Ccost EUroTIV

IN SCIENCE AND TECHNOLOGY

Unlocking Concurrency
with Transactional Memory

Paolo Romano
romano@inesc-id.pt

e

Roadmap

* Bliss & pitfalls of concurrent programming

* Transactional Memory (TM)
— What it is?

— How it works?

 TM support in programming languages

The era of free performance gains is over

10,000,000

* Over the last 30 years:
* new CPU generation
=>» free speed-up

1,000,000
100,000

10,000

* Since 2003:

* CPU clock speed plateaued...

* but Moore’s law chase

continues: 10
* Multi-cores,
Hyperthreading...

1

0

1970

FUTURE IS PARALLEL

‘ Dual-Core Itanium 2

/[

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

@ Clock Speed (MHz)
A Power (W)
@ Perf/Clock (ILP)

1975 1980 1985 1990 1995

2000 2005 2010

Traditional Software Scaling

7X

Speedup B,M
1.8x

User code

Traditional I
Uniprocessor

Time: Moore’s law

>

ldeal Multicore Software Scaling

X
Speedup 1 8x 3M
User code
Multicore |8 [2 B 2 B
AR E B
Unfortunately this is not the case : :
In practice....

Real-World Multicore Scaling

Speedup

2% 2.9x

o—>

User code 2

o o] [FEgE rm@

Multicore I I I I

Hard to parallelize application efficiently:
- correct synchronization

- load balancing

- data locality

Coarse-grained Locking?
simple but does not scale

Amdahl’s Law:
Speedup = 1/(ParallelPart/N + SequentialPart)

Pay for N = 128 cores
SequentialPart = 25%

As num cores grows the effect of 25%
becomes more acute

2.3/4,2.9/8, 3.4/16, 3.7/32....

Fine-grained Locking?

Fine grained parallelism

: has huge performance
benefit
Coarse ‘ Fine
Grained @ Grained
25% 25%
’ Shared Shared
© ©
© © 75% 75%
‘ ’ Unshared Unshared
© ©

Fine-grained Locking?
easier said than done

Fine grained locking is hard to get right:
— deadlocks, livelocks, priority inversions:
— complex/undocumented lock acquistion protocols

— no composability of existing software modules

... and a verification nightmare:
 subtle bugs that are extremely hard to reproduce

Lock-based synchronization does not
support modular programming

* Synchronize moving an element between lists
void move(list 11, list 12, element e)
{if (I1.remove(e)) I12.insert(e); }

* Assume remove/insert acquire a per-list lock
* Consider two threads that execute:
Thread1 Thread?2

move(listl,list2,e) move(list2,listl,e’)
listl.lock() = OK R EADLOCGKA list2.lock() =» OK

N e A Al
list2.lock() =2 wait T1 list1.lock() =2 wait T2

Transactional memory (TM)

atomic
A.withdraw(3)
B.deposit(3)
end

 Same idea as in a ACIB database transaction:
— “Write simple sequential code & wrap atomic around it’.
— Hide away synchronization issues from the programmer

* Programmers say what should be made atomic...
and not how atomicity should be achieved

— way simpler to reason about, verify, compose
— similar performance to fine-grained locking

* via speculation & possibly hardware support

TM : Brief historic overview

— Original idea dating back to early 90s
* Herlihy/Moss ISCA 1993 =» hardware-based

— Largely neglected until advent of multi-cores (~2003)

— Over the last 10 years: one of the hottest research topic
in parallel computing in academy and industry

— Latest generations of IBM® and Intel® CPUs ship with
hardware support for TM

— Standardization efforts on C/C++

— TM supports in lots of programming languages

How does it work?

e Various implementations are possible:
— Software (STM):

* instrumenting read and write accesses
— PRO: flexibility
— CON: instrumentation overheads

— Hardware (HTM):

e extension of the cache consistency mechanism
— PRO: no instrumentation overheads
— CON: hw is inherently limited

— Hybrid (HyTM)

 mix of the two worlds that tries to achieve the best of both

STM

 Many algorithms proposed in the last 10 years:
— DSTM,JVSTM,TL,TL2,LSA, TinySTM,SwissTM, TWM,NOREC,AVSTM...

* Key designh choices

» word vs object vs field based

single-version vs multi-version

in-place write & undo logs vs deferred writes & redo logs

lock-based vs lock-free

lazy locking vs eager locking
 visible vs invisible reads
e progress : no deadlock, no livelocks, no abort for RO tx,...

Example STM Algorithm : TL2
(Transactional Locking 2)

Dave Dice, Ori Shalev, and Nir Shavit.
Transactional locking Il. DISC 2006

TL2 overview

* Key design choices
* word- vs object vs field based
* single-version vs multi-version
* in-place write + undo logs vs deferred writes + redo logs
* lock-based vs lock-free

lazy locking vs eager locking
* visible vs invisible reads
» progress : no deadlock, no livelocks, no abort for RO tx

achieved via an external contention manager
(e.g., exponential back-off of aborted transactions)

Versioned Locks

: : Map
Array of Versioned-
Write-Locks
Application
Memory @

PS = Lock per Stripe (separate array PO = Lock per Object
of locks) (embedded in object)

Read-only Transactions

. VClock

On Tx beqin

RV < VClock

On Read

read lock, read mem, read lock:
check unlocked, unchanged, and
v# <= RV

On Commit

nothing to be done!

Mem Locks

RV Reads from a consistent snapshot of memory.
No need to track and validate read set!

Update transactions

Mem Locks . VClock

Commit . RV

On Tx beqin

RV & VClock
On Read/Write

check unlocked and v# <= RV
then add to Read/Write-Set

On Commit

Acquire Locks

WV = F&I(VClock)

Validate each v# <= RV
Release locks with v# < WV

W=

STM Performance: the bright side

Skip list, 16k elements, 20% updates

I 1 1 I I 1

TL2 @
LSA —6—

Throughput (x 10° txs/s)

20 40 60 80 100 120 140 160 180
Number of threads

(Azul — Vega2 — 2 x 48 cores)

STM Performance: the dark side

Sources of overhead in STMs

* STM scalability is as good if not better than
locking, but overheads are much higher

Y Keys trmmmnn ~f AviAawrla A Al

er of

ant

How does it work?

e Various implementations are possible:
— Software (STM):

* instrumenting read and write accesses
— PRO: flexibility
— CON: instrumentation overheads

— Hardware (HTM):

e extension of the cache consistency mechanism
— PRO: no instrumentation overheads
— CON: hw is inherently limited

— Hybrid (HyTM)

 mix of the two worlds that tries to achieve the best of both

HTM is now available in several CPUs

* Intel: Haswell in desktops, laptops, tablets, servers...

IBM: BG/Q, zEC12, Power8

fixed in future Haswell releases.

e HTM implementations are NOT born equal...
e ..yet they share two important commonalities:
1. Extend pre-existing cache coherency protocol

2. Best-effort nature

Overview of Haswell’'s HTM: TSX

CPU 1 CPU 2

xbegin
read x: O /I Set bit read on x cache line
write y =1 // Buffer write in L1 cache

xend // Atomically clean bits and publish
xbegin
: read y: 1
. invalidation snooped write
writey = 2 ’ M Al
emory Bus invalidates tx read
x:0--r P CPU CPU L1 xabort
V:iZ2--w | Sl 14 S on 2 Cache AR

L2 Cache L2 Cache

L3 Cache

HTM'’s best effort nature

No progress guarantees:

« Atransaction may always abort

...due to a number of reasons: HTM alone is not enough
* Forbidden instructions
« Capacity of caches
» Faults and signals

« Contending transactions, aborting each other

Fallback plan!

* After a few attempts using HTM, the tx is
executed using a software synch. mechanism:
— Single global lock (current standard approach)

* PRO: success guarantee, support for not-undoable ops.
* CON: no parallelism (extermination of concurrent hw tx)

— STM =» Hybrid TM

* PRO: fallback path does support parallelism
e CON: tricky to coordinate concurrent execution of HTM

HTM performance (1/2)

* HTM shines when fallback is rarely executed, e.g.:
— concurrent data structures
— applications with short transactions

-3 HTM-Global Lock =@ HybridTM (HyNoRec) = TinySTM
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 2.2 \ \ \ \ \ \ \ \
3.0 -
19+ 1
>
Soo0r S 1.6]
e o o
Q. S| e
3 €13} @
° O....
10 B — G 0 G
ol % e o
T S T
P S % % .- *-..... %
OO : : ‘ : ‘ : : ‘ O 7 | | | | | | | |
1 2 3 4 5 6 7 8 ' 1 2 3 4 5 6 7 8
threads threads

Kmeans: parallel implementation of data clustering algorithm (machine learning domain)

 STM is very competitive for applications with

HTM Performance (2/2)

long, conflict prone transactions

 HybridTM are not quite there yet:

— worst of both worlds ®

HTM-Global Lock

threads

relative energy

@ HybridTM (HyNoRec)

2.2

n
o
I

—_
o
T

—_
o
T

—_
I
T

[y
(V)
T

1.0

—A— TinySTM

.........

3 4 5
threads

Yada: parallel version of Delaunay triangulation (graph analysis algorithm)

TM support in
programming languages

TM in C/C++

No data annotations or special data types required :

__transaction atomic { 1f (y> x) xX++; }

— Existing (sequential) code can be used in transactions:
function calls, nested transactions, ...

Code in atomic transactions must be transaction-safe
— Compiler checks whether code is safe (gcc -fgnu-tm)

— Unsafe: use of locks or atomics, asm, volatile, functions not
known to be safe

— For cross-CU calls / function pointers, annotate functions:
* void foo() _ attribute_ ((transaction_safe)) { x++; }

Further information: ISO C++ paper N3718

GCC implementation (4.1.7+) :
TM runtime library (libitm)

Enforces atomicity of transactions at runtime
libitm ships with different STM implementations

— Does not require special hardware

— Default:

* Write-through with undo logging
* Multiple locks (automatic memory-to-lock mapping)

as well as HTM-based implementations!
— libitm uses HTM with a global lock as fallback
— no hybrid STM/HTM yet

Cool, but | only do JAVA...

e HTM support not yet integrated in standard JVM

* Yet, there are several high-quality STM
implementations for JAVA:
— JVSTM: http://inesc-id-esw.github.io/jvstm/

e used in production at Lisbon University
— manage life of entire campus (>10K users, highly available system)

* requires manual annotation of transactional objects
— DeuceTM: https://sites.google.com/site/deucestm/
e automatic instrumentation via bytecode rewriting

— Akka: http://doc.akka.io/docs/akka/2.1.0/scala/stm.html
* based on SCALA STM (http://nbronson.github.io/scala-stm/)

(S)TM support in other languages

(S)TM has been integrated in a growing number

of programming languages:

— C#, Clojure, Haskell, Javascript (based on node.js), Perl,
Python, ...

— Wikipedia page on STM is a good starting point:

http://en.wikipedia.org/wiki/Software transactional memory

...and to Distributed/Cloud computing settings:
— Cloud-TM Project: www.cloudtm.eu

Get involved!

TM can drastically simplify parallel programming...

..but it is a relatively new technology!
— only ~10 years of intense research
— industrial quality TM implementations are much more recent!

Chicken or Egg?

Feedback of software developers is essential:
— to improve existing TM implementations e
— to focus research on truly relevant problems

Try it out and report about your findings and experience
— blog about it and let us know

— measure performance for your code

— report bugs in existing TM implementations!

EUROPEAN COOPERATION Eu‘ ’9 l l ’
IN SCIENCE AND TECHNOLOGY

Thanks for the attention

Q&A

eurotm@gsd.inesc-id.pt
http://www.eurotm.org

