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ABSTRACT
CHive is a new streaming analytics platform to run dis-
tributed SQL-style queries on edge clouds. However,
CHive is currently tightly coupled to a specific stream
processing system (SPS), Apache Storm. In this paper
we address the decoupling of the CHive query planner
and optimizer from the runtime environment, and also
extend the latter to support pluggable runtimes through a
common API. As runtimes, we currently support Apache
Spark and Flink streaming. The fundamental contribu-
tion of this paper is to assess the cost of employing inter-
stream parallelism in SPS. Experimental evaluation in-
dicates that we can enable popular SPS to be distributed
on edge clouds with stable overhead in terms of through-
put.

1. INTRODUCTION
Stream Processing Systems (SPS) are vastly used

by companies and organizations to extract insights
and value from continuous streams of user data in
near real-time. Storm [5], Spark [4], and Flink [2]
are popular examples of such systems. At present
date, there has been an accentuated demand for
these systems to 1) fully support geo-distributed
scenarios and 2) support SQL-like queries at inter-
active speeds. The former implies that partial com-
putation graphs can be computed at possibly dis-
tant geographic locations and connected by a same
cluster. As for the latter, there have been some
recent e↵orts like Catalyst [7] for Spark. However,
this native support for structured queries is yet lim-
ited to data sets of fixed size, and precludes contin-
uous streams of data.
In our previous work, CHive [15] is a stream-

ing analytics platform tailored for distributed edge
clouds.1It enables SQL-like queries, that are exe-

⇤
This work was carried out while the author was an intern at

Bell Labs
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A typical telecommunications network is built up into multi-

ple layers: the core network, the edge network and the access

network. The core network is located at the central o�ce of

cuted over continuous streams of data, to be par-
titioned and distributed over constelations of micro-
datacenters (i.e., following an edge computing model).
CHive’s fundamental contribution is that it opti-
mizes query plans in such a way that the overall
bandwidth consumption is minimal.
CHive targets a new scenario of edge clouds that

is yet uncommon and not supported by major SPS.
Typical widely-deployed SPS, such as Spark, are de-
signed to operate on large clusters within a single
datacenter, and assume nodes to be interconnected
through high-throughput, low latency, Local Area
Networks with full bandwidth availability. Further,
CHive is tightly coupled with its runtime environ-
ment, Storm, which hinders the adoption of CHive
by users of di↵erent SPS.
In this paper, we report our experience while ad-

dressing this problem of decoupling the CHive query
planner and optimizer from its underlying runtime
environment. We also propose a middleware layer,
named CHive Deployer, that supports the plugging
of di↵erent runtimes into CHive through a common
API. Currently, we provide support for two major
and recent SPS, Spark and Flink streaming.
Since commonly used SPS (e.g., Spark) are not

designed to allow a cluster to span multiple data-
centers (in di↵erent geographic areas), CHive relies
on orchestrating multiple SPS clusters: each of the
clusters typically corresponds to a datacenter, and
CHive is responsible for connecting them accord-
ing to a query plan. This, not commonly explored
scenario, follows a edge computing model in which
multiple datacenters are combined to execute di↵er-
ent parts of a single distributed query. For exam-
ple, a cluster might handle the first part of a query,

the operator, while the access network is where the end-user

communication lines are terminated. In between sits the edge

layer, which is a geographically distributed network of smaller

datacenters serving only a limited number of end users. Over

the recent years, general purpose compute resources have been

added to these distributed datacenters, e↵ectively building out

a distributed cloud, also called an edge cloud.
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which relies on performing a project and a filter over
data coming from a nearby source (in order to re-
duce the data stream volume), and another cluster
might compute the rest of the query which relies
on counting the tuples, within a temporal window,
grouped by some key.
Supporting multiple runtimes is challenging be-

cause it involves using di↵erent programming APIs
and models that have their own specificities. In ad-
dition, the distributed deployment of client appli-
cations, that interact directly with the SPS, varies
immensely across di↵erent systems (e.g., complete
Scala application without restrictions, or just a spec-
ification of the job computation graph). We aim
at making CHive Deployer neutral, with respect to
overhead introduced on the underlying SPS, and
transparent for applications.
The fundamental contribution of this paper is to

generalize CHive so it can be used with widely-
deployed SPS. By doing so, we empower commonly
used SPS to be distributed on edge clouds and enjoy
major bandwidth reductions.
In the next section we survey related work. Sec-

tion 3 describes the architecture design of the CHive
Deployer, and Section 4 its evaluation in a distributed
scenario. Finally, Section 5 concludes the paper and
points out future work directions.

2. RELATED WORK
Performing streaming data analytics on the edge

of networks follows a computing model that has
been gaining significant traction lately, specially af-
ter the advent of IoT. This model permits to a great
extent reducing the amount of data that needs to
be transmitted and stored in a central system to
perform analytics.
In addition, supporting SQL-style queries over

continuous streams of data is a significantly trend-
ing topic, especially in an industrial setting. The
advantages of using SQL-style are many, includ-
ing short development cycles and lower maintaince
costs when compared to low-level general purpose
languages, such as Java and C++, to express analytic-
based computations [14]. As aforementioned, the
work in this paper builds upon and extends CHive [15],
which enables such support for structured queries
with windowing-based operators over a edge com-
puting model.
In the research literature, SPSs like Aurora and

Medusa [9] have corroborated our vision that stream-
based systems can be inherently geographically dis-
tributed. They propose a distributed federation of
participating nodes (e.g., datacenters) in di↵erent
administrative domains, that can be scattered in

di↵erent locations around the globe. Global ap-
plications include market data analytics, network
monitoring, global surveillance, and e-fraud detec-
tion. Despite the author’s described intentions re-
garding declarative query support, it is not clear
whether Aurora supports in practice such SQL-style
queries.
Apache Edgent [1] is a new project tailored to IoT

that allows analyzing data on distributed edge de-
vices. It consists of a programming model and run-
time for edge devices. Analytics can be performed
locally or in a back-end system according to their
complexity. Unlike CHive, devices do not coordi-
nate and share data among themselves, thereby al-
ways requiring a centralized system to answer queries
involving more than 1 device. Edgent highlights
however the necessity of running analytics on the
edge of network (premise shared with CHive).
To the best of our knowledge, there is a con-

siderable gap between theory and practice in what
concerns to SQL support over streams of data (ex-
amples include [10, 8]). Other projects, although
claiming to have SQL-like queries support imple-
mented [11, 16, 12], have remained as research projects
mainly used by academics, and not available for the
general public nor companies. Following, we focus
on open-source available solutions.
In the open-source domain, SparkSQL [7] is a new

module that enables relational processing, and SQL
queries, in Apache Spark. It introduces a highly ex-
tensible optimizer, Catalyst, that makes it easy to
add new optimization techniques. Although it is
part of the authors’ future plans, SparkSQL with
Catalyst currently do not support the streaming
component of Spark. To overcome this, Stream-
ingSQL [6] attempts to extend SparkSQL with win-
dowing based capabilities. However, StreamingSQL
functionality is still limited and ine�cient, since
queries can only be executed over data frames (like
a table in a traditional DBMS) that are obtained by
converting the results of stream transformations.
MRQL [3] is the closest project to ours: it shares

our goals of providing a query processing and op-
timization system that can be plugged to di↵erent
underlying data processing systems. Nevertheless,
the streaming support is still a work in progress.
Despite that, the query optimization techniques are
unaware of any network topology, unlike CHive which
follows an edge computing model that distributes
operators across di↵erent datacenters. To the best
of our knowledge, none of the available and popu-
lar open-source project allows a query to be parti-
tioned and distributed across more than one clus-
ter/datacenter.
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Figure 1: CHive architecture and work flow
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Figure 2: CHive Deployer architecture

3. DESIGN AND IMPLEMENTATION
Figure 1 depicts the general architecture and work

flow of the original CHive. Aside from the input
layer on top, we can see that there are two main
layers in this architecture, represented by the Query
Plan Compiler and the Query Deployment Engine
components.
Briefly, the query plan compiler generates a refer-

ence query plan by using a CHive query expression
along with meta information describing event types
and event source URLs (among other parameters).
Soon after, this reference query plan is combined
with a Network topology description and an Opti-
mized Query Plan (OQP) is generated. This OQP
that is outputted from the query compiler speci-
fies which chain of operators (or query primitives)
should run on which datacenters. This mapping
between operators and datacenters is made in a
way such that the overall bandwidth consumption is
minimal. Afterwards, the deployment engine takes
the OQP, which in fact contains a local query plan
per datacenter, and deploys them to run on top of
Storm, the SPS used with CHive. For more details
we refer to [15].

In this work we focus on decoupling the Query
Plan Compiler from the Query Deployment Engine,
which is specific to Storm in the original CHive.
We also change and extend the deployment engine
so that di↵erent and widely-deployed SPS can be
plugged into CHive. Figure 2 clearly depicts the
separation that we want to achieve and the archi-
tecture overview of the CHive Deployer (Query De-
ployment Engine in the original CHive).

3.1 Work flow
Figure 3 illustrates the distributed architecture

that we get with Spark for a simple pipeline job
with 3 stages. In darker grey, we have the compo-
nents addressed in this paper. The general work
flow works as follows. First, the CHive Deployer re-
ceives an OQP from the the CHive Query Planner
and translates it into a common specification lan-
guage (more details are given in Section 3.2). Then,
this specification is sent to the selected runner and
SPS computation graphs are generated.
Soon after, the runner launches the client appli-

cations (Spark Driver) to run onto (geo-distributed)
remote clusters. These applications, in their turn,
submit jobs to the spark executors and collect the
corresponding results. Also, these applications, ex-
cept the one on the last cluster, execute connectors,
which serve their corresponding output data to the
next downstream cluster.
Finally, a source injects data into the first cluster,

which performs some initial computation on it, and
sends the results to the next cluster in the middle.
This cycle is repeated for the other 2 clusters, using
as sources the output of the previous cluster, until
the final computation results are sunk to the client.

3.2 CHive Deployer
The CHive Deployer, which takes an OQP from

the CHive Planner, is responsible for preparing the
local plans therein contained to be deployed on an
SPS. This preparation involves translating and adapt-
ing the local plans to a common abstract SPS spec-
ification. For example, CHive query plans refer to
schema attributes, such as to perform a project over
name and age of a stream of data containing peo-
ple’s information. Since most SPS are schemaless,
CHive Deployer replaces the attribute’s names (e.g.,
age) by the position by which they appear in the
stream of data against a string separator; if our
stream of data is composed of text lines containing
name|address|age|telephone, then name and age

would be replaced by 0 and 2 respectively (against
the separator |). Hence, this abstract specification
is an attempt to find the greatest common denom-
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Figure 3: Distributed architecture for simplified pipeline job spanning 3 clusters

inator between the majority of SPS.
In its turn, a runner is responsible for translat-

ing this common SPS specification to a target run-
time, which includes using the programming model
and APIs that are specific to a given SPS. Dif-
ferent runners can be plugged into the CHive De-
ployer through a common API, which mainly com-
municates the common SPS specification. Further,
this specification must be as fine grained as possi-
ble, since some operators of some SPS can perform
all-in-one actions; e.g., reduceByKeyAndWindow in
Spark versus keyBy().timeWindow().reduce() in Flink.
By design, it is not currently possible to execute

a query plan over heterogeneous runners (e.g., ex-
ecuting a plan using clusters of distinct SPSs). In
theory, however, this is possible, since client SPS
applications can implement custom code to handle
all di↵erent types of data and data sources.

3.3 Runner
A runner is responsible for building the computa-

tion graph for each local plan (which has been trans-
lated into the common specification) that will run
on each cluster or datacenter, thereby making use
of the underlying programming model that is spe-
cific to a given SPS. A runner is also responsible for
launching the SPS client applications onto remote
clusters. These client applications (one per clus-
ter) interact directly with the SPS, namely submit-
ting jobs, corresponding to the local plans, and col-
lecting results to be shipped out to the next down-
stream clusters.
Finally, a runner should also take care of con-

necting the stream of data across clusters. It ba-

sically needs to add sources and sinks to all local
execution graphs that do not have them, so that
all clusters get connected into a single distributed
execution graph.
Developing a runner takes a considerable e↵ort:

since each SPS has a unique programming model
and API, it is necessary to implement all functions
and operators that concretize the common specifi-
cation in a target SPS runtime. Currently, the com-
mon abstract specification generated by the CHive
Deployer is fully compatible with Spark and Flink,
but as we add new features to CHive, it might be
possible that not all runners support them (e.g.,
session windows are available in Flink but not in
Spark).

3.4 Connectors
A connector is a component that is responsible for

connecting the stream of data across intermediate
clusters. For example, having a pipeline job com-
prising 3 stages spanned across clusters, we would
have one cluster to get the input from a given ex-
ternal source; one cluster to sink the final results of
the entire computation; and one intermediate clus-
ter that would use connectors to: i) receive its input
from the output of the first cluster; and ii) send its
output to the input of the last cluster.
A connector can be embedded in SPS client ap-

plications or launched as an external process on
the same cluster nodes as of the client applications.
Whenever possible, connectors should be embedded
in SPS client applications, since it is slightly more
e�cient to send records directly from the applica-
tion than piping them to an external process. How-
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ever, for some SPS this is not possible: Flink, for
instance, only allows job graphs to be launched onto
remote clusters, and not general full client applica-
tions (like it is allowed by Spark).
At its core, a connector maintains an open server

connection (e.g., socket based) so that records can
be shipped out to the next downstream clusters. In
practice, the next downstream clusters fetch input
data from the servers opened by connectors.
In case of embedded connectors, they are depen-

dent of the SPS, and thus they need to be developed
for each runner. Otherwise, external connectors can
be used by di↵erent runners, and thus the develop-
ment e↵ort is reduced at the expense of a slightly
slower inter-cluster connection (as aforementioned).

4. EXPERIMENTAL EVALUATION
All benefits of CHive, especially in terms of band-

width, were already demonstrated in our previous
work [15]. In this paper we evaluate the neutrality
of the CHive Deployer; i.e., we assess the impact
that the CHive Deployer has in terms of overhead
on the underlying SPS. Specifically, we show that
the CHive Deployer runners are coherent with their
corresponding single cluster versions (i.e., without
being distributed in a edge clouds model). The ob-
jective of this evaluation is to understand whether
the overhead of the CHive Deployer is stable and not
highly influenced by the specific underlying SPS.
All tests were conducted using 6 machines with

an Intel Core i7-2600K CPU at 3.40GHz, 11926MB
of RAM memory, and HDD 7200RPM SATA 6Gb/s
32MB cache, connected by 1 Gbps LAN (which en-
sures a fair reference comparison, given that the net-
work latency between all machines was the same).
Also, we used Spark Streaming 1.5.2 and Flink 0.10.2
in our two provided runners.
To evaluate the CHive Deployer we relied on a

scenario to calculate the top 20 websites generating
the highest download volumes in the last 10 seconds,
from a stream of real-world traces of a large mobile
operator. Figure 4 depicts the Optimized Query
Plan that we get from the CHive Planner for this
considered scenario. We can see that the respective
query is distributed across 6 di↵erent datacenters,
corresponding to 6 di↵erent machines in our exper-
iment. The normal triangles, ellipses, and inverted
triangle represent data sources, operators, and the
sink respectively.
In a first experiment, we measured the through-

put obtained for the considered scenario in terms
of total number of records processed, per window
of 10 seconds, for the entire computation. We mea-
sured this throughput for our two implemented run-

SOURCE 1
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filter

union

DC 1.1.1

SOURCE 2

project

filter

DC 1.1.2

SOURCE 3

project

filter

DC 1.2.1

DC 1.1
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DC 1.2

union
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orderBy

limit

DC 1

Figure 4: OQP for the top 20 websites with
the highest download volumes

ners, Spark and Flink, and compared CHive with
the baseline system. In CHive mode (i.e., using
a edge computing model), there are 6 Spark/Flink
separate clusters where each executes part of the
computation graph (like depicted in Figure 4). As
for the baseline mode, which represents a classic
situation, it comprises a single Spark/Flink cluster
spanned across 6 machines where each one runs the
entire computation graph on di↵erent data parti-
tions. Note that these systems are not designed to
run across di↵erent geographic locations that are
distant from one another; i.e., there are strong lim-
itations in spanning a cluster across multiple data-
centers [13] (unlike the CHive approach).
We observed that the baseline mode yields higher

throughput than the CHive mode for both consid-
ered SPS. That is to be expected, since input data in
the baseline system is given to all of the 6 machines,
whereas in CHive only 3 machines (corresponding
to 3 clusters) are fed with data from the sources.
(Refer to our previous work to see the advantages
of CHive against other systems, especially in terms
of bandwidth.) The important point to note here is
the neutrality of the CHive Deployer: on each con-
sidered SPS, the throughput di↵erence remains in
(almost) the same proportion between baseline and
CHive modes.
Table 1 shows the di↵erences of throughput in

proportion (i.e., we divide the throughput obtained
with baseline by the one of CHive for Spark and
Flink). In both SPS, the ratio between baseline and
CHive is the same within a deviation of less than
5%, which indicates that CHive Deployer is neutral
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Table 1: Deviation (as percentage change)
of throughput ratios between baseline and
CHive with Spark and Flink runners

Spark Flink Deviation
1.32 1.37 4%

(2832/2150) (1184/863) (1.37/1.32-1)

Table 2: Deviation (as percentage change) of
total number of bytes ratios between baseline
and CHive with Spark and Flink runners

Spark Flink Deviation
1.50 1.38 9%

(148631/99159) (62372/45175) (1.50/1.38-1)

and not intrusive in relation to the baseline system.

In a second experiment, and using the same setup
and query as of the first experiment, we assessed
the deviation in the results, originated by di↵er-
ent throughputs (within a window), with the objec-
tive of seeing how far results are between baseline
and CHive. Specifically, we have counted the total
number of bytes that we obtain from the output,
which corresponds to the sum of the bytes of all
top 20 websites, in a 10 second window for Spark
and Flink, while comparing the CHive mode against
the baseline system. This comparison consisted of
the division between the total number of bytes in
baseline and CHive, for Spark and Flink, as shown
in Table 2. The result accuracy di↵erence that we
obtain for both SPS is the same within a deviation
of less that 10% (cf. table below), which indicates
CHive Deployer is significantly coherent across run-
ners.
As a side e↵ect, we have also shown a compari-

son between Spark and Flink themselves. For our
specific workload, Spark outperformed Flink. This
was mainly due to some operators/tasks that have
higher parallelism levels and are more optimized in
Spark (such as sorting tuples within a window).

5. CONCLUSION
In our previous work, CHive [15] enables struc-

tured interactive queries to run distributed on con-
tinuous streams of data, over edge clouds, in a band-
width e�cient manner. This computing model, that
has been gaining significant traction lately (spe-
cially with the advent of IoT), is made available to
popular SPS through the generalization of CHive
(that is addressed in this paper).
In particular, this paper addressed the decoupling

of the CHive query planner from its underlying run-

time environment. We have built CHive Deployer, a
middleware layer that makes possible to use di↵er-
ent and widely-deployed SPS with CHive through a
common API. We have also demonstrated the fea-
sibility of plugging runners and SPS to CHive De-
ployer by developing two for popular SPS: Spark
and Flink. Experimental evaluation, with real-world
data, indicates that CHive Deployer is neutral (not
a↵ected by the underlying technology) and does not
introduce any additional overhead.
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