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Context

I There is a growing need to analyze, process and store data

I Organizations frequently resort to the composition of data processing

workflows

I Workflow applications can be continuous

I Examples:
I measuring the impact of social business
I assessing fire risk
I detecting gravitational-waves
I predicting earthquakes

I WMS orchestrates the execution of wf applications
I traditionally enforce strict temporal synchronization
I not the most desirable in a no. of cases
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Motivation - Assessing Air Quality Health Index
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I Executed every fixed interval with a wave of data fed from sensors

I Most part of the time, sequential waves would not change the workflow
result

I pollution stable during most part of the day and night, changing more

significantly at rush hours

I Resources are wasted
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Contribution

I Adaptive workflow model and framework to enable asynchrony in

continuous and incremental processing

I Machine learning to assess the worthiness of executing a processing step

I Trade-off result accuracy with resource savings
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Workflow Model - Asynchrony
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I step B is only executed after step A produces sufficient output that makes

step B execution meaningful

wave A B
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3 execute
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Workflow Model - Output error

I Postponing the execution of processing steps introduces divergence

(error) in the values, as opposed to the synchronous model

wave sync output async output error

1 10 10 0

2 20 10 ε

3 30 30 0

I Error functions can be provided through an API
I general implementations are provided

I To guarantee correctness, users should define maxε, so that ε ≤ maxε
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Workflow Model - Input impact

I Error ε of a step is generally correlated with the input of that step

I We define the input impact ι as a metric to characterize the input

I We provide an API through which custom functions can be defined
I general implementations are provided
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Workflow Model - Generality of the Model

I Applications that exhibit regular input patterns over a period of time (no
random or uncorrelated input/output over time)

I This class of applications is actually commonplace in continuous workflow

processing
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Workflow Model - Correlation between input impact/error
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I Pearson correlation coefficient r (1: total linear correlation, 0: no linear

correlation)

I Many tasks do not exhibit linear nor trivial correlations

I Machine Learning to handle a wide spectrum of patterns
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Learning approach
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I Learn dataflow patterns: correlation between input variation (ι) and

corresponding output error (ε)

I Predict when ι causes ε to be above the maximum tolerated error

threshold (maxε)

I If so, input is significant and task should be triggered
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Learning approach - Classification

I Classification algorithms to predict when ε > maxε.
I Bayes Network, J48 tree, Logistic, Neuronal Network, Random Forest (RF),

and Support Vector Machine (SVM).

I SVMs and RF outperformed all others in most scenarios
I RF performs better with default parameterization, especially in the presence

of unbalanced datasets with variable relation patterns

I Problem falls into supervised learning and multi-label classification

I During a training phase, the WF is run synchronously to build a model
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Learning approach - Training phase
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Learning approach - Test phase

I During a test phase, we assess the quality of the produced model

I Our model can be adjusted to favor results on either recall or precision

High recall means that we are avoiding the existence of false negatives; i.e., the

percentage of times the model estimated incorrectly that ε <= maxε
I leads to higher error compliance

High precision means that we are avoiding to estimate incorrectly that

ε > maxε
I leads to higher resource savings
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Learning approach - Execution Phase

I After accurate model is built, the execution phase takes place
I WF starts running asynchronously in an adaptive way

I At each wave, the input impact of each step is given to the classifier,

which in return indicates the steps that should be executed
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Middleware Framework

- Adaptation
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I Operates between WMS and data

store

I Steps must share data through the

underlying data store

I Adaptation components connect

SmartFlux with WMS and data

store
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Middleware Framework - Adaptation
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I Adapted database client libraries

I Applications need to be slightly

modified (eg, changing package

names in the imports of Java

classes)
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Middleware Framework - Adaptation
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I Libraries at the WMS level (e.g.,

pig scripts or any other high-level

language that must be

interpreted/compiled by the WMS)

I Provides transparency to

applications
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Middleware Framework - Adaptation
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I Custom code that is executed at

the database level (e.g.,

co-processors in HBase or triggers

in Cassandra)

I Transparent to applications
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Middleware Framework - Adaptation
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I SmartFlux issues triggering

notifications

I WMS notifies of new waves and

steps completion
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Middleware Framework - Training
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I Monitoring intercepts database

requests and updates Knowledge

Base with statistical information

I Predictor builds a classification

model based on input impact/error

metrics stored in Knowledge Base
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Middleware Framework - Executing
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I Monitoring intercepts database

requests, computes the input

impact and sends it to the QoD

Engine

I QoD Engine queries the Predictor

and gets in return the subset of

steps that should be executed
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Evaluation

I SmartFlux was integrated with a widely deployed WMS, Apache Oozie

I As data store, we adopted Apache HBase

I SmartFlux uses MEKA, a multi-label classification library based on the

well known WEKA Toolkit

I 6 machines with commodity hardware
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Evaluation - Scenarios
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Evaluation - Scenarios

Air Quality Health Index
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Evaluation - Precision
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I AirQuality outperformed LinearRoad (higher resource efficiency)

I Classifier generalized better input/error relations in AirQuality
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Evaluation - Recall
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Evaluation - Confidence in respecting error bounds
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I In steady state:
I over 95% with an error bound of 5%
I over 90% overall
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Evaluation - Confidence with simpler techniques

Wave

C
o
n
fi
d
e
n
c
e

0.2

0.4

0.6

0.8

1.0

100 200 300

smartFlux
random
seq2
seq3
seq5

AirQuality

I random: probability of executing or not a step is equal

I step: executes steps at every 2, 3, or 5 waves

I None can provide confidence level close to that of SmartFlux
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Evaluation - Savings
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I With a 5% error bound: 40 and 20% of saved executions

I With a 20% error bound: upto 80 and 60% of savings
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Evaluation - Savings
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I Higher efficiency in AirQuality, reflecting the high precision obtained
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Conclusion

I Presented an adaptive workflow model and framework for continuous

processing

I explores trade-off between result accuracy and resource savings

I provides probabilistic guarantees

I Our solution makes use of Machine Learning to learn correlation patterns

between input and output error and guide WF execution in a

resource-efficient manner

I Evaluation indicates substantial resource savings in exchange of allowing

small errors to exist

I up to 40% savings with a maximum error of 5%
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Thanks for your attention.

Questions?

Email: sesteves@gsd.inesc-id.pt
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