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Context

There is a growing need to analyze, process and store data

Organizations frequently resort to the composition of data processing

workflows

Workflow applications can be continuous
Examples:

> measuring the impact of social business

> assessing fire risk

> detecting gravitational-waves

> predicting earthquakes
WMS orchestrates the execution of wf applications

> traditionally enforce strict temporal synchronization
> not the most desirable in a no. of cases
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Motivation - Assessing Air Quality Health Index

» Executed every fixed interval with a wave of data fed from sensors

» Most part of the time, sequential waves would not change the workflow
result

> pollution stable during most part of the day and night, changing more
significantly at rush hours

> Resources are wasted
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Contribution

> Adaptive workflow model and framework to enable asynchrony in

continuous and incremental processing
» Machine learning to assess the worthiness of executing a processing step

» Trade-off result accuracy with resource savings
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Workflow Model - Asynchrony

PM2S

> step B is only executed after step A produces sufficient output that makes

step B execution meaningful

wave A B
1 | execute
2 | execute | execute
3 | execute
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Workflow Model - Output error

» Postponing the execution of processing steps introduces divergence

(error) in the values, as opposed to

the synchronous model

wave | sync output | async output | error
1 10 10 0
2 20 10 €
3 30 30 0

» Error functions can be provided through an API

> general implementations are provided

> To guarantee correctness, users should define max., so that ¢ < max.
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Workflow Model - Input impact

> Error € of a step is generally correlated with the input of that step

» We define the input impact ¢ as a metric to characterize the input
> We provide an API through which custom functions can be defined

> general implementations are provided
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Workflow Model - Generality of the Model

» Applications that exhibit regular input patterns over a period of time (no
random or uncorrelated input/output over time)

> This class of applications is actually commonplace in continuous workflow
processing
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Workflow Model - Correlation between input impact/error
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» Pearson correlation coefficient r (1: total linear correlation, 0: no linear
correlation)

> Many tasks do not exhibit linear nor trivial correlations

> Machine Learning to handle a wide spectrum of patterns
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Learning approach

> Learn dataflow patterns: correlation between input variation (¢) and
corresponding output error (€)

» Predict when ¢ causes ¢ to be above the maximum tolerated error
threshold (max.)

» If so, input is significant and task should be triggered

10/24



Learning approach - Classification

» Classification algorithms to predict when € > max..
> Bayes Network, J48 tree, Logistic, Neuronal Network, Random Forest (RF),
and Support Vector Machine (SVM).
» SVMs and RF outperformed all others in most scenarios
> RF performs better with default parameterization, especially in the presence
of unbalanced datasets with variable relation patterns
> Problem falls into supervised learning and multi-label classification

» During a training phase, the WF is run synchronously to build a model
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Learning approach - Training phase
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Learning approach - Test phase

» During a test phase, we assess the quality of the produced model

» Our model can be adjusted to favor results on either recall or precision

High recall means that we are avoiding the existence of false negatives; i.e., the
percentage of times the model estimated incorrectly that ¢ <= max.

> leads to higher error compliance

High precision means that we are avoiding to estimate incorrectly that
€ > maxe

> leads to higher resource savings
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Learning approach - Execution Phase

» After accurate model is built, the execution phase takes place

> WEF starts running asynchronously in an adaptive way

> At each wave, the input impact of each step is given to the classifier,
which in return indicates the steps that should be executed

14/24



Middleware Framework

Application Libraries
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Workflow Management System (WMS)
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Middleware Framework - Adaptation

e > Adapted database client libraries
E QoD Engine Predictor > Applications need to be slightly
g modified (eg, changing package
B Monitoring Knowledge Base names in the imports of Java

5 classes)
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Middleware Framework - Adaptation

Application Libraries

Workflow Management System (WMS)

"""""""""""""" > Libraries at the WMS level (e.g.,

E ig scri her high-level
$ QoD Engine Predictor pig scripts or any other high-leve

E language that must be

E interpreted /compiled by the WMS)
H Monitoring Knowledge Base

£ > Provides transparency to

e - applications
i Observer :
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Middleware Framework - Adaptation

Application Libraries

» Custom code that is executed at

QoD Engine Predictor the database level (e.g.,

co-processors in HBase or triggers

Monitoring Knowledge Base in Cassand l’a)

SmartFlux Framework

» Transparent to applications

i

Data Store

J

Adaptation Components |:|Core Components
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Middleware Framework - Adaptation

Application Libraries
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Middleware Framework - Training

Application Libraries

» Monitoring intercepts database

£3
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Middleware Framework - Executing

Application Libraries

» Monitoring intercepts database

requests, computes the input

S B . .
E QoD Engine Predictor impact and sends it to the QoD
£ f' g\ Engine
= Monitoring Knowledge Base » QoD Engine queries the Predictor
5 and gets in return the subset of
J E ------------------------- : steps that should be executed
i Observer
Data Store
. J
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Evaluation

v

SmartFlux was integrated with a widely deployed WMS, Apache Oozie

> As data store, we adopted Apache HBase

v

SmartFlux uses MEKA, a multi-label classification library based on the
well known WEKA Toolkit

> 6 machines with commodity hardware
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Evaluation - Scenarios

Linear Road Benchmark

Average Speed

Update
Feeder/ Vehicle
Forwarder Position

Congestion  Classify

No. of Cars

Accidents

Travel Time
Estimation

Process
Queries
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Evaluation - Scenarios

Air Quality Health Index

03 | pPm25
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Evaluation

- Precision
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> AirQuality outperformed LinearRoad (higher resource efficiency)

» Classifier generalized better input/error relations in AirQuality
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Evaluation - Recall
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Evaluation - Confidence in respecting error bounds
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> |In steady state:
> over 95% with an error bound of 5%
> over 90% overall
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Evaluation - Confidence with simpler techniques
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» random: probability of executing or not a step is equal
> step: executes steps at every 2, 3, or 5 waves

» None can provide confidence level close to that of SmartFlux
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Evaluation - Savings

Normalized Executions
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» With a 5% error bound: 40 and 20% of saved executions

» With a 20% error bound: upto 80 and 60% of savings
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Evaluation - Savings
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» Higher efficiency in AirQuality, reflecting the high precision obtained
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Conclusion

> Presented an adaptive workflow model and framework for continuous
processing

> explores trade-off between result accuracy and resource savings
> provides probabilistic guarantees
> Our solution makes use of Machine Learning to learn correlation patterns
between input and output error and guide WF execution in a
resource-efficient manner

» Evaluation indicates substantial resource savings in exchange of allowing
small errors to exist

> up to 40% savings with a maximum error of 5%
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