

Unlocking Concurrency with Transactional Memory

Paolo Romano

romano@inesc-id.pt

Roadmap

- Bliss & pitfalls of concurrent programming
- Transactional Memory (TM)
 - What it is?
 - How it works?
- TM support in programming languages

The era of free performance gains is over

- Over the last 30 years:
 - new CPU generation
 - → free speed-up
- Since 2003:
 - CPU clock speed plateaued...
 - but Moore's law chase continues:
 - Multi-cores,Hyperthreading...

FUTURE IS PARALLEL

Traditional Software Scaling

Ideal Multicore Software Scaling

Real-World Multicore Scaling

data locality

Coarse-grained Locking? simple but does not scale

Amdahl's Law:

Speedup = 1/(ParallelPart/N + SequentialPart)

Pay for N = 128 cores SequentialPart = 25%

As num cores grows the effect of 25% becomes more acute

2.3/4, 2.9/8, 3.4/16, 3.7/32....

Fine-grained Locking?

Fine-grained Locking? easier said than done

- Fine grained locking is hard to get right:
 - deadlocks, livelocks, priority inversions:
 - complex/undocumented lock acquistion protocols
 - no composability of existing software modules

... and a verification nightmare:

subtle bugs that are extremely hard to reproduce

Lock-based synchronization does not support modular programming

- Synchronize moving an element between lists void move(list l1, list l2, element e) { if (l1.remove(e)) l2.insert(e); }
- Assume remove/insert acquire a per-list lock
- Consider two threads that execute:

Thread1

move(list1,list2,e)

list1.lock() → OK

list2.lock() → wait T1

Thread2

move(list2,list1,e')

list2.lock() → OK

list1.lock() → wait T2

Transactional memory (TM)

```
atomic
A.withdraw(3)
B.deposit(3)
end
```

- Same idea as in a ACID database transaction:
 - "Write simple sequential code & wrap atomic around it".
 - Hide away synchronization issues from the programmer
 - Programmers say what should be made atomic...
 and not how atomicity should be achieved
 - way simpler to reason about, verify, compose
 - similar performance to fine-grained locking
 - via speculation & possibly hardware support

TM: Brief historic overview

- Original idea dating back to early 90s
 - Herlihy/Moss ISCA 1993 → hardware-based
- Largely neglected until advent of multi-cores (~2003)
- Over the last 10 years: one of the hottest research topic in parallel computing in academy and industry
- Latest generations of IBM® and Intel® CPUs ship with hardware support for TM
- Standardization efforts on C/C++
- TM supports in **lots** of programming languages

How does it work?

- Various implementations are possible:
 - Software (STM):
 - instrumenting read and write accesses
 - PRO: flexibility
 - CON: instrumentation overheads
 - Hardware (HTM):
 - extension of the cache consistency mechanism
 - PRO: no instrumentation overheads
 - CON: hw is inherently limited
 - Hybrid (HyTM)
 - mix of the two worlds that tries to achieve the best of both

STM

- Many algorithms proposed in the last 10 years:
 - DSTM,JVSTM,TL,TL2,LSA,TinySTM,SwissTM,TWM,NOREC,AVSTM...
- Key design choices
 - word vs object vs field based
 - single-version *vs* multi-version
 - in-place write & undo logs vs deferred writes & redo logs
 - lock-based vs lock-free
 - lazy locking vs eager locking
 - visible vs invisible reads
 - progress: no deadlock, no livelocks, no abort for RO tx,...

Example STM Algorithm: TL2 (Transactional Locking 2)

Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. DISC 2006

TL2 overview

- Key design choices
 - word- vs object vs field based
 - single-version vs multi-version
 - in-place write + undo logs vs deferred writes + redo logs
 - lock-based vs lock-free
 - lazy locking vs eager locking
 - visible vs invisible reads
 - progress : no deadlock, no livelocks, no abort for RO tx

achieved via an external contention manager (e.g., exponential back-off of aborted transactions)

Versioned Locks

PS = Lock per Stripe (separate array of locks)

PO = Lock per Object (embedded in object)

Read-only Transactions

RV

100

Reads from a consistent snapshot of memory. No need to track and validate read set!

Update transactions

STM Performance: the bright side

 $(Azul - Vega2 - 2 \times 48 cores)$

STM Performance: the dark side

Sources of overhead in STMs

 STM scalability is as good if not better than locking, but overheads are much higher

Key school of avarband.
Instruction of avarband.
<l

How does it work?

- Various implementations are possible:
 - Software (STM):
 - instrumenting read and write accesses
 - PRO: flexibility
 - CON: instrumentation overheads
 - Hardware (HTM):
 - extension of the cache consistency mechanism
 - PRO: no instrumentation overheads
 - CON: hw is inherently limited
 - Hybrid (HyTM)
 - mix of the two worlds that tries to achieve the best of both

HTM is now available in several CPUs

- Intel: Haswell in desktops, laptops, tablets, servers...
- IBM: BG/Q, zEC12, Power8

Catch: INTEL detected an undisclosed bug, which will be fixed in future Haswell releases.

- HTM implementations are NOT born equal...
- ...yet they share two important commonalities:
 - Extend pre-existing cache coherency protocol
 - Best-effort nature

Overview of Haswell's HTM: TSX

CPU 1 CPU₂ xbegin read x: 0 // Set bit read on x cache line write y = 1 // Buffer write in L1 cache // Atomically clean bits and publish xend xbegin read y: 1 invalidation snooped write write y = 2**Memory Bus** invalidates tx read xabort **x**: 0 -- r CPU **CPU** L1 **y**: **?** -- w Cache y: 1 -- r Cache 2 TSX: on L2 Cache L2 Cache L3 Cache

HTM's best effort nature

No progress guarantees:

A transaction may always abort

...due to a number of reasons:

HTM alone is not enough

- Forbidden instructions
- Capacity of caches
- Faults and signals
- Contending transactions, aborting each other

Fallback plan!

- After a few attempts using HTM, the tx is executed using a software synch. mechanism:
 - Single global lock (current standard approach)
 - PRO: success guarantee, support for not-undoable ops.
 - CON: no parallelism (extermination of concurrent hw tx)
 - STM → Hybrid TM
 - PRO: fallback path does support parallelism
 - CON: tricky to coordinate concurrent execution of HTM

HTM performance (1/2)

- HTM shines when fallback is rarely executed, e.g.:
 - concurrent data structures
 - applications with short transactions

Kmeans: parallel implementation of data clustering algorithm (machine learning domain)

HTM Performance (2/2)

- STM is very competitive for applications with long, conflict prone transactions
- HybridTM are not quite there yet:
 - worst of both worlds ⊗

Yada: parallel version of Delaunay triangulation (graph analysis algorithm)

TM support in programming languages

TM in C/C++

No data annotations or special data types required :

```
__transaction_atomic { if (y> x) x++; }
```

- Existing (sequential) code can be used in transactions: function calls, nested transactions, ...
- Code in atomic transactions must be *transaction-safe*
 - Compiler checks whether code is safe (gcc -fgnu-tm)
 - Unsafe: use of locks or atomics, asm, volatile, functions not known to be safe
 - For cross-CU calls / function pointers, annotate functions:
 - void foo() __attribute__((transaction_safe)) { x++; }
- Further information: ISO C++ paper N3718

GCC implementation (4.1.7+): TM runtime library (libitm)

- Enforces atomicity of transactions at runtime
- libitm ships with different STM implementations
 - Does <u>not</u> require special hardware
 - Default:
 - Write-through with undo logging
 - Multiple locks (automatic memory-to-lock mapping)
- as well as HTM-based implementations!
 - libitm uses HTM with a global lock as fallback
 - no hybrid STM/HTM yet

Cool, but I only do JAVA...

- HTM support not yet integrated in standard JVM
- Yet, there are several high-quality STM implementations for JAVA:
 - JVSTM: http://inesc-id-esw.github.io/jvstm/
 - used in production at Lisbon University
 - manage life of entire campus (>10K users, highly available system)
 - requires manual annotation of transactional objects
 - DeuceTM: https://sites.google.com/site/deucestm/
 - automatic instrumentation via bytecode rewriting
 - Akka: http://doc.akka.io/docs/akka/2.1.0/scala/stm.html
 - based on SCALA STM (http://nbronson.github.io/scala-stm/)

(S)TM support in other languages

- (S)TM has been integrated in a growing number of programming languages:
 - C#, Clojure, Haskell, Javascript (based on node.js), Perl,
 Python, ...
 - Wikipedia page on STM is a good starting point:
 http://en.wikipedia.org/wiki/Software_transactional_memory
- ...and to Distributed/Cloud computing settings:
 - Cloud-TM Project: www.cloudtm.eu

Get involved!

- TM can drastically simplify parallel programming...
- ...but it is a relatively new technology!
 - only ~10 years of intense research
 - industrial quality TM implementations are much more recent!
- Feedback of software developers is essential:
 - to improve existing TM implementations
 - to focus research on truly relevant problems

- Try it out and report about your findings and experience
 - blog about it and let us know
 - measure performance for your code
 - report bugs in existing TM implementations!

Thanks for the attention

Q&A

eurotm@gsd.inesc-id.pt
http://www.eurotm.org