” variant

•  Tuner

•  G-Tuner

•  Heuristic: GiveUp-5

•  NOrec (STM)

Intel Haswell Xeon with 4 cores (8 hyper-threads)

RTM-SGL RTM-NOrec
•  Idealized “Best” variant

•  Tuner

•  G-Tuner

•  Heuristic: GiveUp-5

•  GCC

•  Adaptive Locks [PACT09]

RTM-SGL

21

Intruder from STAMP benchmarks

4% avg offset

+50%

Threads

S
pe

ed
up

RTM-NORec

22

Intruder from STAMP benchmarks

G-Tuner better with

NOrec fallback

Threads

S
pe

ed
up

Evaluating the granularity trade-off
23

Genome from STAMP benchmarks, 8 threads

adapting
over time

also adapting, but large
constant overheads

static configuration

Take home messages

24

•  Tuning of fall-back policy strongly impacts performance

•  Self-tuning of HTM via on-line learning is feasible:

•  plug & play: no training phase

•  gains largely outweigh exploration overheads

•  Tuning granularity hides subtle trade-offs:

•  flexibility vs overhead vs convergence speed

•  Optimize for performance or for energy?

•  Strong correlation between the 2 metrics

•  How general is this claim? Seems the case also for STM

Thank you!

25

Questions?

