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Abstract. Motivated by requirements of the growing social web appli-
cations, the necessity to store data across several data centres has become
even more important in order to bring data as close to the users as possi-
ble. A plethora of non-relational databases raised in recent years in order
to address this issue due to their ability to scale out. But in the pres-
ence of wide distances, to deliver high-availability and data consistency
is not possible in the presence of partitions. Several works have been
developed that try to reach the panacea of consistency and availability,
at times sacrificing consistency in order to provide a better service or
sacrificing latency to provide strongly consistent data, without taking
into account that not all data needs the same consistency and not all
data needs to be readily available. To tackle this problem, we propose
a consistency model that will reason about data through user defined
divergence bounding values, causal relationships and transactional en-
forcement within the data centre, in order to provide urgency to data in
a geo-replication scenario.

1 Introduction

With the growth of the Internet and social web applications, and as larger
amounts of information need to be processed and managed, more data centres
are being deployed each year. As users are spread across the globe it becomes
relevant, to deploy those data centres as close as possible to the largest amount
of users, in order to avoid the large latency imposed by round trips across the
globe. Amazon has shown that web users are sensitive to latency [13]: even a
100ms increase in latency causes measurable revenue losses. The focus therefore
shifts, from simply having a well built distributed system that can serve from
within a data centre, replicating data through several machines, but to be able to
propagate and manage data through machines in various data centres. This, as
said, brings data closer to the users and enables the system to be available even
in the presence of full data centre outages due to various reasons (e.g. natural
catastrophes).



Cloud storage systems, such as the currently popular class of NoSQL data
stores, have been designed in accordance to this scenario, as they, in contrast
to relational database management systems (RDMS), can scale out horizontally
to thousands of machines. Due to data not being tightly coupled with several
relations, it becomes easier to partition. Many of the NoSQL systems provide
a relaxed form of consistency in order to provide high availability, while others
strive for strong consistency and sacrifice latency. Other systems go even further
and focus on the added feature of geo-replication, providing a system to manage
data on a worldwide scale. This comes with inherent trade-off’s as the already
present problem of performance versus consistency, is highly accentuated due to
the high communication latencies between data centres.

Choosing between either an eventual consistent store and a strongly consis-
tent one becomes an arduous task, unless your data falls into a very specific
category. As in most problems that need a data store solution, not all data are
the same, and it could benefit from different consistency degrees. To address
this problem, various works have been developed with the intent of providing
support for developers, when deploying a geo-replicated data store, by offering
consistency models in-between those opposite extremes. Some go even further as
to offer dynamically different levels of consistency, to be defined at development
time and others try to change the degrees of consistency at runtime.

HBase1 is the open source version of Bigtable [4], and supports geo-replication
in a eventually consistent manner between different clusters. Thus, one can not
predict accurately enough how and when replication takes place, or ensure a
given level of quality of service for delivering data to remote master replicas. Also,
HBase alone offers only ACID guarantees on single row operations, making it
impossible to group up certain related operations for geo-replication. Currently,
there are some projects that try to provide transactional support for HBase,
such as Omid.2

Given the current context, we propose a consistency model based on Vector
Field Consistency (VFC) [12, 16] and further advancing on the work developed
in the Distributed Systems Group [5, 11]. This model intends to enhance the
geo-replication mechanism present in HBase, making it aware of the urgency of
certain pieces of data updates, and giving them priority over less urgent data
updates, taking into account operations incorporated into transactions and their
causal relations.

2 Objectives

As stated, the overall aim of this work is to enhance the geo-replication mecha-
nism present in HBase, making it aware of the urgency of certain pieces of data.
In other words, we intend to improve the currently deployed eventual consis-
tent model to be eventual consistency with notion of quality-of-data. With that
said we can specify our objectives accordingly: (i) Make use of Omid to pro-
vide the basic underlying transactional support for HBase.(ii) Adapt the VFC

1 http://hbase.apache.org 2 http://yahoo.github.io/omid/



model to allow users to define consistency bounds on data in the storage. These
bounds, will be used to define what is the urgency for each data item with re-
lation to others, and will be placed as metadata information along or inside the
HBase tables depending on the granularity of the enforcement.(ii) Incorporate
the tracking of causal relationships between operations inside the HBase cluster
either explicitly or implicitly. (iv) Develop a scheduling algorithm to define the
ordering of operations for geo-replication. This algorithm will take into account
the user defined bounds, as to reason about which operations are more urgent,
as well as define the order of geo-replication, in a way that does not break causal
relations. (v) Define metrics to infer cost of geo-replication in terms of queue
disruption to assist the scheduling algorithm to make choices with the least cost
possible. This will also help developers to reason about data that might be too
strictly bounded. (vi) Develop a geo-replication protocol that enforces the order
provided by the scheduling algorithm. (vii) Evaluate the proposed solution in
qualitative, quantitative and comparative terms.

3 Related Work

Quality-of-Service for Consistency of Data Geo-replication in Could Computing
[5, 11] is a system implemented on top HBase that provides support for geo-
replication by providing a unified cache view across different clusters. It relies
on a consistency model based on [12, 16], and enables the definition and dynamic
enforcement of multiple consistency degrees over different groups of data, within
the same application, across very large scale networks of cloud data centres.

The basis, as stated, of this consistency model relies on defining three dimen-
sional vectors to be associated with data objects, where each dimension holds a
numerical scalar that defines the maximum divergence of that value. The con-
straints are defined as time (θ), sequence (σ), value (ν). These values are not
fixed, as developers can define intervals to allow the system as it reasons about
access patterns, to relax or restrict the bound. As bounds get close to being bro-
ken the priority of the associated values for geo-replication increases, resulting
in high priority data having stricter bounds and low priority data have relaxed
bounds.

The unified cache view will hold frequently used database items and items
within the same locality group (i.e., pre-fetch columns of an hot row). Also it will
keep track of items that need to be replicated and handle the whole replication
process across clusters. The system constantly checks bandwidth and can trigger
data replication and synchronization on low bandwidth utilization periods, even
if consistency constrains do not impose it. Concurrent updates in different data
centres rely on the deterministic rule of last-writer wins to enforce convergence.

In 2011, Junqueira et al. [7], proposed a lock-free transaction management
system, built initially for HBase, that relies on a “transaction status oracle”
(TSO) for managing timestamp and read and write sets. It provides snapshot
isolation and still requires some metadata (commit timestamps) to be stored



in HBase. It later evolved into replicating the commit timestamps to the client
since they do not need to be persistently stored [2], further avoiding storage
overhead inside the data store.

Currently, the open-souce implementation of the above system is Omid.3 It
relies on BookKeeper [8] for durability and relies on ZooKeeper [6], to enforce a
singleton TSOServer instance operating over time. A transaction’s life-cycle will
start with the request for a start timestamp from the TSO. It will then access the
data store and perform all the operations, reading only values whose timestamp
is lower than the assigned start timestamp, and writing values with the assigned
start timestamp as its version. At the end of the transaction the client submits
the rows to the TSO to check for conflicts. If no conflicts arise, the transaction
will commit and the commit timestamp for the affected rows will be updated on
the TSO. This system can handle large amounts of transactions but it is lim-
ited by memory, which will eventually restrict the scalability of the system. A
solution is currently in development to further scale Omid called MegaOmid. It
will partition transactions among multiple status oracles, designated for certain
areas, and will have a global status oracle for global transactions (spawning more
than one area).

Here we analyse work that focus on providing different levels of consistency
for differentiated data in the same storage. Thus, exploring the fundamental
trade-offs between consistency, performance and availability it is argued that
not all data needs the same consistency, and that multiple (sometimes dynamic)
levels should be offered [14].

Consistency rationing in the cloud: Pay only when it matters [9]. In this sys-
tem data is divided into three consistency categories, and present them in the
context of a web shop: the first (A) covers data which a consistency violation
would result in large penalty costs (e.g. credit card info); the second (B) fo-
cuses on data where the consistency requirements vary over time depending on
actual availability (e.g. a products stock: a product that has a very low stock
needs higher consistency than one who’s stock is very high) of an item; finally
the third (C) covers data where temporary inconsistencies are acceptable or
negligible (e.g. logging info, users preferences). For data that falls in category
A serializability is provided through pessimistic concurrency control: two-phase
locking. For category C data, read-your-writes and monotonic session consis-
tency is provided with last-writer wins conflict resolution for non-commutative
updates. Finally, category B offers a runtime adaptive approach mixing both of
the above. The adaptivity in category B is based on three policies:

i. General Policy: based on the frequency of accesses the probability of con-
flicts is calculated, if it breaks a certain threshold the consistency changes;

ii. Time Policy: when a certain temporal metric is reached the consistency
changes (e.g. 5 minutes left for the auction to end);

3 http://yahoo.github.io/omid/



iii. Numeric Type Policies: by defining or inferring through access frequency
probabilistic analysis a value threshold, where if the policy is broken then
strict consistency is enforced.

Transactions are also supported and since consistency guarantees are defined on
a data level, operations within a transaction can cover various categories and
each operation is handled with the consistency defined for that record, but the
results of joins, unions, and any other operations between A and C data provide
only C guarantees for that operation.

Pileus [15], is a key-value store with a range of consistency choices between
eventual and strong consistency and offers the developers the choice to define
service level agreements (SLA) that incorporate both consistency and latency.
Their target applications are those that tolerate relaxed consistency but, never-
theless, benefit from improved consistency.

All puts and gets are within the context of a session, and all puts are strictly
ordered at a primary site to avoid inter-site conflicts, making it the authority for
strong consistency responses. With an SLA the developer can define and vari-
able amount of subSLA’s, ranking them in preference. Each subSLA defines a
consistency-latency pair where the consistency value can have one of the follow-
ing values: strong, eventual, read-my-writes, monotonic, bounded(t), causal. The
utility of a subSLA is a number that allows applications to indicate its relative
importance and along with network monitoring and storage node information
gathered by the Client, will help making a decision on which SLA to attempt to
satisfy and which storage nodes to contact.

4 Proposed Architecture

In this section we will present the overall architecture for HBase++, each of
its main components and how they cooperate. The first subsystem/component
addresses how to enforce serializable transactions and track causality within the
cluster (Section 4.1). Afterwards we will detail the scheduling algorithm for geo-
replication (Section 4.2), and finally we present the geo-replication protocol and
how it enforces the scheduling order provided by the algorithm across clusters
(Section 4.3).

4.1 Architecture Overview

Our goal is to provide the user the ability to associate bounding values, inspired
by and enhancing the VFC3 consistency model [5, 11], on data stored in HBase
and therefore defining maximum divergence of the constraints:

• Time (θ). Specifies the maximum time a replica can be without being up-
dated with is latest value. Considering θ(o) provides the time (e.g., seconds)
passed since the last replica update of object o, constraint κθ, enforces that
θ(o) < κθ at any given time.



• Sequence (σ). Specifies the maximum number of updates that can be ap-
plied to an object without refreshing its replicas. Considering σ(o) indicates
the number of applied updates, this sequence constraint κσ enforces that
σ(o) < κσ at any given time.

• Value (ν). Specifies the maximum relative difference between replica con-
tents or against a constant (e.g., top value). Considering ν(o) provides that
difference (e.g., in percentage), this value constraint κν enforces that ν(o)
<κν at any given time. It captures the impact or importance of updates on
the objects internal state.

These constraints, coupled together with the transactional enforcement within
the HBase cluster and causal relation tracking, will determine the creation of a
schedule for the geo-replication of operations towards slave clusters.

This schedule has the challenge to improve upon the default eventual con-
sistent replication provided by HBase by offering causal consistency not only
between operations but groups of operations (Transactions) and at the same
time to uphold the constraints defined by the VFC3.

These constraints provide the ability to give urgency of replication to more
important data and relax other data which might not be so urgent. In essence
it allows awarding different quality of service to different data without breaking
application semantics and the typical consistency assumptions developers make
over accessed data. With this model, it will also be possible to infer a specific
cost of replication for each operation, while enforcing the desired semantics. In
Figure 1 we present a high-level view of the architecture of this project.

Fig. 1: The Transaction Status Oracle (TSO) state will be partially replicated in
the client. It will push the epoch that results from the scheduling algorithm to
the Region Servers (RS) for geo-replication.

The client library will communicate with the transaction Status Oracle (TSO)
to coordinate their transactions, as transactions commit clients also submit the
dependencies and progress on the bounding constraints. The TSO will reason
about the serial order of operations and rearrange it to oblige to the constraints
but without breaking causal relations. As the order is defined, the TSO pushes
the queue to Region Servers (RS) in order for them to follow up with replicating



the operations to the other cluster. Each Region Server will look to the group
of operations set to replicate, check which of them are they responsible for, and
propagate them.

Transactional Enforcement and Causality Tracking. As described in sec-
tion 3.3, Omid4 is a system that provides transactional support for HBase with
either snapshot isolation [3] or write-snapshot isolation [17] which guarantees
serializability; it also relies on BookKeeper [8] for durability. We will leverage
this as an underlying system for our transactions and extend it to track causal
relations between client operations.

To add causal tracking to this system we simply need to add the transactions
read and write set to the list of committed transactions already saved in the TSO.
With this method we can track every potential causal relation between groups
of operations. Another option with less storage and memory requirements is to
track only explicit application defined causal relations where clients will, for each
transaction, submit the nearest one-hop distance dependency [10] in the context
of its session.

So in this second mode the client library, must maintain a causality graph
where for each new transaction, submitted in a session, they will also submit the
nearest one-hop dependency. In addition, they must also submit the constraint
values, which are placed next to data they have accessed in the HBase tables as
metadata, as is explained in the following section.

Bounding Values. Inside HBase we will store the user defined bounding values
and associate them with the data whose constraints they are meant to represent.
Four levels of granularity are considered here, ordered from the one with least
storage and metadata overhead requirements to the most costly:

The first level, although very coarse it can fit some developer needs and
requires the least storage requirements, is to associate a single bounding vector
to an entire table. In Figure 2 is shown the second level, where different values
for each row in a table are defined, making all columns in that row have the same
bounds. Represented in Figure 3 is the next level of granularity that defines the
values on a per column-family basis, covering all columns inside a column-family.
In Figure 4, we show the highest demanding level but the most fine-grained where
the bounding values can be defined differently for each cell leading to a column
of metadata for each column.

Fig. 2: Different bounds for each row across all the column families (cf).

4 http://yahoo.github.io/omid/



Fig. 3: Different bounds for each row inside each column family (cf).

Fig. 4: Different bounds for each cell.

4.2 Scheduling & Cost Inference

First we must define how the scheduling algorithm will reason about each oper-
ation’s individual constraint values, and how it will define the constraint values
of a transaction based on all of its operations. Considering all bound values are
defined for individual operations, the bound closest to being broken will define
that operation’s level of urgency. The same logic will be applied to a transaction:
when looking at all of its operations, the one that implies the most urgency will
define the urgency of the entire transaction and enclosed operations, regardless
of the presence of very relaxed urgency operations in the transaction.

The scheduling algorithm will reason broadly as follows: first, for all transac-
tions it will identify the operations with the highest constraints and will define
that constraint as the transaction constraint. It will then disregard arrival order
and re-order transactions based on the constraint values but respecting causal
order. For two independent causal dependencies of one transaction, the highest
constraint one will be placed in front of the other in queue. This can be seen as
a breath-first search where child selection is based on the highest constraint. For
independent groups of transactions ordering will be solely based on constraint
values and both groups will intertwine as it is shown in Figure 5.

As transactions are ordered with relation to other independent transactions,
the idea is to satisfy all the constraints with the least cost possible. We define
cost as the following:

• Operation move cost. The number of operations that had to be delayed
in order for this operation to be propagated earlier (e.g. if an operation is
moved from the 10th position to the 2nd, it has an associated cost of 8, as
it causes the delay of 8 operations).

• Total move cost. The total cumulative number of queue positions of the
moves made.



Fig. 5: The arrows represent the causal relations. Although Tx2 is less urgent
than Tx1 it is placed first in the queue due to its causal relation with Tx4 and
the need to satisfy Tx4 geo-replication.

This means we intend to minimize the amount of “moves” in the queue,
done to operations with no causal relation, by stepping away the least possible
from the serial order, but yet maintaining the constraints satisfied. Transactions
can somewhat be viewed as a single operation due to the strictest constraint
operation being the one that represents the bounding values of the transaction,
but the cost of a move will be different as we move a transaction we are moving
a certain amount of operations together.

4.3 Geo-Replication

As stated, the ordered queue is pushed to the Region Servers, so they can have
the necessary info on the order of the updates to propagate. For this to work
correctly, the TSO will have to make a decision about the head of the queue and
define a final ordering that will not be changed, so it can be removed from the
queue and safely pushed to Region Servers. This group of operations compris-
ing the head will be called an epoch. The amount of updates to include in an
epoch will be decided according to the size of the operations and their urgency
to manage the lag and batching efficiently. For example if bounds are very close
to being broken it is accepted that a smaller epoch is conceived so constraints
are not broken. It is also accepted to delay somewhat the geo-replication (with-
out breaking constraints) to create a larger epoch and augment the amount of
updates in one commit protocol enforcement.

In the commit protocol (Figure 1) the TSO will act as a coordinator. It
pushes the new epoch boundary to the Region Servers, and each one of them
will analyse the epoch, pick out the updates they are in charge of, and propagate
them to the slave cluster (phase 1). The RS on the slave cluster will acknowledge
the reception and respond to the RS on the master (phase 2), similarly to the
voting phase in two-phase commit but negative responses are not possible. On
the master cluster the TSO will gather all responses and send commit command



along the new epoch (phase 3/phase 1 of the next round). This is very similar
to the two-phase commit protocol but with a few improvements inspired by
Sinfonia’s [1] mini-transactions, and where replies are always positive and serve
only to ensure consensus and global knowledge of epoch boundaries.

5 Evaluation

To evaluate our solution, we will focus on cost of the new added features in
terms of how they will affect the performance and scalability of the system,
versus the benefits these new features bring. We will make use of the PyTPCC
HBase adaptation for transactional workloads and the YCSB benchmark.

• The correctness of the system must be evaluated, as to make sure causal
relations are respected as the ordering algorithm acts. Another factor is the
correctness of the commit protocol as to making sure the no later epoch
is exposed before an earlier one, and also the behaviour in the presence of
failures, when this is not achieved, quantify the extent and/or magnitude of
the set of affected operations (with the metrics of Section 4.2 or with error
measurements using geometric norms.

• The effectiveness of the scheduling algorithm to uphold the user specified
constraints with the least possible cost, but it must be taken into account
as above that certain constraint combinations will be simply impossible to
serve. For example, in a worst case scenario where every operations has very
strict constraints and no relaxed operations to leverage, the systems best
option would be to simply default to serial order. We can thus assess the
cost for each level of correctness and quality demands.

• In terms of causality tracking and constraint metadata we must evaluate
the memory, storage and network overhead. Also the delay induced by the
geo-replication commit protocol, for the propagation of epochs.

• The full behaviour of the system will be analysed in terms of performance and
scalability. By emulating several clients, we plan to evaluate how the system
will in terms of memory requirements in the TSO, identifying the point where
queues growth speed will overcome the ability to propagate updates to slave
data centres. We will also compare the performance of our geo-replication
to the default HBase mode and balance the latency our enforcements will
bring against the added features.

6 Conclusion

We have presented our proposal to improve HBase’s eventual consistent geo-
replicated approach with data urgency that abides to causal relations, by propos-
ing a new scheduling algorithm. It will incorporate data bounding values and



causal relations into its reasoning as it disrupts serial order, as well as define a
geo-replication protocol to enforce such ordering. We believe this algorithm will
provide developers with the power to define and control the levels of priority on
their data as well as reason about the cost of strict urgency data to the point
where this cost can be extrapolated in a way to be related to monetary cost.
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